
GROWTH OF THE ZETA FUNCTION FOR A QUADRATIC MAP ANDTHE DIMENSION OF THE JULIA SETJOHN STRAIN AND MACIEJ ZWORSKIAbstra
t. We show that the zeta fun
tion for the dynami
s generated by the map z 7! z2+
,
 < �2, 
an be estimated in terms of the dimension of the 
orresponding Julia set. That impliesa geometri
 upper bound on the number of its zeros, whi
h are interpreted as resonan
es forthis dynami
al systems. The method of proof of the upper bound is used to 
onstru
t a 
odefor 
ounting the number of zeros of the zeta fun
tion. The numeri
al results support the
onje
ture that the upper bound in terms of the dimension of the Julia set is optimal.1. Introdu
tionIn this note we present theoreti
al upper bounds and numeri
al lower bounds for the numberof zeros of the Ruelle zeta fun
tion asso
iated to a quadrati
 map with a real Cantor-like Juliaset.By adapting the methods of [9℄, whi
h be
ome easier for su
h maps, we show that for s instrips parallel to the imaginary axis, the zeta fun
tion is bounded by exp(CjsjÆ) where Æ is thedimension of the Julia set. The proof of this upper bound suggests a fast algorithm for 
omputingthe number of zeros. The numeri
al results 
omputed with this algorithm indi
ate that the upperbound is optimal and that the density of zeros in strips is related to the dimension of the Juliaset.Our motivation 
omes from the study of the distribution of quantum resonan
es | see [23℄for a general introdu
tion and [9, 13℄ for dis
ussions of the spe
i�
 bounds 
onsidered here. Therelation between the density of resonan
es and the fra
tal dimensions of 
lassi
al trapped setswas �rst studied by Sj�ostrand [20℄ for quantum resonan
es asso
iated to S
hr�odinger operators,�h2�+V (x) for whi
h the 
lassi
al 
ow, asso
iated to the Hamiltonian �2+V (x), was hyperboli
.A typi
al example is the three-bump potential shown in Fig. 1. After we de�ne the relevantobje
ts for z 7! z2 + 
 we will present the analogy to this setting in Table 1.Motivated by [9℄, where the model was a S
hottky quotient, we 
an 
onsider the dynami
alsystem asso
iated to(1.1) f
(z) = z2 + 
 ; 
 < �2 ;as the simplest model for the relation between s
attering resonan
es and 
haoti
 dynami
s: thezeros of the dynami
al zeta fun
tion provide a 
onvenient model for quantum resonan
es. Itwould be interesting to see if they do 
oin
ide with suitably de�ned resonan
es of hyperboli
laminations [14℄.The Ruelle zeta fun
tion is de�ned in terms of the Ruelle transfer operator(1.2) L(s)u(z) = Xf
(w)=z[f 0
(w)℄�su(w) ;where [f 0
(w)℄ is the holomorphi
 
ontinuation of jf 0
(w)j de�ned on the real axis and z�s is theprin
ipal bran
h of the usual 
omplex power fun
tion. On an appropriately 
hosen spa
e of1
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Figure 1. A three-well 
on�ning potential and a three-bump potential withthe energy at whi
h the 
ow is hyperboli
. The density of resonan
es for thelatter was studied numeri
ally in [11℄, [12℄.Table 1. Analogies between the S
hr�odinger operator [20℄, 
onvex 
o-
ompa
thyperboli
 quotient [9℄,[18℄,[22℄ and z 7! z2 + 
 settings [4℄.P (h) = �h2�+ V (x) X = �nH n z 7! z2 + 
quantum resonan
es, z, of P (h), quantum resonan
es, s(n� 1� s),Re z � E, Im z > �Ch j Im sj � 1=h and Re s > �C ?of ��Xzeros of the zeta fun
tion zeros of Z(s)? Z�(s) 
oin
iding with the with j Im sj � 1=hquantum resonan
es of �X and Re s > �CTrapped set at energy E Limit set of �, �(�) Julia set, J(
)on a Poin
ar�e se
tionDimension, m, of the trapped m = 2(Æ + 1), Æ = dim(�(�)) m = 2(Æ + 1),set for energies near E Æ = dim(J(
))fun
tions, L(s) is a tra
e 
lass operator so the Ruelle zeta fun
tion 
an be de�ned by(1.3) Z(s) = det(I �L(s)) :



ZETA FUNCTION AND THE DIMENSION OF THE JULIA SET 3An equivalent purely dynami
al produ
t representation, whi
h 
onverges for Re s � 1, is givenby [10℄(1.4) Z(s) = exp0�� 1Xn=1 1n Xffng(z)=z [(ffng)0(z)℄�s1� [(ffng)0(z)℄�11A :Here we have dropped the parameter 
 from the notation and denoted by ffng = f Æ ffn�1g,ff0g = id, the n-fold 
omposition of f with itself. We prove the following asymptoti
 upperbound for Z in terms of the dimension Æ of the Julia set(1.5) J = [n�1fz : ffng(z) = zgof f :Theorem 1. Let f be the quadrati
 map de�ned by (1.1), let Æ be the dimension of the Julia setJ de�ned by (1.5), and let Z be the dynami
al zeta fun
tion de�ned by (1.4). Then for any C0,there exists C1 su
h that(1.6) jZ(s)j � C1 exp(C1jsjÆ)for jRe sj � C0.The proof of this result is quite simple; we design our spa
es 
arefully and analyze the deter-minant of the Ruelle transfer operator by L2-te
hniques. As in [9℄, more 
ompli
ated Cantor setrepellers 
an be treated by a self-similarity argument based on the Koebe Distortion Lemma inpla
e of the 
ookie-
utter arguments used in Se
tion 3 below. However, for simpli
ity of exposi-tion we 
onsider only the 
ase z 7! z2 + 
. The 
ase of general hyperboli
 rational fun
tion wasre
ently proved by Christiansen [4℄.Sin
e the produ
t representation (1.4) of the zeta fun
tion 
onverges for Re s large, Jensen'stheorem yieldsCorollary 2. Let m(s) be the multipli
ity of the zero of Z at s and(1.7) n(r; x) =Xfm(s) : j Im sj � r ; Re s > xg:Then for any real x,(1.8) n(r + 1; x)� n(r; x) =Xfm(s) : r � j Im sj � r + 1 ; Re s > xg � C1rÆ ;where Æ = dim J . By summation,(1.9) n(r; x) � C2r1+Æ :As far as lower bounds are 
on
erned we present the followingConje
ture 3. The bound (1.9) is optimal, in the sense that for x > x0, with some �xedx0 = x0(
), n(r; x) � C3(x)r1+Æfor suÆ
iently large r.As we will des
ribe in Se
tion 6 below this 
onje
ture is strongly supported by the numeri
aleviden
e. These numeri
al results provide further eviden
e for the existen
e of fra
tal Weyl lawsin situations with 
haoti
 
lassi
al dynami
s.In view of the la
k of rigorous examples for quantum resonan
es, it would be very interestingto know whether this upper bound is optimal. When the Julia set is not a Cantor set the upper



4 J. STRAIN AND M. ZWORSKIbound may not be optimal, as in the simple example f(z) = z2 where J(f) = fz : jzj = 1g andZ(s) = 1� 2s�1. 2. The transfer operator on L2 spa
esTo 
onne
t the two de�nitions (1.3) and (1.4) of the zeta fun
tion, we modify the dis
ussionin [10℄. Constru
t a neighborhood D of the Julia set J byD = D1 [D2; Dj open neighbourhoods of J \ (�1)j(0;1)gi(Dj) � Di ; f Æ gi(z) = z :(2.1)More expli
itly, gi(z) = (�1)ipz � 
 with a bran
h of the square root 
hosen to be positive onthe positive real axis. The Dj 's 
an be neighbourhoods of (�1)j [p�
� �
; �
℄, where�
 = (1 +p1=4� 
)=2is the largest �xed point of f
.The Ruelle transfer operator (1.2) then be
omes(2.2) L(s)u(z) = 2Xi=1 [g0i(z)℄su(gi(z)) ; z 2 Dja
ting on fun
tions u inH2(D) = fu holomorphi
 in D : ZZD ju(z)j2dm(z) <1g :The only di�eren
e from (1.2) and [10℄ lies in 
hoosing L2 spa
es of holomorphi
 fun
tions insteadof Bana
h spa
es. However, we 
an still prove the analogue of (a spe
ial 
ase of) a result of Ruelle[19℄ and Fried [7℄:Proposition 1. Suppose that the Ruelle operator L(s) : H2(D) ! H2(D) is de�ned by (2.2)and 
 < �2. Then for all s 2 C , the operator L(s) is tra
e-
lass and(2.3) j det(I �L(s))j � exp(Cjsj2) :Proof. The proof is based on estimates of the singular values �l(L(s)). We will show that thereexists C > 0 su
h that(2.4) �l(L(s)) � eCjsj�l=C :First we re
all some basi
 properties of singular values of a 
ompa
t operator A : H1 ! H2where Hj 's are Hilbert spa
es. We de�nekAk = �0(A) � �1(A) � � � � � �`(A)! 0 ;to be the eigenvalues of (A�A) 12 : H1 ! H1, or equivalently of (AA�) 12 : H2 ! H2. The min-maxprin
iple shows that(2.5) �`(A) = minV�H1
odim V=` maxv2VkvkH1=1 kAvkH2 :The following rough estimate suÆ
es: suppose that f�jg1j=0 is an orthonormal basis of H1. Then(2.6) �`(A) � 1Xj=` kA�jkH2 :



ZETA FUNCTION AND THE DIMENSION OF THE JULIA SET 5Indeed, for v 2 V` = span f�jg1j=` in (2.5), the Cau
hy-S
hwartz inequality and the usual `2 � `1inequality yield kAvk2H2 = 





 1Xj=`hv; �jiH1A�j





 � kvk2H1 0� 1Xj=` kA�jkH21A2 ;from whi
h (2.5) gives (2.6).We will also need some more sophisti
ated results about singular values. The �rst is the Weylinequality [8℄: if H1 = H2 and �j(A) are the eigenvalues of A, thenj�0(A)j � j�1(A)j � � � � � j�`(A)j ! 0 ;then for any N � 0, NỲ=0(1 + j�`(A)j) � NỲ=0(1 + j�`(A)j) :In parti
ular, if the operator A is tra
e-
lass so P` �`(A) <1, then the de�nitiondet(I +A) := 1Ỳ=0(1 + �`(A))makes sense and(2.7) j det(I +A)j � 1Ỳ=0(1 + �`(A)) :We will also require the following standard inequality about singular values [8℄:(2.8) �`1+`2(A+B) � �`1(A) + �`2(B)We �nish the review, as we started, with an obvious equality: suppose that Aj : H1j ! H2j andwe formLJj=1 Aj :LJj=1H1j !LJj=1H2j , as usual,LJj=1 Aj(v1�� � ��vJ) = A1v1�� � ��AJvJ .Then(2.9) 1X̀=0 �`0� JMj=1 Aj1A = JXj=1 1X̀=0 �`(Aj) :With these preliminary fa
ts taken 
are of, we see that (2.4) implies (2.3). In fa
t, (2.7) showsthat det(I �L(s)) � 1Ỳ=0(1 + eCjsj�`=C) � eC3jsj2 :Hen
e it remains to establish (2.4). For that we 
hoose the Dj 's to be symmetri
 dis
s 
ontaining(�1)j [(�
 + 
)1=2; �
℄ and disjoint from iR. We de
omposeH2(D) = 2Mj=1H2(Dj)and de�ne Lij(s) : H2(Di)! H2(Dj)by Lij(s)u(z) := [g0i(z)℄su(gi(z))



6 J. STRAIN AND M. ZWORSKIfor z 2 Dj . The standard inequality (2.8) and a version of (2.9) then yield�`(L(s)) � max1�i;j�2 2�[`=4℄(Lij(s)) :To estimate �k(Lij(s)) we use the rough estimate (2.6), with an orthonormal basis f�kg ofH2(Di)
omposed of the 
entered and s
aled monomials�k(z) = p2k + 1ri �z � airi �k ;where Di = D(ai; ri) has 
enter ai and radius ri. Sin
e gi(Dj) � Dj ,k((gi(z)� ai)=ri)kkH2(Di) � C�k ;for some 0 < � < 1. Sin
e j[gi(z)℄sj � eCjsj, we obtain�`(Lij(s)) � CXk�` kLij(s)(�k)k � CXk�` eCjsj�k � CeCjsj �`1� � � C1eCjsj�`=C1 ;for some C1, whi
h 
ompletes the proof of (2.4). �The next proposition follows by an easy modi�
ation of the standard argument (see for instan
e[10℄):Proposition 2. Let L(s) be de�ned by (1.2). De�ning the determinant as in Proposition 1 wehave det(I �L(s)) = exp0�� 1Xn=1 1n Xffng(z)=z [(ffng)0(z)℄�s1� [(ffng)0(z)℄�11A ;for Re s� 0. Hen
e the left hand side provides an entire analyti
 
ontinuation of the right handside.Proof. Fix s 2 C . Then (2.4) and (2.7) imply thath(�) := det(I � �L(s))is an entire fun
tion of order 0. For j�j suÆ
iently small, the power series of log(I � �L(s))
onverges [8℄ sodet(I � �L(s)) = exp(tr log(I � �L(s))) = exp � 1Xn=1 �nn tr(L(s))n! :(2.10)To analyze the tra
es, we go ba
k to the �rst de�nition (1.2) of the transfer operator:L(s)u(z) = Xf(w)=z[f 0(w)℄�su(w) :The S
hwartz kernel of L(s)n 
an be written in terms of the Bergman kernel for the Dj 's, sothe evaluation of the tra
ey givestrL(s)n = Xffng(z)=z [(ffng)0(z)℄�s1� [(ffng)0(z)℄�1 :yTo see how it works, 
onsider the simple 
ase where f is holomorphi
 in the unit dis
, f(0) = 0, and jf(z)j < jzjfor z 6= 0. By Cau
hy's formula, pullba
k by f is an integral operator on H2(D(0; 1)) with kernel ��1(1�f(z)��)�2.and tra
e ��1 RRD(0;1)(1 � f(z)�z)�2dm(z) = (1 � f 0(0))�1. In our 
ase f 0(0) is always real and we obtain anabsolute value as we move between di�erent dis
s when f 0(0) < 0.



ZETA FUNCTION AND THE DIMENSION OF THE JULIA SET 7Returning to (2.10), we obtain for Re s suÆ
iently large,det(I � �L(s)) = exp0�� 1Xn=1 �nn Xffng(z)=z [(ffng)0(z)℄�s1� [(ffng)0(z)℄�11A :Setting � = 1 and employing (1.4) proves the proposition. �Note that the proof did not use any properties of the open sets Dj other than the ones givenin (2.1). 3. Estimates in terms of the dimension of J.For the proof of the Theorem 1, we will 
hoose the Dj 's in the de�nition of L(s) to dependon the size of s. Let h = 1=jsj. The self-similar stru
ture of J suggests that Dj = Dj(h) shouldbe a union of O(h�Æ) disjoint dis
s with radii r � h, separated from J by d(�Dj ; J) � h. Theargument used in the proof of Proposition 1 will then give (1.6).We begin withProposition 3. Let J � R be the Julia set for (1.1). Then there exist 
onstants Æ0 and K = K(
)su
h that for Æ < Æ0, the 
onne
ted 
omponents of J + [�Æ; Æ℄ have length at most KÆ.Proof. The dis
ussion of \
ookie-
utter sets" in [6℄ and in parti
ular [6, Corollary 4.4℄ show thatJ is a quasi-self-similar set. More pre
isely, there exist 
 > 0 and r0 > 0 su
h that for any x0 2 Jand r < r0 there exists a map g : [x0 � r; x0 + r℄! R with the propertiesg(J \ [x0 � r; x0 + r℄) � J
r�1jx� yj � jg(x)� g(y)j � 
�1r�1jx� yj ; x; y 2 [x0 � r; x0 + r℄(3.1)Hen
e the proposition follows by a s
aling argument. We remark that (3.1) also follows from theKoebe distortion lemma [3, Theorem 1.5℄. �Proof of Theorem 1. As outlined in the beginning of the se
tion, we put h = 1=jsj, where j Im sjis large but jRe sj is uniformly bounded. We de
ompose the Julia set J into disjoint subsets:Ij(h) := J \Dj + [�h; h℄) = Pj(h)[p=1 [xjp � rjp; xjp + rjp℄ ; xjp+1 � rjp+1 > xjp + rjp ;so that the intervals [xjp � rjp; xjp + rjp℄ 
ontain the 
onne
ted 
omponents of Ij(h). Proposition 3shows that rjp < Kh as h! 0.The open set D(h) is de�ned asD(h) = 2[j=1Dj(h) ; Dj(h) = Pj[p=1Djp(h) ; Djp(h) = (xjp � rjp; xjp + rjp) + i(�h; h) ;and sin
e gi : J \D0j ! J \D0i we see that the 
ondition (2.1) holds: for ea
h Djp there existsa p0 = p(i; j; p) for whi
h d(�Dip0 (h); gi(Djp(h))) > (1� �)h ;for a �xed 
onstant 0 < � < 1. From this we also see that Pj(h) = P (h) is independent ofj = 1; 2.It is 
lassi
al that the Hausdor� measure of the Julia set is �nite (see for instan
e [17℄ and thereferen
es given there) and hen
e P (h) = O(h�Æ).



8 J. STRAIN AND M. ZWORSKIWe 
an now apply the same pro
edure as in the proof of Proposition 1. What we have gainedis a bound on the weight: sin
e jRe sj � C and g0i is real on the real axisj[g0i(z)℄sj � C exp(jsjj arg g0i(z)j) � C exp(C1jsjj Im zj) � C2 ; z 2 Dj(h) :We write L(s) as a sum of four operators Lij(s) ea
h of whi
h is a dire
t sum of P (h) operators.The re
tangles and the 
ontra
ting prperties of gi's are uniform after res
aling by h and hen
ethe singular values of ea
h of these operators satisfy the bound �l � C
l, 0 < 
 < 1. Using (2.7)and (2.9) we obtain the boundlog j det(I �L(s))j � CP (h) = O(h�Æ) ;and this is (1.6).Proof of Corollary 2. Proposition 2 shows that Z(s) is given by (1.4) for Re s large. Hen
e forRe s > C1 we have jZ(s)j > 1=2. The Jensen formula then shows that the left hand side of (1.8)is bounded by Xfm(s) : js� ir � C1j � C2g � 2 maxjsj�r+C3jRe sj�C0 log jZ(s)j+ C4 ;and (1.8) follows from (1.6).4. Numeri
al evaluation of the zeta fun
tionWe have 
arried out an extensive set of numeri
al 
omputations whi
h suggest that the upperbound proved above is optimal. We have developed a fast algorithm for numeri
al evaluationof the zeta fun
tion, whi
h we use for large-s
ale parallel 
omputations of its zero pattern. Theevaluation algorithm is based on the following 
onvenient analyti
al setup. We have de�nedL(s) as an operator on holomorphi
 fun
tions de�ned on an open neighbourhood D of the Juliaset: in the analysis above we 
hose D = D1 [ D2 with Dj = (�1)j(p��
 � 
; �
) where �
 =(1 + p1� 4
)=2 is the largest �xed point of f
. The Ruelle operator (1.2) is then given by(2.2). For numeri
al 
omputations, we would like to 
hoose another domain D to speed up thenumeri
al evaluation of the determinant Z(s) = det(I � L(s)).Assume p = j
j > 4. Then a �rst approximation to J is the union D0 of two intervalsDj = (�1)j((p� �) 12 � 1=4; � + 1=4) ; � = (1 + (1 + 4p) 12 )=2 :Sin
e f(��) = � ; f(�(p� �) 12 ) = �� ;the set of �xed points of iterates of f is 
ontained in D0 = D1SD2. Moreover,gi(Dj) � Di ; gj(D1) \ gj(D2) = ; :Thus this 
onstru
tion 
an be iterated. LetDi = gi1 Æ � � � Æ gin�1(Din)where the multiindex i is de�ned by i = (i1; � � � ; in) 2 f1; 2gn. ThenDn = [i2f1;2gnDiapproximates the Julia set a

urately for large n. Sin
e the gj 's are monotone, ea
h Di is mappedinto another by ea
h gj :gj(Di) � D�j(i) ; �j(i1; � � � ; in) = (j; i1; � � � ; in�1)



ZETA FUNCTION AND THE DIMENSION OF THE JULIA SET 9When p is large, � = (1 + (1 + 4p) 12 )=2 ' p 12 + 1=2 + p� 12 =8 ;(p� �) 12 ' p 12 � 1=2� p� 12 =8 :On D0 the derivatives of gij 's are approximately p�1=2=2. Thus the sizes of the subintervals Di'sare 
ontrolled by jDij ' 2�np�n=2 ; i 2 f1; 2gn :The dimension should satisfy the following approximate relation( size of the interval)�Æ ' number of intervals,or Æ ' 2 log 22 log 2 + log pwhi
h agrees with rigorous estimates [10, 17℄.4.1. Determinant evaluation. An eÆ
ient evaluation s
heme 
hoosesD = Dn where n is largeenough that jDij ' jsj�1 ; i 2 f1; 2gnassuming that the intervals in the partition have roughly the same size 2�np�n=2. We expandea
h Di into a dis
 
entered at the middle ai of Di, and radius ri equal to half of the length ofDi. We denote the expanded dis
s also by Di for 
onvenien
e. They 
an be 
omputed in pra
ti
eby mapping interval endpoints with the g fun
tions and sorting the resulting intervals.The transfer operator L(s) : Mi2f1;2gnH2(Di) �! Mi2f1;2gnH2(Di)then be
omes a sparse 2n � 2n matrix of operators de�ned by(L(s))km u(z) = � [g0j(z)℄su(gj(z)) ; u 2 H2(Dm) m = �j(k)0 otherwiseNumeri
ally, we approximate I �L by a blo
k matrix I �L su
h as the ones shown in Figure 2.Ea
h matrix blo
k approximates one operator L(s)km by a small matrix Lkm, whi
h repre-sents the 
ompression of L(s)km onto the �rst P + 1 elements of ea
h orthonormal basis f�kp gand f�mq g for H2(Dk) and H2(Dm) respe
tively. Thus the matrix blo
k Lkm has elementsapq = ZDk �kp (z)[g0j(z)℄s�mq (gj(z))dzwhere m = �j(k). [Note: it would probably be ni
e to add the formula for Z as the determinantof I � PGsH .℄ This integral 
ould perhaps be evaluated exa
tly, sin
e only powers, logarithmsand roots o

ur. However, exa
t formulas are likely to be 
umbersome and expensive to evaluate,so we apply numeri
al integration te
hniques instead. The standard 21-point formula no. 25.4.61on p. 892 of [2℄ is highly a

urate, integrating up to tenth-degree polynomials exa
tly over a dis
;adaptive quadrature 
ould be used if even higher a

ura
y is desired. On
e the blo
k matrix L is
omputed, we evaluate the determinant Z(s) by LU-fa
torization via standardLAPACK routines[1℄. EÆ
ien
y is improved by 
areful pre
omputation and tabulation of 
ommon subexpressions.It 
ould perhaps be improved further by sparse blo
k QR de
omposition as in [21℄, in view ofthe simple regular blo
k stru
ture evident in Figure 2.
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60Figure 2. Blo
k stru
ture of matrix I � L 
orresponding to Ruelle transferoperator for N = 2n = 8; 16 (�rst and se
ond rows) and P = 1, 2, 3 and 4 (leftto right 
olumns).4.2. Derivatives. The zero-
ounting algorithm we des
ribe below requires not only Z values,but also the values of the logarithmi
 derivative Z 0=Z = (logZ)0. Fortunately, these 
an easilybe evaluated with the same apparatus used for Z itself. Indeed,(log det(I �L(s)))0 = � tr �(I �L(s))�1L0(s)�so ea
h blo
k of the matrix L0 involved in the evaluation of Z 0(s) has elementsbpq = ZDk �kp (z)(log[g0j(z)℄)[g0j(z)℄s�mq (z)dz:The matrix inverse (I �L(s))�1 is applied with the same LU-fa
torization (or QR-fa
torization)we used to evaluate the determinant, at essentially no additional expense. Thus the total 
ost ofone evaluation of Z and its logarithmi
 derivative is O(N3P 3) where N = 2n is the number ofmatrix blo
ks per dimension and P is the number of basis fun
tions per dis
. Usually we take nin the range 3 to 6 and P in the range 1 to 4, so the largest determinants and LU-fa
torizationswe need to 
ompute are about 2562.We veri�ed the a

ura
y of the algorithm by an extensive series of re�nement and 
omparisontests. For example, we 
omputed the dimension Æ for 
 = �5 with a su

ession of in
reasinglya

urate parameter 
hoi
es n = 3; : : : ; 7 and P = 1; : : : ; 4. The matlab zero-�nding fun
tionfzero with default toleran
e 10�14 was used to 
ompute the dimensions shown in Table 2. Sin
ethe exa
t value is 0.48479829443816, our evaluation s
heme 
omputes dimensions a

urate to fulldouble-pre
ision a

ura
y with n = 6 and P = 3, by evaluating the determinants of 192� 192matri
es. A preliminary implementation in the matlab rapid prototyping language [16℄ obtained
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ura
y with n = 6 and P = 3 in 12.45 se
, running on one pro
essor of a dual 1.8 GHzXeon workstation running Red Hat Linux version 8 and matlab version 12. Three-digit a

ura
yrequired less than one se
ond, but our prototype matlab implementation was still far too slowfor the large-s
ale zero-
ounting whi
h we report in Se
tion 6 below. Thus the algorithm wasrewritten in Fortran 77 and run on the UC Berkeley \Millennium" 
luster 
ontaining about250 Intel CPUs arranged in about 100 nodes.Table 2. Dimension Æ of the Julia set J for 
 = �5, 
omputed with ourevaluation s
heme using n levels of intervals and P basis fun
tions per dis
.P = 1 2 3 4n = 3 0.48478348721389 0.48479099537140 0.48479829294510 0.48479829372883n = 4 0.48479741542081 0.48479784089445 0.48479829442433 0.48479829443523n = 5 0.48479823885691 0.48479826617332 0.48479829443815 0.48479829443815n = 6 0.48479829098609 0.48479829267778 0.48479829443816 0.48479829443816n = 7 0.48479829422308 0.48479829432851 0.48479829443816 0.48479829443816This should be 
ompared to the numeri
al results of [10℄ where a di�erent method of evaluatingthe zeta fun
tion was used. It follows the 
y
le expansion method based on rigorous results ofRuelle [19℄, and numeri
al investigations by Cvitanovi�
, E
khardt and others [5℄. Although the
y
le expansion method has been used su

esfully for 
omputation of zeros (see [13℄ for a re
entappli
ation), we found that our method allows larger values of Im s (see [9℄ for the use of the
y
le expansion method following [10℄ in the 
ontext of S
hottky groups).Cy
le expansions require 
areful grouping of large summands to dete
t the 
an
ellations, whi
hbe
omes in
reasingly diÆ
ult and unstable as the imaginary part of s in
reases; the summandsgrow exponentially. 5. Zero-
ounting algorithmWe apply a zero-
ounting algorithm to our Fortran implementation of Z(s) to 
ount thenumber of zeroes to the right of a line Re z = x between two horizontal lines Im z = s0 andIm z = s1. Sin
e Z is holomorphi
, the argument prin
iple 
ounts the number N of zeroes insidea 
losed 
urve � by the integral formulaN = 12�i Z� Z 0(s)Z(s) ds:Numeri
al implementation of this formula turns out to be surprisingly tri
ky, be
ause zeroes ofZ indu
e poles of the integrand. (Figures 3 and 4 suggest how 
ompli
ated and interesting thepole stru
ture of Z 0=Z 
an be.) Thus numeri
al integration over � with resolution h will workonly if the zeroes of Z lie distan
e O(h) or more from �. Sin
e the unknown zero lo
ationsmay 
luster anywhere, our 
hoi
e of � must take Z values into a

ount. Thus we have adoptedthe following zero-
ounting te
hnique. First, we approximate only the integral over the verti
alinterval � = [x+ is0; x+ is1℄ as the two horizontal lines 
ontribute very little to the total. Next,we en
lose the verti
al interval V by zigzag 
ontours �L and �R whi
h give approximate upperand lower bounds NU � NL for the number N of zeros; see Figures 3 and 4. Finally, we integratethe logarithmi
 derivative exa
tly over ea
h segment of the 
ontour.Ea
h zigzag 
ontour is a polygonal line 
onne
ting a sequen
e of grid points zm = x+ Imh+i(s0+mh), where h = 0:025 is the half-width of the band en
losing �. The indi
es Im are 
hosen
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Figure 3. Surfa
e and 
ontours of jZ 0=Zj with 
 = �10, over the re
tangle�3 < Re s < 1, 1960 < Im s < 2000 and its 
entral subre
tangle �2 < Re s < 0,1970 < Im s < 1990. The zigzag 
ontours shown in bla
k steer to the right asmu
h as possible, to avoid zeros and minimize the value of jZ 0=Zj.
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Figure 4. Surfa
e and 
ontours of jZ 0=Zj with 
 = �160, over the re
tangle�3 < Re s < 1, 1960 < Im s < 2000 and its 
entral subre
tangle �2 < Re s < 0,1970 < Im s < 1990.
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lusive (usually Q = 5 or so) to minimize the integrand:jZ 0(zm)jjZ(zm)j = minjqj�Q jZ 0(x+ qh+ i(s0 +mh)jjZ(x+ qh+ i(s0 +mh))j :Integrating over this 
ontour gives exa
tlyNJ = 12�i Z�J Z 0(s)Z(s) ds = 12�i M�1Xm=1 log�Z(zm+1)Z(zm) �for J = U;L. 6. Numeri
al 
on
lusionsWe used the above algorithm to 
ompute the density of zeros of the zeta fun
tion Z(s) formany values of the parameter 
 < �2. The numeri
al results strongly support Conje
ture 3stated after Corollary 2 in Se
tion 1. We stress that our 
omputations are empiri
al, that is we
annot prove the 
onvergen
e rigorously { we only see 
onvergen
e when the parameters whi
himprove a

ura
y in
rease. The upper bounds te
hniques of Se
tion 2 give estimates guaranteeing
onvergen
e but they are numeri
ally feasible for small values of j Im sj only: the size of L andP required grows too fast.The zero 
ounting algorithm presented in Se
tion 5 gives us upper and lower bounds for thenumber of zeros, n(r; x) with Re s > �x and 0 � j Im sj � r:nL(r; x) � n(r; x) � nU (r; x) :As seen in Figures 3 and 4 the density of zeros is large and the distribution too irregular to obtaina 
ompletely a

urate evaluation of n(r; x) when r large. The upper bound given in Corollary 2is the same as lognU (r; x) � (1 + Æ) log r +BU (x) ;and ideally we would like to have(6.1) lognL(r; x) � (1 + Æ) log r +BL(x) ; x > x0(
) :For a given 
 we 
al
ulate n�(r; x) for r � R using parameters L; P suggested by the proof of theupper bound, that is ones for whi
h the behaviour of the transfer operator is ni
ely 
ontrolledfor Im s � R. That means that we require 2L � j Im sjÆ , and we take P = 1 or 2. As explainedin Se
tion 4.1 the in
rease of L is very 
ostly and we use larger values of the parameters only totest the a

ura
y of our results. The plots of logn�(r; x) against log r for di�erent values of xare shown on the left of Figure 5.To see if (6.1) has a 
han
e of being true we use the least squares method to approximatelogn� as a fun
tion of log r:(6.2) n�(r; x) ' A�(x) log r +B�(x) ; r � R ;where � = L;U 
orresponds to the upper and lower bounds respe
tively. Although nL(r; x) �nU (r; x) it may happen that AL(x) > AU (x) due to the irregularities in distributions.The lower bound (6.1) 
an be loosely reformulated asAL(x) ' AU (x) ' 1 + Æ ; x � x0 :That this happens for 
 = �10 and 
 = �100 is shown in on the right of Figure 5These results are typi
al for what we obtained for other values of 
. Although for largerj
j's we 
an use a lower L to rea
h higher values of Im s a

urately, we observe a phenomenonof \
onservation of diÆ
ulty". That is seen in the 
omparison between Figures 5 (a) and (b):
onvergen
e to the dimension for 
 = �160 requires Im s ten times as large as for 
 = �10.
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(b)Figure 5. Number of zeroes n(r; x) vs. log r and 
orresponding exponents 1+Æ.(a) 
 = �10, L = 6,P = 2, 0 � r � 20000, 0:3822 > x > �0:4178 in 17 steps of0:05. (b) 
 = �160, L = 5, P = 1; 0 � r � 200000, 0:58534 > x > �0:28534 in 9steps of 0:1.



16 J. STRAIN AND M. ZWORSKI7. Open questions suggested by numeri
al dataThe 
ode we produ
ed o�ers possibilities for future resear
h. Two dire
tions are suggested byre
ent developments. Naud's [15℄ adaptation of Dolgopyat's method to this setting of S
hottkyquotients and Julia sets shows that there exists a 
onstant � = �(
) su
h that Z(s) is zero-freefor s in the strip Æ(
)� �(
) < Re s < Æ(
). In this paper, we have not attempted to analyze � asa fun
tion of 
, though some dependen
e is apparent in the �gures.Another dire
tion is suggested by [13℄, where it was pointed out that zeros are denser near aparti
ular value Re s related to the 
lassi
al es
ape rate. We have seen su
h a 
on
entration ofzeros in Figures 3 and 4, but we have not 
omputed the 
lassi
al es
ape rate for 
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