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Notation

• We work over the field of complex numbers C.

• G is a reductive group (usually GLn or SOm or Sp2n)

• Dominant weights for G are labeled λ, µ, ν, . . . .

• Vλ is irrep of G with highest weight λ

• Cλ,µ,ν = dimC(Vλ ⊗ Vµ ⊗ Vν)
G (space of G -invariants)



Representations of the classical groups

• The irreps of GLn are indexed by weakly decreasing sequences
λ1 ≥ · · · ≥ λn. When λn ≥ 0, these can be constructed using
Young idempotents: Vλ = eλ(C

n)⊗|λ|. In general, twist these
by powers of the determinant representation.

• The irreps of Sp2n are the traceless tensors in Vλ: let ω be a
symplectic form on C2n, the traceless tensors of (C2n)⊗N is
the intersection of the kernels of the contractions

v1 ⊗ · · · ⊗ vN 7→ ω(vi , vj )v1 ⊗ · · · v̂i · · · v̂j · · · ⊗ vN .

• Ditto for the orthogonal group Om. The restriction to SOm

remains irreducible unless m is even and λn > 0 in which case
it is the direct sum of two nonisomorphic irreps that we call
Vλ+ and Vλ− .



Saturation problems

• Cλ,µ,ν = dimC(Vλ ⊗ Vµ ⊗ Vν)
G (space of G -invariants)

• easy: Cλ,µ,ν > 0 implies that λ+ µ+ ν is in root lattice

• easy: Cλ,µ,ν > 0 implies that CNλ,Nµ,Nν > 0 for all N > 0.

• What about the reverse implication? Say that k is a
saturation factor for G if CNλ,Nµ,Nν > 0 (N > 0, λ+ µ+ ν
in root lattice) implies that Ckλ,kµ,kν > 0.

Theorem (Knutson–Tao, Derksen–Weyman, Kapovich–Millson)

If G = GLn, then k = 1 is a saturation factor.



Other groups

Theorem (Kapovich–Millson)

Let θ =
∑

kiαi be the highest root of G . Then k = lcm(ki )
2 is a

saturation factor.

Theorem (Belkale–Kumar)

Let G = SO2n+1 or G = Sp2n. Then k = 2 is a saturation factor.

Theorem (S.)

Let G = SO2n+1 or G = Sp2n or G = SO2n. Then k = 2 is a
saturation factor.

Actually, in the last two theorems, get something stronger:
CNλ,Nµ,Nν > 0 implies C2λ,2µ,2ν > 0 without having to assume
that λ+ µ+ ν is in the root lattice.



Why this problem?

• A problem dating back to 19th century mathematics: given
Hermitian n × n matrices A,B ,C such that A+ B + C = 0,
how are the eigenvalues of A,B ,C related?

• Since the eigenvalues are real numbers, we can write them in
decreasing order: eigenvalues of A are α1 ≥ · · · ≥ αn, use β
and γ for B and C .

• Klyachko studied this problem using geometric invariant
theory and showed that the set of (α•, β•, γ•) form a rational
polyhedral cone in R3n.

• In fact, this cone is the closure of the set

{(λ, µ, ν) ∈ Q3n | ∃N > 0, CNλ,Nµ,Nν > 0}

(G = GLn)



Quivers

• Q is a directed graph without directed cycles (vertex set Q0,
arrow set Q1)

• For a ∈ Q1, get head ha ∈ Q0 and tail ta ∈ Q1: ta
a
−→ ha.

• Functions d : Q0 → N are dimension vectors, call set NQ0

• Representation variety: for d ∈ NQ0 , define

Rep(Q, d) =
⊕

a∈Q1

Hom(Cd(ta),Cd(ha))

GLd =
∏

x∈Q0

GLd(x)

SLd =
∏

x∈Q0

SLd(x)

Action of GLd and SLd on Rep(Q, d) via change of basis.



Semi-invariants

• For affine variety X , let C[X ] be its coordinate ring.

• Semi-invariants: SI(Q, d) = C[Rep(Q, d)]SLd .

• Have grading given by characters σ of GLd :

SI(Q, d) =
⊕

σ

SI(Q, d)σ

Theorem (Derksen–Weyman)

SI(Q, d)Nσ 6= 0 implies that SI(Q, d)σ 6= 0.



Ingredients of proof for quiver saturation

• Pick α ∈ NQ0 such that

∑

x∈Q0

α(x)d(x) =
∑

a∈Q1

α(ta)d(ha).

For V ∈ Rep(Q, α) and W ∈ Rep(Q, d), construct map

dV
W :

⊕

x∈Q0

Hom(Cα(x),Cd(x)) →
⊕

a∈Q1

Hom(Cα(ta),Cd(ha))

(ϕx )x∈Q0
7→ (ϕhaVa −Waϕta)a∈Q1

and define cVW = det(dV
W ).

• If we interpret V and W as modules over the path algebra
CQ, then the kernel of dV

W is HomCQ(V ,W ) and the cokernel
is Ext1CQ(V ,W ).

• The function cV : W 7→ cVW belongs to SI(Q, d).



Ingredients (continued)

• Derksen–Weyman: the ring SI(Q, d) is linearly spanned by
functions of the form cV .

• Define Ext1(α, d) to be the minimum dimension of
Ext1(V ,W ) for V ∈ Rep(Q, α) and W ∈ Rep(Q, d). By
construction, there exists V with cV 6= 0 if and only if
Ext1(α, d) = 0.

• Schofield: For fixed d , the conditions on α for Ext1(α, d) = 0
are a finite set of inequalities. In particular, Ext1(Nα, d) = 0
(N > 0) implies that Ext1(α, d) = 0.



Cauchy identity

Let Q be the quiver

x11
// x12

// · · · // x1n−1

##FF
FF

FF
FF

F

x21
// x22

// · · · // x2n−1
// u = x1n

x31
// x32

// · · · // x3n−1

;;xxxxxxxxx

and d(x ji ) = i . Given λ, µ, ν (dominant weights for GLn), there is a
weight σ such that dimC SI(Q, d)Nσ = CNλ,Nµ,Nν . Cauchy identity:

C[Hom(V ,W )] = Sym(V ⊗W ∗) =
⊕

λ

Vλ ⊗W ∗
λ .



How to generalize the proof?

• To get saturation theorems for other classical groups G , need
to generalize definition of quiver and find analogue of Cauchy
identity when W is a vector space of dimension 2n(+1) with a
nondegenerate form ω.

• For Cauchy identity, take dimV = n and subvariety
Yω ⊂ Hom(V ,W ) of maps whose image is isotropic. Then

C[Yω] =
⊕

λ

Vλ ⊗W ∗
λ ,

where now W ∗
λ
∼= Wλ is simple module for O2n(+1) or Sp2n

with highest weight λ. When G = SO2n, Yω has two
irreducible components to compensate for the fact that
Wλ

∼= Wλ+ ⊕Wλ− as SO2n-representations when λn > 0.



Symmetric quivers

• Symmetric quiver: quiver Q with orientation-reversing
involution τ . For each τ -fixed vertex and arrow, also fix the
data of a sign s(x) ∈ {+,−}.

• d ∈ NQ0 is symmetric if fixed by τ . Fix isomorphisms
Jx : C

d(x) → (Cd(τ(x)))∗. If x = τ(x), then need JTx = s(x)Jx .

• Symmetric representation variety: subvariety SRep(Q, d)
of Rep(Q, d) “compatible with the above data”.

• From above,
⊕

x∈Q0
Cd(x) has a nondegenerate form. Replace

GLd with the subgroup Gd preserving this form (and grading
by Q0), and replace SLd by the commutator subgroup SGd of
Gd . Replace SI(Q, d) by SSI(Q, d) = SRep(Q, d)SGd .

Theorem (S.)

SSI(Q, d) is spanned by cV and their square roots (when they
exist). In particular, if SSI(Q, d)Nσ 6= 0, then SSI(Q, d)2σ 6= 0.



Cauchy identity (again)

Let Q be the symmetric quiver

x11
a11 // · · ·

a1n−1
// x1n

a1n

##GG
GG

GG
GG

GG
τ(x1n )

τ(a1n−1)
// · · ·

τ(a11) // τ(x11 )

x21
a21 // · · ·

a2n−1
// x2n

a2n // u = τ(u)
τ(a2n) //

τ(a1n)
::ttttttttt

τ(a3n)

$$JJJJJJJJJ
τ(x2n )

τ(a2n−1)
// · · ·

τ(a21) // τ(x21 )

x31
a31 // · · ·

a3n−1
// x3n

a3n

;;wwwwwwwwww

τ(x3n )
τ(a3n−1)

// · · ·
τ(a31) // τ(x31 )

with d(x ji ) = i and d(u) = 2n(+1) and s(u) = +1 if
G = SO2n(+1) or s(u) = −1 if G = Sp2n. It seems like we want to
study this symmetric quiver, but its coordinate ring contains

Hom(Cd(x jn),Cd(u)), and we really want the coordinate ring of Yω

appearing.



Quivers with relations

• The right fix for the previous problem is to only look at the
subvariety of SRep(Q, d) where the compositions

Cd(x jn) → Cd(u) → Cd(τ(x jn)) are 0 (this is equivalent to saying
that the image of the first map is isotropic).

• This forces us to work with quivers with relations. New
complication: The global dimension of CQ is 1 (i.e.,
Ext2CQ = 0), but the global dimension of CQ/I is 2. So we
need analogues of Schofield’s results in this setting.

• Modulo the technicalities, the outline of the proof of
saturation for the orthogonal and symplectic groups is the
same as the outline for the general linear group.



Further directions

• Saturation theorems for exceptional groups. There are
candidates for the varieties Yω when G is of exceptional type.
But it is unclear how to generalize symmetric quivers.

• Saturation theorems for stable Kronecker coefficients.

There is a collection of irreps for the infinite symmetric group
indexed by partitions (of arbitrary size), first studied by
Murnaghan, whose tensor product decompositions generalize
those for the general linear group. There is an analogue of Yω

in this case also, but it is a non-reduced ind-variety supported
on a point. So it is unclear if quiver (or even geometric)
methods are relevant.


