Equivariant Ehrhart Theory of the Permutahedron

Mariel Supina

Department of Mathematics
University of California, Berkeley

November 2, 2019
People

Federico Ardila
(San Francisco State Univ.)

Andrés R. Vindas Meléndez
(University of Kentucky)
Ehrhart Theory: “Counting Lattice Points in Polytopes”

Given: A d-dimensional polytope $P \subset \mathbb{R}^n$ with integer vertices

- Lattice point enumerator $L_P(t) := |tP \cap \mathbb{Z}^n|$ for positive integers t
- Ehrhart’s Theorem: $L_P(t)$ is a polynomial of degree d
- Ehrhart series:

$$
\sum_{t \geq 0} L_P(t)z^t = \frac{h_P^*(z)}{(1 - z)^{d+1}}
$$

- $h_P^*(z)$ is a polynomial of degree at most d
Equivariant Ehrhart Theory [Stapledon 2011]

Main Idea

Generalize Ehrhart theory to also record information about the symmetries of the polytope.

Given: d-dim lattice polytope $P \subset \mathbb{R}^n$ with symmetry group G

- For each $g \in G$, get a rational fixed polytope P^g
- Find the Ehrhart quasipolynomial of P^g:

$$L_{P^g}(t) = \begin{cases} f_0(t), & t \equiv 0 \mod p \\ f_1(t), & t \equiv 1 \mod p \\ \vdots \\ f_{p-1}(t), & t \equiv p - 1 \mod p \end{cases}$$

- Find $h^*_{P^g}$ as a function of g
The Permutahedron

Definition

The \(n \)-permutahedron \(\Pi_n \) is the convex hull of all permutations of the coordinates of \((1, 2, \ldots, n) \in \mathbb{R}^n\).

\[
\Pi_n = \sum_{1 \leq i < j \leq n} [e_i, e_j] + \sum_{1 \leq i \leq n} e_i
\]

The permutahedron is a zonotope, i.e. a Minkowski sum of line segments:
Fixed Polytopes of the Permutahedron

- S_n acts on Π_n by permuting coordinates of points
- Each $\sigma \in S_n$ gives a fixed polytope Π^σ_n

Figure: $\Pi_4^{(12)}$ sitting inside of Π_4
Theorem [Ardila–Schindler–Vindas-Meléndez 2018]

Let $\sigma \in S_n$ be a permutation with cycles $\sigma_1, \ldots, \sigma_m$ of lengths ℓ_1, \ldots, ℓ_m. Then Π^σ_n has the following zonotope description:

$$
\Pi^\sigma_n = \sum_{1 \leq j < k \leq m} [\ell_j e_{\sigma_k}, \ell_k e_{\sigma_j}] + \sum_{k=1}^{m} \frac{\ell_k + 1}{2} e_{\sigma_k}
$$

In particular, Π^σ_n is half-integral and is integral exactly when all cycles of σ have odd length.

Example: $\sigma = (12)(3)(4) \in S_4$

$$
\Pi_4^{(12)} = [2e_3, e_{12}] + [2e_4, e_{12}] + [e_4, e_3] + \frac{3}{2} e_{12} + e_3 + e_4
$$
Equivariant Ehrhart Theory of the Permutahedron

Mariel Supina

Ehrhart Theory for Lattice Zonotopes

Zonotopes have a natural tiling by half-open parallelotopes.

Stanley’s Theorem

Let Z be a zonotope generated by the integer vectors $U = \{u_1, \ldots, u_k\}$. Then the Ehrhart polynomial of Z is

$$L_Z(t) = \sum_{S \subseteq U \text{ lin. indep.}} \text{Vol}(\square S) \cdot t^{|S|}$$

where $\square S$ is the parallelotope generated by S.
Ehrhart Theory for Rational Zonotopes

What if Z is a rational translate of a lattice zonotope?

Z still decomposes into parallelotopes, but now not all of them contain lattice points.
Ehrhart Quasipolynomials of Fixed Polytopes

Let $\sigma \in S_n$ have cycle type $\lambda = (\ell_1, \ldots, \ell_m)$, $\ell_1 \geq \cdots \geq \ell_m$

- Π_σ^n is the zonotope of the vectors
 \[
 \{\ell_i e_{\sigma_j} - \ell_j e_{\sigma_i} : 1 \leq i < j \leq m\}
 \]

- Linearly independent subsets of these are in bijection with forests on the vertex set $[m]$

- Group forests by the underlying set partition $\pi \models [m]$ given by their connected components.
If all ℓ_i are odd, then Π_n^σ is integral and we have

$$L_{\Pi_n^\sigma}(t) = \sum_{\text{Forests } F \text{ on } [m]} \text{Vol}(\Box_F) \cdot t^{|E(F)|}$$

$$= \sum_{\pi \models [m]} v_\pi \cdot t^{m-|\pi|}$$

(v_π is the sum of $\text{Vol}(\Box_F)$ for all forests giving rise to π)

If some ℓ_i are even, then Π_n^σ is half-integral.

Which forests F correspond to half-open parallelotopes containing lattice points?
Let $\lambda = (\ell_1, \ldots, \ell_m)$ be the cycle type of σ.

Definition

A set partition $\pi \models [m]$ is λ-compatible if for all blocks $B \in \pi$, one of the following conditions holds:

- ℓ_j is odd for some $j \in B$, or
- the minimum 2-valuation among $\{\ell_j : j \in B\}$ is attained at least twice.

Lemma [Ardila–S.–Vindas-Meléndez 2019+]

The half-open parallelotope \square_F contains $\text{Vol}(\square_F)$ lattice points if the underlying set partition π of F is λ-compatible. Otherwise, \square_F contains no lattice points.
Theorem [Ardila–S.–Vindas-Meléndez 2019+]

Let $\sigma \in S_n$ have cycle type λ. Then

\[
L_{\prod_n^\sigma}(t) = \begin{cases}
\sum_{\pi \vdash [m]} v_\pi \cdot t^{m-|\pi|}, & \text{if } t \text{ even} \\
\sum_{\pi \vdash [m], \lambda-\text{compatible}} v_\pi \cdot t^{m-|\pi|}, & \text{if } t \text{ odd}
\end{cases}
\]

where for $\pi = \{B_1, \ldots, B_k\}$, the sum of volumes v_π is

\[
v_\pi = \prod_{i=1}^k \left(\gcd(\ell_j : j \in B_i) \cdot \left(\sum_{j \in B_i} \ell_j \right)^{|B_i|-2} \right).
\]
Corollary [Ardila–S.–Vindas-Meléndez 2019+]

Let \(\sigma \in S_n \) have cycle type \(\lambda \). The Ehrhart series of \(\Pi^\sigma_n \) is

\[
\sum_{\pi \models [m] \text{ \(\lambda \)-compatible}} v_\pi \cdot A_{m-|\pi|}(z) \frac{1}{(1 - z)^{m-|\pi|+1}} + \sum_{\pi \models [m] \text{ not \(\lambda \)-compatible}} 2^{m-|\pi|} \cdot v_\pi \cdot A_{m-|\pi|}(z^2) \frac{1}{(1 - z^2)^{m-|\pi|+1}}
\]

where \(A_{m-|\pi|} \) is an Eulerian polynomial.
Connection to Representation Theory

Let G be the symmetry group of the polytope P
- ρ: d-dim representation of G induced by action on P
- χ_{tP}: Permutation character given by the action of G on the set of lattice points $tP \cap \mathbb{Z}^n$
- Equivariant Ehrhart series:

$$
\sum_{t \geq 0} \chi_{tP} z^t = \frac{\varphi_P[z]}{(1 - z) \det(I - \rho z)}
$$

- Evaluating at $g \in G$ gives the Ehrhart series of the subpolytope of P fixed by g
- $\varphi_P[z] = \sum_{i \geq 0} \varphi_i z^i$ is a series whose coefficients are virtual characters
Stapledon’s Conjecture

Definition

The series \(\sum_{i \geq 0} \varphi_i z^i \) is **effective** if all the \(\varphi_i \)'s are characters.

Stapledon’s Conjecture (2010)

The following are equivalent:

1. \(\varphi_P[z] \) is a polynomial
2. \(\varphi_P[z] \) is effective
3. The toric variety of \(P \) admits a \(G \)-invariant non-degenerate hypersurface
The Function $\varphi_{\Pi_n}[z]$

For Π_n, the representation ρ is the standard representation of S_n, and we get

$$(1 - z) \det (I - \rho(\sigma) \cdot z) = \prod_{i=1}^{m} (1 - z^{\ell_i}).$$

Combining this with the Ehrhart series of Π^σ_n (from before) gives us an expression for φ evaluated at σ:

$$\varphi_{\Pi_n}[z](\sigma) = \prod_{i=1}^{m} (1 - z^{\ell_i}) \cdot \sum_{t \geq 0} \chi_{t\Pi_n(\sigma)} z^t$$

$$= \prod_{i=1}^{m} (1 - z^{\ell_i}) \cdot \sum_{t \geq 0} L_{\Pi^\sigma_n}(t) z^t$$
When is φ_{Π_n} a Polynomial?

- Check: Is $\varphi_{\Pi_n}[z](\sigma)$ a polynomial $\forall \sigma \in S_n$?
- In other words, do the zeros of $\prod_{i=1}^{m}(1 - z^{\ell_i})$ cancel with the poles of the Ehrhart series?

Theorem [Ardila–S.–Vindas-Meléndez 2019+]

The series $\varphi_{\Pi_n}[z]$ is a polynomial if and only if $n \leq 3$.

Theorem [Ardila–S.–Vindas-Meléndez 2019+]

Stapledon’s conjecture holds for all permutahedra Π_n.
Example: $\varphi_{\Pi_3}[z]$

<table>
<thead>
<tr>
<th>Cycle type of $\sigma \in S_3$</th>
<th>$\chi_{t\Pi_3}(\sigma)$</th>
<th>$\sum_{t \geq 0} \chi_{t\Pi_3}(\sigma)z^t$</th>
<th>φz</th>
</tr>
</thead>
<tbody>
<tr>
<td>$(1, 1, 1)$</td>
<td>$3t^2 + 3t + 1$</td>
<td>$\frac{1 + 4z + z^2}{(1 - z)^3}$</td>
<td>$1 + 4z + z^2$</td>
</tr>
<tr>
<td>$(2, 1)$</td>
<td>$\begin{cases} t + 1 & \text{if } t \text{ is even} \ t & \text{if } t \text{ is odd} \end{cases}$</td>
<td>$\frac{1 + z^2}{(1 - z)(1 - z^2)}$</td>
<td>$1 + z^2$</td>
</tr>
<tr>
<td>(3)</td>
<td>1</td>
<td>$\frac{1}{1 - z} = \frac{1 + z + z^2}{1 - z^3}$</td>
<td>$1 + z + z^2$</td>
</tr>
</tbody>
</table>

$\varphi_{\Pi_3}[z] = \chi_{triv} + (\chi_{triv} + \chi_{alt} + \chi_{std})z + \chi_{triv}z^2$

φ_{Π_3} is a polynomial and is effective!
Example: $\varphi_{\Pi_4}[z]$

<table>
<thead>
<tr>
<th>Cycle type of $\sigma \in S_4$</th>
<th>$\chi_{\Pi_4}(\sigma)$</th>
<th>$\sum_{t \geq 0} \chi_{\Pi_4}(\sigma)z^t$</th>
<th>φz</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1, 1, 1, 1)</td>
<td>$16t^3 + 15t^2 + 6t + 1$</td>
<td>$\frac{1 + 34z + 55z^2 + 6z^3}{(1-z)^4}$</td>
<td>$1 + 34z + 55z^2 + 6z^3$</td>
</tr>
<tr>
<td>(2, 1, 1)</td>
<td>$\begin{cases} 4t^2 + 3t + 1 & \text{if } t \text{ is even} \ 4t^2 + 2t & \text{if } t \text{ is odd} \end{cases}$</td>
<td>$\frac{1 + 6z + 20z^2 + 24z^3 + 11z^4 + 2z^5}{(1-z)(1-z)(1-z^2)(1+z)^2}$</td>
<td>$1 + 4z + 11z^2 + 2z^3 + \sum_{i=4}^{\infty} 4(-1)^i z^i$</td>
</tr>
<tr>
<td>(3, 1)</td>
<td>$t + 1$</td>
<td>$\frac{1}{(1-z)^2} = \frac{1 + z + z^2}{(1-z)(1-z^3)}$</td>
<td>$1 + z + z^2$</td>
</tr>
<tr>
<td>(4)</td>
<td>$\begin{cases} 1 & \text{if } t \text{ is even} \ 0 & \text{if } t \text{ is odd} \end{cases}$</td>
<td>$\frac{1}{1-z^2} = \frac{1 + z^2}{1-z^4}$</td>
<td>$1 + z^2$</td>
</tr>
<tr>
<td>(2, 2)</td>
<td>$\begin{cases} 2t + 1 & \text{if } t \text{ is even} \ 2t & \text{if } t \text{ is odd} \end{cases}$</td>
<td>$\frac{1 + 2z + 3z^2 + 2z^3}{(1-z^2)(1-z^2)}$</td>
<td>$1 + 2z + 3z^2 + 2z^3$</td>
</tr>
</tbody>
</table>

$$
\varphi_{\Pi_4}[z] = \chi_{triv} + (3\chi_{triv} + \chi_{alt} + 5\chi_{std} + 3\chi_{\mathbb{Z}_2} + 3\chi_{\mathbb{Z}_2})z \\
+ (6\chi_{triv} + 9\chi_{std} + 4\chi_{\mathbb{Z}_2} + 5\chi_{\mathbb{Z}_2})z^2 \\
+ (\chi_{alt} + \chi_{\mathbb{Z}_2} + \chi_{\mathbb{Z}_2})z^3 + \ldots
$$

φ_{Π_4} is not a polynomial and is not effective.
References

Thank you!