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1 An example.

Consider the space of 2 × 2 × 2 complex arrays C2 ⊗ C2 ⊗ C2. Note that we can realize these
as the space of 2 × 2 matrices whose entries are linear forms in 2 variables. For “nondegenerate”
arrays, the zero locus of the determinant is 2 points, and hence there isn’t interesting moduli (if
we consider equivalence via change of basis).

Now consider the space of 2 × 2 × 2 integral arrays U = Z2 ⊗ Z2 ⊗ Z2. It carries a natural
action of the group G = SL2(Z) × SL2(Z) × SL2(Z) via change of coordinates. Then G acts on
the coordinate ring Sym(U∗) of U and the subring of invariants is generated by a single polynomial
f of degree 4. This is the simplest example of a hyperdeterminant and has the following explicit
form. Fix a basis ui, vi for the ith factor of Z2. Then elements of U have expressions of the form

u1 ⊗M1 + v1 ⊗N1

where M1 and N1 are 2× 2 matrices. Letting x, y be the dual coordinates on Z2, we can form the
quadratic polynomial Q1(x, y) = det(xM + yN). If we instead use the second or third factors of
Z2, we get additional quadratic polynomials Q2(x, y) and Q3(x, y). The discriminants of these Qi

are all equal to f .
In [Bha], Bhargava defined a group law on primitive binary quadratic forms by declaring that

[Q1] + [Q2] + [Q3] ≡ 0

whenever Q1, Q2, Q3 come from the above construction.

Theorem 1.1 (Bhargava). There is a natural choice of origin which turns the set of primitive
binary quadratic forms with given discriminant D into a group, and this group structure coincides
with the Gauss composition law for primitive binary quadratic forms.

To prove this, Bhargava constructed an explicit discriminant-preserving bijection between non-
degenerate G-orbits in U and certain equivalence classes of pairs (R, (I1, I2, I3)) where

• R is an “oriented” commutative ring with underlying additive group Z2

• I1, I2, I3 are “oriented” fractional ideals with certain conditions
To generalize this situation, he considered the class of prehomogeneous vector spaces, i.e., those

representations that have (G,U) such that G(C) acts on U(C) with an open orbit (in the above,
we would use G = GL2 ×GL2 ×GL2). In such cases, the ring of semi-invariants Sym(U∗)(G,G) is
either trivial or a polynomial ring in one variable, and it is most interesting to consider Z-orbits
and find moduli interpretations for the orbits. Our work involves a different direction: considering
those representations such that Sym(U∗)(G,G) is a polynomial ring of dimension greater than 1 and
finding moduli interpretations for the G(C)-orbits.

For the rest of the talk, we will work over C, although it is possible most statements extend to
fields of positive characteristic (we have not systematically figured out how much extends, so we
omit this for simplicity).
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2 Vinberg theory.

2.1 Representations of “finite type”.

Vinberg described a method in [Vin] for producing representations (G,U) which have finitely many
orbits. I won’t describe the most general situation. Let Γ be a Dynkin diagram and pick a node
i ∈ Γ. Let g be the semisimple Lie algebra associated to Γ \ i. Let U be the representation of
g whose highest weight is the sum of fundamental weights corresponding to nodes adjacent to i.
Some examples:

◦

◦ ◦ ◦ • ◦ ◦ ◦ ◦ ◦ ks •

◦

• ◦ ◦ ◦ ◦ ◦

which correspond to

(sl5(C)× sl2(C),

2∧
C5 ⊗C2), (sl5(C), S2C5), (so12(C), spin+(12)).

Integrate this action to a semisimple group and add a scaling C∗ factor, and call the group G.

Theorem 2.1 (Vinberg). (G,U) has finitely many orbits.

In the three examples, we get
• Pencils of 5× 5 skew-symmetric matrices
• Symmetric 5× 5 matrices
• Half-spinors of dimension 12
To get the example in the beginning of the talk, use the diagram

◦

◦ • ◦

2.2 Representations of “affine type”.

We can do the same as above where now Γ is an affine Dynkin diagram and get a pair (G,U) where
G is a reductive group acting linearly on U .

Theorem 2.2 (Vinberg). Sym(U∗)(G,G) is a polynomial ring, and the nullcone (zero locus of the
positive degree (G,G) invariants) has finitely many G-orbits.

We have been studying how to give modular interpretations for these orbit spaces. In all cases,
they seem to be related to some kind of moduli space of curves (part of this investigation is also
work in progress with Wei Ho and Jack Thorne).

Note that this generalizes the “finite type” case since when there are finitely many orbits, the
nullcone is the whole space U . This also contains results of Dynkin and Kostant: if we choose i to
be the “extending” vertex, then U = g will be the adjoint representation, and this recovers the fact
that the nilpotent cone is a complete intersection with finitely many orbits.

Some examples I will discuss in more detail:

◦

◦ ◦ ◦ • ◦ ◦ ◦ ◦

•

◦ ◦ ◦ ◦ ◦ ◦ ◦
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These give the representations

(SL5(C)× SL5(C)×C∗,
2∧
C5 ⊗C5), (GL8(C),

4∧
C8).

There are many examples, and there are many relations of the form: G′ is a subgroup of G
and U ′ is a G′-subrepresentation of U . Among those that are “maximal” there are some families
and some sporadic examples. We study the sporadic examples and construct maps that take a
“nondegenerate” vector v ∈ U and produce some geometric object X that only depends on the
G-orbit of v:

(G,U) X

(SL5(C)× SL5(C)×C∗,
∧2

C5 ⊗C5) Elliptic curve torsor with degree 5 line bundle

(GL9(C),
∧3

C9) Abelian surface torsor with degree (3, 3) line bundle

(GL8(C),
∧4

C8) Abelian 3-fold torsor with degree (2, 2, 2) line bundle
(Spin16(C), spin+(16)) Abelian 4-fold torsor with degree (2, 2, 2, 2) line bundle

In the last three cases, the Abelian variety satisfies certain properties which we omit for sim-
plicity of exposition. Furthermore, the correspondence v 7→ X appears to be a finite-to-1 map in
each case. We also considered many “sub”examples (G′, U ′) but we will omit their descriptions in
the interest of time.

Example 2.3. Consider the Dynkin diagram of type A
(2)
2n−1

◦

• +3 ◦ ◦ · · · ◦ ◦ ◦ ◦

This gives the pair (SO2n(C) × C∗, S2
0C

2n). Here S2
0C

2n is the quotient of S2C2n by the line
spanned by the quadratic form q. Given a nondegenerate quadric q′ ∈ S2

0C
2n, we can form the

pencil xq + yq′. The determinant gives us 2n points in P1 and hence a hyperelliptic curve C of
genus n− 1, and this process is reversible. This situation was considered by Weil.

Desale and Ramanan [DR] showed the following. Consider the intersection of the quadrics
defined by q and q′ in P2n−1. Then the variety of Pn−2’s in q ∩ q′ is a torsor for the Jacobian of C,
and the variety of Pn−3’s in q∩ q′ is isomorphic to the moduli space of rank 2 stable vector bundles
with fixed odd determinant ξ.

These constructions can be interpreted as “degeneracy loci” as follows. Consider the orthogonal
Grassmannian OGr(n − 1, 2n), which is the subvariety of Gr(n − 1, 2n) whose points are totally
isotropic subspaces for q. The trivial bundle Gr(n − 1, 2n) × C2n has a tautological rank n − 1
subbundle R = {(x,W ) | x ∈W}. Then we have S2

0C
2n = H0(OGr(n− 1, 2n);S2R∗) and q′ gives

a generic section whose zero locus is the variety of Pn−2’s in q ∩ q′. Similar comments apply to the
variety of Pn−3’s using OGr(n− 2, 2n).

Modular interpretations for the degeneracy loci for the other Grassmannians OGr(k, 2n) are
given by Ramanan [Ram, §6, Theorem 3].

The general idea is as follows: using the Borel–Weil construction find a homogeneous space
G/P and a homogeneous vector bundle U such that U = H0(G/P ;U) as G-modules. In all cases,
over any point x ∈ G/P , the stabilizer of x will act on the fiber U|x with finitely many orbits (in
fact, we can take a reductive subgroup of the stabilizer). These fibers are essentially the same for
any x, so we can glue together these orbits. If we pick a section v ∈ U , global orbits will give us
“degeneracy loci”, which are related to X in some way.
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In all cases, we can construct perfect resolutions supported on these orbit closures (a resolution
of length ℓ is perfect if it resolves a module whose annihilator contains a regular sequence of length
ℓ; in our case, this is the same as saying that the codimension of the support is ℓ). Usually they are
free resolutions of the coordinate ring. These translate to locally free resolutions of some coherent
sheaf supported on the degeneracy locus (usually the structure sheaf) via the Eagon–Northcott
generic perfection theorem. By calculating cohomological invariants of the degeneracy locus, we
can usually gain a lot of information about it.

The choice of P is certainly not unique, so comparing different choices gives us some interesting
geometric relations to play around with.

3
∧2

C5 ⊗C5

Let A and B be 5-dimensional vector spaces. Take G = SL5(A)×SL5(B)×C∗ and U = A⊗
∧2B.

The simplest way to study this example is as follows.
Take G/P = P(A∗) (lines in A∗) and U = O(1)⊗

∧2B (here B = P(A∗)×B is a trivial bundle).
Then U = H0(P(A∗);O(1) ⊗

∧2B). The fibers all look like the space of 5 × 5 skew-symmetric
matrices, so the degeneracy loci are the Pfaffian loci of U . For a generic section v ∈ U , the only
nonempty locus C is the one cut out by the 4× 4 Pfaffians, and this will be smooth of codimension
3. Now consider the Buchsbaum–Eisenbud complex

0 → O(−5) → B∗ ⊗O(−3) →
4∧
B∗ ⊗O(−2) → OP(A∗) → OC → 0.

which is a locally free resolution of OC . From this resolution, we can calculate h0(OC) = h1(OC) =
1, which say that C is connected and has genus 1. Choosing a basepoint on C turns it into an
elliptic curve, and the restriction of O(1) to C gives the degree 5 line bundle. Basic properties of
elliptic curves and the Buchsbaum–Eisenbud classification of codimension 3 Gorenstein ideals [BE,
Theorem 2.1] shows that every elliptic curve C with a degree 5 line bundle arises from the above
construction.

Although this example was rather simple, it is interesting to consider other choices of G/P .
One possibility is to replace it with a different Grassmannian Gr(k,A∗) (where the above is k = 1).
The trivial bundle A∗×Gr(k,A∗) contains a tautological rank k subbundle R = {(a,A′) | a ∈ A′},
and one can show that H0(Gr(k,A∗);R∗) = A as GL(A)-modules (this is a special case of the
Borel–Weil theorem, which guides the more difficult examples), so we can take U = R∗ ⊗

∧2B.
First consider k = 2. The fibers of U are C2 ⊗

∧2
C5. The smallest orbit is the affine cone over

P1×Gr(2, 5). Its tangential variety has codimension 5 and its secant variety has codimension 5. If
we glue together these orbit closures and consider the corresponding degeneracy loci in Gr(2, A∗)
using the same section as before, we get subvarieties T and S of codimensions 5 and 4, respectively.

Proposition 3.1. T is the locus of 2-planes that are tangent to some point of C, and S is the locus
of 2-planes W such that deg(P(W ) ∩ C) ≥ 2. Furthermore, the map ψ : C → T sending x ∈ C to
its tangent line Tx(C) is an isomorphism.

Now consider k = 3. The fibers of U are C3 ⊗
∧2

C5. The SL3 × SL5-invariants of this space
are generated by a single invariant of degree 15. The corresponding degeneracy locus in Gr(3, A∗)
is a hypersurface of degree 5.

Proposition 3.2. This hypersurface is the cut out by the Chow form of C, i.e., it consists of all
3-planes W such that P(W ) ∩ C 6= ∅.
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Finally, consider k = 4. The fibers of U are C4 ⊗
∧2

C5. The SL4 × SL5-invariants of this
space are generated by a single invariant of degree 40. The corresponding degeneracy locus in
Gr(4, A∗) = P(A) is a hypersurface of degree 10.

Proposition 3.3. This hypersurface is the projective dual of C, i.e., it consists of all hyperplanes
in P(A∗) which are tangent to C.

4
∧4

C8.

We will give two constructions which will lead to the same geometric object.
Let V be an 8-dimensional vector space and take U =

∧4 V .
Take G/P = P(V ∗) and let Q = V ∗/O(−1) be the rank 7 quotient bundle. Then we have

V = H0(P(V ∗);
∧3Q∗ ⊗O(1)), so we set U =

∧3Q∗ ⊗O(1).
The fibers of U are

∧3
C7. This has a degree 7 SL7-invariant. The singular locus X ′ of the

corresponding hypersurface has codimension 4 and is the closure of a single GL7-orbit. In fact, it
is Cohen–Macaulay and we can calculate its minimal free resolution using the geometric technique
of Kempf–Lascoux–Weyman [Wey, Chapter 5]. The singular locus Z ′ of X ′ has codimension 7 and
similar remarks apply to it. In fact, the ideal of Z ′ in OX′ is the symmetric square of the canonical
module of X ′. Using this, we can construct an algebra structure on OX′ ⊕ ωX′ , define X̃ ′ to be its
spectrum, and get a degree 2 map π : X̃ ′ → X ′.

After picking a generic section v ∈ U , this gives rise to a map π : X̃ → X of 3-dimensional
varieties. The locally free resolution of OX is given by

0 → Q⊗O(−7) →
2∧
Q⊗O(−6) → ad(Q)⊗O(−4) →

4∧
Q⊗O(−4) → O

where ad(Q) = ker(Q⊗Q∗ → O). Using this minimal free resolution, one can calculate hi(O
X̃
) =(

3
i

)
and ω

X̃
= O

X̃
. Now we can use the following result, which is a consequence of a theorem of

Kawamata [Kaw, Corollary 2]:

Theorem 4.1 (Kawamata). Let Y be a smooth, connected, projective complex variety of dimension
g such that ωY = OY and h1(OY ) = g. Then Y is an Abelian variety (after picking a basepoint).

Hence X̃ is a torsor over an Abelian 3-fold, and one can also show that X is its Kummer
quotient. The pullback of the line bundle O(1) on P(V ∗) gives the degree (2, 2, 2) line bundle on
X̃.

Remark 4.2. The degree 7 SL7-invariant also gives a degeneracy locus which is a quartic hyper-
surface in P(V ∗). This is known as the Coble quartic, and it is the unique quartic which is singular
along X (see [Bea] for more details).

There is a way to construct X̃ as a subvariety. We need to work with the partial flag variety
Fl(1, 7, V ∗), which is the incidence locus in P(V ∗) × Gr(7, V ∗) consisting of pairs of lines and
hypersurfaces (ℓ,H) such that ℓ ⊂ H. This naturally has two subbundles R1 and R7 obtained by
pulling back the tautological subbundles from P(V ∗) and Gr(7, V ∗). Using Borel–Weil, one has

4∧
V = H0(Fl(1, 7, V ∗);R∗

1 ⊗
3∧
(R7/R1)

∗).

The fibers of this bundle are
∧3

C6, and the orbit of interest is the affine cone over Gr(3, 6), or the
locus of pure tensors.

Proposition 4.3. The corresponding degeneracy locus is X̃ and the restriction of the forgetful map
Fl(1, 7, V ∗) → P(V ∗) is the map π.
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