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Invertible matrices

• Fq is a finite field with q = pr elements.

• [n] = 1−qn

1−q
= qn−1 + qn−2 + · · ·+ q + 1

• [n]! = [n][n − 1] · · · [2][1].

• GLn(Fq) = {n × n invertible matrices with entries in Fq}.

#GLn(Fq) = (qn − 1)(qn − q)(qn − q2) · · · (qn − qn−1)

= q(
n
2)(q − 1)n[n]!

The first equality just says to choose the columns of the matrix one at a
time in such a way that they are not in the linear span of the previous
columns. Note:

lim
q→1

#GLn(Fq)

(q − 1)n
= #Sn
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Bruhat decomposition

Another interpretation for #GLn(Fq) = q(
n
2)(q − 1)n[n]!:

The first two terms give the size of the Borel subgroup B of upper
triangular matrices. So the last term is the size of the flag variety

B = GLn(Fq)/B = {V1 ⊂ V2 ⊂ · · · ⊂ Vn = Fn
q | dimVi = i}.

Bruhat decomposition: for each w ∈ Sn (permutation matrices), define
Uw = BwB ⊂ B. Then B =

∐

w∈Sn
Uw and #Uw = qℓ(w), and then use

the identity
∑

w∈Sn

qℓ(w) = [n]!.

Bruhat decomposition also says GLn(Fq) =
∐

w∈Sn
BwB .

Completely general when GLn(Fq) is replaced by a finite group of Lie type
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Restricted positions

Choose a subset S of positions in the n × n grid.

• How many invertible matrices are there such that the entries in S

must be 0?

• Is the function a polynomial in q?

• Are there limq→1 interpretations?

• How about other rank conditions? Non-square matrices?

Aside: Given S and a rank condition, the set of matrices above is
naturally an algebraic variety. The geometric properties were studied by
Giusti–Merle and the homological properties studied by Boocher.
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q-analogues

Work with m × n grid, and subset S .

Let tq,r be the number of m × n matrices over Fq with rank r and that
are 0 in S .

Let t1,r be the number of ways to mark r squares outside of S in the
m × n grid such that each row and each column has at most 1 marked
box (i.e., rook placements)

Theorem (LLMPSZ)

tq,r = (q − 1)r t1,r (mod (q − 1)r+1).

In other words,

lim
q→1

tq,r

(q − 1)r
“ = ”t1,r .
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Derangements

Take m = n and S to be the set of diagonal entries. Then

t1,n =
n

∑

i=0

(−1)i
(

n

i

)

(n − i)!

counts derangements (permutations without fixed points).

Theorem (LLMPSZ)

tq,n = q(
n−1
2 )−1(q − 1)n

n
∑

i=0

(−1)i
(

n

i

)

[n − i ]!. More generally,

tq,r = q(
r−1
2 )−1(q − 1)r

r
∑

i=0

(−1)i
(

r

i

)

[n − i ]!

[n − r ]!

Bruhat decomposition: the number of points in cells indexed by
non-derangements is divisible by (q − 1)n+1
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Polynomiality

Let S(P2
F2
) ⊂ 7× 7 be complement of support of the Fano plane:

1

4

53

2

6

7

A = a11 a12 0 0 0 0 a17

a21 0 a23 0 0 a26 0

a31 0 0 a34 a35 0 0

0 a42 a43 0 a45 0 0

0 a52 0 a54 0 a56 0

0 0 a63 a64 0 0 a67

0 0 0 0 a75 a76 a77

Theorem (Stembridge 1998)

# of invertible matrices A is a quasi-polynomial:

{

(q − 1)7(q14 + · · · −97q9 + · · ·+q3) if q even,

(q − 1)7(q14 + · · · −98q9 + · · · −6q5) if q odd.

S(P2
F2
) is smallest example with respect to n and #S.
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Kontsevich and graph polynomials

Let G be a connected graph with edge set E . Define

PG (x) =
∑

T

∏

e /∈T

xe

where the sum is over all spanning trees T of G .

Kontsevich: Is #{x ∈ FE
q | PG (x) = 0} a polynomial in q?

Stanley: This question is equivalent to polynomiality of counting
invertible symmetric matrices with restricted positions.

Belkale–Brosnan: These functions are very complicated, and the answer
to the question is no: if we treat the functions qn − q for n > 1 as units,
then the ring of counting functions for restricted symmetric matrices is
the same as the ring of counting functions for arbitrary varieties
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So when is it a polynomial?

A natural question to ask now is what properties of S would impose
polynomiality of the counting function.
Given a partition λ = (λ1 ≥ λ2 ≥ · · · ), we get the Young diagram Sλ.

Theorem (Haglund)

For S = Sλ and any r , the counting function is a polynomial Pλ(q), and
Pλ(q)/(q − 1)r has positive coefficients.

For two partitions µ ⊂ λ, also have skew diagram Sλ/µ.

Theorem (Klein–Morales)

When S is the complement of Sλ/µ and for any r , the counting function

is a polynomial Pλ/µ(q) and Pλ/µ(q)/(q − 1)r has positive coefficients.

Positivity comes from an interpretation in terms of “inversion” statistics.
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Rothe diagrams

Given a permutation w ∈ Sn, its Rothe diagram is

D(w) = {(i ,w(j)) | i < j ,w(i) > w(j)}.

(They generalize Young diagrams)

Conjecture: When S is the complement of D(w) and for any r , the
counting function is a polynomial Pw (q) and Pw (q)/(q − 1)r has
positive coefficients.

Known cases: if D(w) can be transformed into Sλ/µ via row and column
swaps, then the above is true. We say w is skew-transformable.

Theorem (Klein–Lewis)

w is skew-transformable if and only if it avoids the following patterns:

52143, 25143, 42153, 24153, 32514, 32541, 31524, 31542, 214365
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Some more polynomiality

Theorem (Klein–Lewis)

For any S and r = 1, the counting function is a polynomial PS(q).

Theorem (Lewis)

If S has at most 2 zeroes in each row and column, then for any r , the

counting function is a polynomial.

11 / 19



Matrices with symmetry

How about symmetric and skew-symmetric matrices? We consider q odd
for simplicity. We have the “curious relations”:

Theorem (LLMPSZ)

Fix n even. The following three sets have the same size:

• Symmetric invertible matrices of size n with 0 on the diagonal

• Symmetric invertible matrices of size n − 1

• Skew-symmetric invertible matrices of size n

The equivalence of the last two was shown independently by Oliver Jones
via the Weil conjecture philosophy by calculating the Betti numbers of
the corresponding complex varieties

Note: No explicit bijections (without considering several cases) known for
these sets!
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Schubert cells

The equality between #{ symmetric invertible (n − 1)× (n − 1)
matrices} and #{ skew-symmetric invertible n × n matrices } can be
reinterpreted in terms of Schubert varieties.

Let V be a 2n-dimensional vector space with a symplectic form ω. The
Lagrangian Grassmannian is the set of isotropic n-dimensional subspaces
U ⊂ V , i.e., ω(u, u′) = 0 for all u, u′ ∈ U.

Let W be a 2n-dimensional vector space with a (split) orthogonal form
β. The spinor variety is a connected component of the set of isotropic
n-dimensional subspaces U ⊂ W , i.e., β(u, u′) = 0 for all u, u′ ∈ U.

They are homogeneous spaces for the symplectic and special orthogonal
groups, respectively. The Schubert cells Xv are the B-orbits (B is upper
triangular matrices under a suitable choice of basis). For opposite
Schubert cells X−

v , same but use B− (lower triangular).
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Parabolic R-polynomials

The Schubert cells Xv form a poset via w ≤ v if and only if Xw ⊆ Xv .
Furthermore, we have Xv ∩ X−

w 6= ∅ if and only if v ≥ w .

Given w ≤ v in this poset, Deodhar defined an associated polynomial
Rw ,v (x) which generalizes the R-polynomials of Kazhdan–Lusztig. They
have the property that Rw ,v (q) = #(Xv ∩ X−

w )

The (skew-)symmetric matrices can be identified with the biggest
opposite Schubert cell in the spinor variety, and Lagrangian
Grassmannian, respectively (the notion of skew switches). Furthermore,
rank conditions on the matrices are given by intersecting with certain
Schubert varieties.

The intersection posets for the Lagrangian Grassmannian and spinor
variety are isomorphic as abstract posets. So we are done if we know that
the R-polynomials only depend on the poset structure. Brenti showed
this to be true in the cominuscule case, which covers our situation.
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Projective duality

Let K be an algebraically closed field. Given an embedded projective
variety X ⊂ PN , the projective dual X∨ of X is the closure of the set of
hyperplanes that are tangent to some smooth point of X . It is a
subvariety of the dual projective space (PN)∨, and (X∨)∨ = X .

In the case that X∨ is a hypersurface, it is the solution set of a single
polynomial, the X -discriminant.

Example

Pd is the space of degree d binary forms
∑d

i=0 aix
d−iy i (let b0, . . . , bd

be the dual coordinates to a0, . . . , ad), X is the Veronese variety:
X = {(ax + by)d | a, b ∈ K}. The dual is a hypersurface and its equation

is the usual discriminant, i.e., it is 0 if and only if
∑d

i=0 bix
d−iy i has a

multiple root.
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Hyperdeterminants

Example

Pn2−1 is the space of n × n matrices, X is the Segre variety:
X = {A | rank(A) = 1}. Then the projective dual can be identified with
matrices of rank at most n − 1, so the discriminant is the usual
determinant.

Generalization: instead of n × n matrices, we consider tensors of format
n1 × · · · × nk (assume n1 ≥ · · · ≥ nk). The Segre variety X ⊂ Pn1···nk−1

consists of all pure tensors of the form v1 ⊗ · · · ⊗ vk .

Theorem (Gelfand–Kapranov–Zelevinsky)

X∨ is a hypersurface if and only if n1 ≤ n2 + · · ·+ nk − k + 2.

Question: How many tensors have nonzero hyperdeterminant over Fq?
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Unravelling the definition of hyperdeterminant

Hyperdeterminants are basically impossible to write down (even on a
computer!) outside of very small cases, but we can work with the
definition directly.

Having zero hyperdeterminant can be rephrased as follows. For each j

and 1 ≤ N ≤ nj , consider the equation

∑

(i1,...,ik )

ai1···ik x
(1)
i1

· · · x̂
(j)
ij

· · · x
(k)
ik

= 0

where the sum is over all (i1, . . . , ik) with ij = N and 1 ≤ id ≤ nd . Then
the tensor (ai1,...,ik ) has zero hyperdeterminant if and only if these

equations have a solution (x
(d)
id

) where each vector x (d) is nonzero.
(When k = 2, these equations are linear.)

Warning: Even if we only care about tensors with coefficients in Fq, we
have to check for the solutions to the above equation in an algebraic
closure of Fq.
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Some results on hyperdeterminants

Theorem (Musiker–Yu)

For 2× 2× 2, the number of nondegenerate tensors is (q4 − 1)(q4 − q3).

(Compare this to (q2 − 1)(q2 − q) for 2× 2)

Theorem (Lewis–Sam)

For 2× 2× 3, the number is q4(q − 1)4[2]2[3].
For 2× 3× 3, the number is q10(q − 1)3[2]2[3].
For 2× 2× 4, the number is q4(q − 1)2[3][4](q3 + q2 − 1)

Caveat: these need to be double-checked...

2× 2× 4 doesn’t give a hypersurface, but there is still a
GL2 × GL2 × GL4-invariant hypersurface (this representation is
exceptional in this sense)

Question: What are these q-analogues of?
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Further directions?

• m × n matrices of rank k (determinantal varieties) are a q-analogue
of partially defined functions:

q(
k
2)(q − 1)k [k]!

[m]!

[k]![m − k]!

[n]!

[k]![n − k]!

How about matrix Schubert varieties? Ladder determinantal
varieties? (put different rank conditions on certain submatrices)

• Representations of equioriented An quiver should be a q-analogue of
lacing diagrams. Other types of quivers?

• What about when q is a root of unity? Cyclic sieving interpretations?

• Could also ask for quasi-polynomiality of counting functions: when
does it hold for graph polynomials? Matroid polynomials?

• Singular loci of graph/matroid polynomials? Do they have
interesting interpretations?
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