Sheaf cohomology and non-normal varieties

Steven Sam
Massachusetts Institute of Technology

December 11, 2011

Kempf collapsing

We're interested in the following situation (over a field K):

- V is a vector space
- X is a projective variety
- Short exact sequence of locally free sheaves over X :

$$
0 \rightarrow \mathcal{S} \rightarrow V \otimes \mathcal{O}_{X} \rightarrow \mathcal{T} \rightarrow 0
$$

- Identifying locally free sheaves with vector bundles, we have a projection map $p_{1}: \mathcal{S} \rightarrow V$. We say that $Y=p_{1}(\mathcal{S})$ is collapsing of \mathcal{S}.
- Many interesting varieties (in linear algebra) can be realized as Y as above. We are interested in studying the equations and minimal free resolutions of Y.

The geometric technique

Note that $\mathcal{O}_{\mathcal{S}}$ is a regular zero section of $p_{2}^{*} \mathcal{T}$ over $\mathcal{O}_{X \times V}$, so we have the Koszul resolution

$$
\cdots \rightarrow \bigwedge^{i}\left(p_{2}^{*} \mathcal{T}^{*}\right) \rightarrow \bigwedge^{i-1}\left(p_{2}^{*} \mathcal{T}^{*}\right) \rightarrow \cdots \rightarrow \mathcal{O}_{X \times V} \rightarrow \mathcal{O}_{\mathcal{S}} \rightarrow 0
$$

Taking pushforwards, we can construct a minimal complex F. with

$$
\mathbf{F}_{i}=\bigoplus_{j \geq 0} \mathrm{H}^{j}\left(X ; \bigwedge^{i+j}\left(\mathcal{T}^{*}\right)\right) \otimes \mathcal{O}_{V}(-i-j)
$$

whose homology (concentrated in non-positive degrees) is

$$
\mathrm{H}_{-i}\left(\mathbf{F}_{\bullet}\right)=\mathrm{R}^{i} p_{1_{*}} \mathcal{O}_{\mathcal{S}}=\bigoplus_{j \geq 0} \mathrm{H}^{i}\left(X ; \operatorname{Sym}\left(\mathcal{S}^{*}\right)\right)
$$

Normality and rational singularities

- In particular, if $\mathrm{R}^{i} p_{1_{*}} \mathcal{O}_{\mathcal{S}}=0$ for $i>0$, the complex \mathbf{F}. would be a resolution for $p_{1_{*}} \mathcal{O}_{\mathcal{S}}$ (assuming we could calculate the cohomology of $\bigwedge^{d} \mathcal{T}^{*}$).
- We are interested in the cases when p_{1} is a desingularization for Y. Then $p_{1 *} \mathcal{O}_{S}=\widetilde{\mathcal{O}}_{Y}$ is the normalization of \mathcal{O}_{Y}.
- In characteristic 0 , the condition $\mathrm{R} p_{1_{*}} \mathcal{O}_{\mathcal{S}}=\mathcal{O}_{Y}$ is called rational singularities. (In positive characteristic, one also requires that $\mathrm{R} p_{1 *} \omega_{\mathcal{S}}=0$ for $i>0$, but we don't need this condition here.)
- So the best case is when Y has rational singularities because then we get a minimal free resolution of \mathcal{O}_{Y}.

Examples of rational singularities

- Determinantal varieties: Let V be the space of $n \times m$ matrices, or $n \times n$ (skew-)symmetric matrices. The variety of matrices with rank $\leq r$ for a given r has rational singularities.
- Type A nilpotent orbits: Let V be the space of $n \times n$ matrices. Fix a partition λ of n. The set of nilpotent matrices with Jordan normal form with Jordan blocks of sizes specified by λ is a locally closed subvariety. Its closure has rational singularities.

For Example 1: let $V=\operatorname{Hom}(E, F)$ and take X be the Grassmannian $\operatorname{Gr}(r, F)$. It has a tautological rank r subbundle $\mathcal{R} \subset F \otimes \mathcal{O}_{X}$. Take $\mathcal{S}=\mathcal{H o m}(E, \mathcal{R})$. The minimal free resolution was calculated by Lascoux in char. 0. (Skew-)symmetry is similar.

For Example 2: X is a partial flag variety and \mathcal{S} is its cotangent bundle. The equations were calculated by Weyman in char. 0.

Non-normal varieties

- The next most complicated case after rational singularities would be varieties whose normalization has rational singularities, i.e., we have $\mathrm{R}^{i} p_{1 *} \mathcal{O}_{Y}=0$ for $i>0$.
- The naive thing to do is to consider the short exact sequence

$$
0 \rightarrow \mathcal{O}_{Y} \rightarrow \widetilde{\mathcal{O}}_{Y} \rightarrow C \rightarrow 0
$$

so C is a module supported on the non-normal locus of Y.

- If we are lucky, we can calculate a presentation or minimal free resolution for C, and use this to get equations or minimal free resolution for \mathcal{O}_{Y}.
- I don't know a general framework for doing this, but I will explain some examples where it can be done. Assume char. 0 from now on for simplicity of statements.

Nilpotent orbits

- Motivating example: Nilpotent orbits in other Lie types. Take a (semi)simple Lie group G with Lie algebra \mathfrak{g}. The nullcone of \mathfrak{g} is the vanishing locus of all G-invariant functions on \mathfrak{g}, and it has finitely many G-orbits.
- Except some small cases, all non-type $\mathrm{A}\left(\mathfrak{s l}_{n}\right)$ Lie algebras have non-normal orbit closures.
- Not too bad: normalizations are always Gorenstein with rational singularities

Hyperdeterminantal varieties

Let B_{1}, \ldots, B_{n}, A be vector spaces of dimensions d_{1}, \ldots, d_{n}, e. Set $\mathbf{B}=B_{1} \otimes \cdots \otimes B_{n}$. We consider the variety

$$
Y=\{\psi \in \operatorname{Hom}(\mathbf{B}, A) \mid \operatorname{ker} \psi \text { contains a rank } 1 \text { tensor }\}
$$

These are hyperdeterminantal varieties, which are the supports of the tensor complexes (as defined in Berkesch's talk). We can take $X=\mathbf{P}\left(B_{1}\right) \times \cdots \times \mathbf{P}\left(B_{n}\right)$ and

$$
\mathcal{S}=\mathcal{H o m}\left(\left(\mathbf{B} \otimes \mathcal{O}_{X}\right) / \mathcal{O}_{X}(-1, \ldots,-1), A \otimes \mathcal{O}_{X}\right)
$$

In general they have complicated singularities, i.e., usually $p_{1 *} \mathcal{O}_{\mathcal{S}}$ has many nonzero higher direct images. So they could be a good set of examples to study since there are many parameters to tweak.

Hyperdeterminantal varieties (cont.)

We focus on $n=2, d_{1}=2, d_{2}=d$ and $e=d_{2}+2$ so that there are no higher direct images. In this case, we study maps from the space of $2 \times d$ matrices to a vector space of dimension $d+2$ whose kernel contains a rank 1 matrix. Alternatively: pencils of $d \times(d+2)$ matrices containing a matrix not of full rank.
The normalization has the presentation

$$
\left(\begin{array}{c}
\bigwedge^{d+1} A^{*} \otimes \\
\operatorname{det} B_{1} \otimes S^{d-1} B_{1} \\
\otimes \operatorname{det} B_{2} \otimes B_{2}
\end{array}\right) \otimes \mathcal{O}_{V}(-d-1) \rightarrow \mathcal{O}_{V} \oplus\left(\begin{array}{c}
\bigwedge^{d} A^{*} \otimes \\
\operatorname{det} B_{1} \otimes S^{d-2} B_{1} \\
\otimes \operatorname{det} B_{2}
\end{array}\right) \otimes \mathcal{O}_{V}(-d)
$$

Since everything is equivariant with respect to $G=\mathbf{G L}(A) \times \mathbf{G} \mathbf{L}\left(B_{1}\right) \times \mathbf{G} \mathbf{L}\left(B_{2}\right)$ and the relations are irreducible, we get the presentation matrix for C by removing \mathcal{O}_{V} from the generators. We can get the equations for Y in terms of representations of G.

Equations of hyperdeterminantal varieties

Set $e^{\prime}-1=\sum_{i=1}^{n}\left(d_{i}-1\right)$.

- In the case $e^{\prime}=e$, the hyperdeterminantal variety is an irreducible hypersurface, cut out by a hyperdeterminant.
- In general, the hyperdeterminantal variety is defined (set-theoretically) by the hyperdeterminants of the $d_{1} \times \cdots \times d_{n} \times e^{\prime}$-subtensors of $\mathbf{B} \otimes A$. It has codimension $e-\sum_{i=1}^{n}\left(d_{i}-1\right)$.
- For $2 \times 2 \times 4$, the $2 \times 2 \times 3$ hyperminors form a 10-dimensional space of sextics. To get the radical ideal, add the determinant of $\mathbf{B} \otimes A$.

Equations of hyperdeterminantal varieties (cont.)

- For $2 \times 3 \times 5$, the $2 \times 3 \times 4$ hyperminors form a 35-dimensional space of degree 12 equations. Flatten this tensor to 6×5. Generically, such a matrix has corank 1 , and the kernel element is given by the 5×5 minors. The 2×2 minors of this kernel element give (non-minimal) degree 10 equations that must vanish. For the radical ideal, we need 10 degree 9 equations

$$
\left(\operatorname{det} A^{*}\right) \otimes \bigwedge^{4} A^{*} \otimes\left(\operatorname{det} B_{1}\right)^{4} \otimes B_{1} \otimes\left(\operatorname{det} B_{2}\right)^{3}
$$

and their meaning is not clear to me.

- For general $2 \times d \times(d+2)$, the hyperminors have degree $d(d+1)$. One needs additional degree $2 d+3$ equations for the radical ideal. I can identify the representation, but their meaning is not clear to me.

Kalman varieties

- Let $L \subset U$ be vector spaces of dimensions d, n. For $s \leq d$, set
$\mathcal{K}_{s, d, n}=\{\varphi \in \operatorname{End}(U) \mid \varphi$ preserves an s-dim. subspace of $L\}$,
which is the Kalman variety introduced by
Ottaviani-Sturmfels.
- To desingularize, we take $V=\operatorname{End}(U), X=\operatorname{Gr}(s, L)$ and

$$
\mathcal{S}=\{(\varphi, W) \mid \varphi(W) \subseteq W\}
$$

is the subbundle of $V \otimes \mathcal{O}_{X}$ generated by $\mathcal{E} n d(\mathcal{R})$ and $\mathcal{H o m}(U / \mathcal{R}, U)$. Then φ_{1} is an isomorphism outside of $\mathcal{K}_{s+1, d, n}$.

- If $\varphi \in \mathcal{K}_{s+1, d, n}$ has distinct eigenvalues, then $p_{1}^{-1}(\varphi)$ is $s+1$ points. By Zariski's connectedness theorem, we see that $\mathcal{K}_{s+1, d, n}$ is the non-normal locus of $\mathcal{K}_{s, d, n}$.

Kalman varieties (cont.)

Theorem (Sam)

We have exact sequences

$$
\begin{gathered}
0 \rightarrow \mathcal{O}_{\mathcal{K}_{1,2, n}} \rightarrow \widetilde{\mathcal{O}}_{\mathcal{K}_{1,2, n}} \rightarrow \mathcal{O}_{\mathcal{K}_{2,2, n}}(-1) \rightarrow 0 . \\
0 \rightarrow \mathcal{O}_{\mathcal{K}_{1,3, n}} \rightarrow \widetilde{\mathcal{O}}_{\mathcal{K}_{1,3, n}} \rightarrow \widetilde{\mathcal{O}}_{\mathcal{K}_{2,3, n}}(-1) \rightarrow \mathcal{O}_{\mathcal{K}_{3,3, n}}(-3) \rightarrow 0 .
\end{gathered}
$$

Note that $\mathcal{K}_{d, d, n}$ is a linear subvariety. Using the above, we get the equations for $\mathcal{K}_{1, d, n}$ for $d=2,3$ (and free resolution when $d=2$).

Conjecture

Set $B_{s}=\widetilde{\mathcal{O}}_{\mathcal{K}_{s, d, n}}(-s(s-1) / 2)$. There is a long exact sequence

$$
0 \rightarrow \mathcal{O}_{1, d, n} \rightarrow B_{1} \rightarrow B_{2} \rightarrow \cdots \rightarrow B_{d} \rightarrow 0
$$

We can check this when $n=d+1$.

Type G_{2} nilpotent orbits $(1 \Leftarrow 2)$

- The normalization of any nilpotent orbit in any semisimple Lie algebra has rational singularities.
- The Lie algebra \mathfrak{g}_{2} has 5 nilpotent orbit closures which form a chain $O(12) \geq O(10) \geq O(8) \geq O(6) \geq\{0\}$. All orbit closures are normal except $O(8)$.
- $O(6)$ is the affine cone over a homogeneous space and has coordinate ring $\bigoplus_{k \geq 0} V_{k \omega_{2}}$. The cokernel $\widetilde{\mathcal{O}}_{O(8)} / \mathcal{O}_{O(8)}$ is $\bigoplus_{k \geq 0} V_{\omega_{1}+k \omega_{2}}$ where $V_{\omega_{1}+k \omega_{2}}$ is in degree $k+1$, so the module structure is by Cartan multiplication.
- We can calculate the minimal free resolutions of all orbit closures. The ideal of $O(8)$ is generated by 1 quadric (Killing form), 7 cubics ($V_{\omega_{1}}$), and 77 quartics ($V_{2 \omega_{2}}$).
- These equations can be obtained from the intersection $O(3,3,2) \cap \mathfrak{g}_{2}$ via the embedding $\mathfrak{g}_{2} \subset \mathfrak{s o}_{7}$

