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Abstra
tVortex methods for invis
id in
ompressible two-dimensional 
uid 
ow are usuallybased on blob approximations. This paper presents a vortex method in whi
h thevorti
ity is approximated by a pie
ewise polynomial interpolant on a Delaunaytriangulation of the vorti
es. An eÆ
ient re
onstru
tion of the Delaunay trian-gulation at ea
h step makes the method a

urate for long times. The verti
es ofthe triangulation move with the 
uid velo
ity, whi
h is re
onstru
ted from thevorti
ity via a simpli�ed fast multipole method for the Biot-Savart law with a
ontinuous sour
e distribution. The initial distribution of vorti
es is 
onstru
tedfrom the initial vorti
ity �eld by an adaptive approximation method whi
h pro-du
es good a

ura
y even for dis
ontinuous initial data.Numeri
al results show that the method is highly a

urate over long timeintervals. Experiments with single and multiple 
ir
ular and ellipti
al rotatingpat
hes of both pie
ewise 
onstant and smooth vorti
ity indi
ate that the methodprodu
es mu
h smaller errors than blob methods with the same number of degreesof freedom, at little additional 
ost.Generalizations to domains with boundaries, vis
ous 
ow and three spa
edimensions are dis
ussed.
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1 Introdu
tionVortex methods simulate 
uid 
ow by moving a 
olle
tion of markers 
arryingvorti
ity. They are grid-free, with little or no numeri
al di�usion, and naturallyadaptive, and they preserve moments of the vorti
ity. They have been generalizedin many dire
tions and applied to 
omplex high-Reynolds-number 
ow [15, 16,29, 14, 4, 1, 36, 18, 40, 42℄.The 
lassi
al vortex-blob method due to Chorin [15℄ is based on smoothingpoint vorti
es [39℄ into smooth blobs of vorti
ity, to obtain higher a

ura
y anda more robust method. Various high-order methods have been 
onstru
ted [5, 6℄,but numeri
al tests show that the order of a

ura
y de
reases sharply whenthe 
ow be
omes disorganized. This paper presents an eÆ
ient and a

uratenew vortex method whi
h maintains se
ond-order a

ura
y during long timeintegrations.Di�erent approximations of the vorti
ity within the same Lagrangian frame-work lead to other vortex methods. Pie
ewise 
onstant approximation of thevorti
ity has been used to study the evolution of vortex pat
hes [11, 49℄. Pie
e-wise linear approximation has been used for smooth 
ows in [2, 13℄. In thesemethods, the velo
ity is 
omputed from a pie
ewise polynomial approximatevorti
ity �eld, either from the Biot-Savart law or by solving a Poisson problem.At ea
h time step, the verti
es of the triangulation are moved a

ording to the
omputed velo
ity and the vorti
ity at the verti
es is passively adve
ted. At thenext time step the vorti
ity is again approximated by a pie
ewise linear fun
tionon the triangulation and the pro
ess is repeated. These methods 
onverge as thesize of the triangles goes to zero. We brie
y re
all this ba
kground material inSe
tion 2.In this paper we present a vortex method based on the pie
ewise linear ap-proximation of vorti
ity on a triangulation. We introdu
e three important newfeatures whi
h make the method far more a

urate, eÆ
ient and robust: De-launay triangulation, fast velo
ity evaluation, and adaptive initial triangulation.Our algorithm is summarized in Se
tion 3.We update a Delaunay triangulation of the vorti
es at ea
h time step. ADelaunay triangulation is lo
ally equiangular, so it maintains a uniform a

ura
yover long times. This triangulation 
an be 
onstru
ted in O(N logN) operations,using a fast method des
ribed in Se
tion 4.The se
ond new feature is the fast evaluation of the velo
ity �eld. The velo
-ity �eld due to a pie
ewise linear vorti
ity on a triangulation 
an be evaluatedexa
tly [13℄. A straightforward evaluation method, however, results in an O(N2)
omputational 
ost. The 
omplexity 
an be redu
ed by using a fast multipolemethod [12℄; we implemented a simpli�ed O(N4=3) version. For N = 51200 ourvelo
ity evaluation is 200 times faster than dire
t evaluation, and the breakevenpoint is about N = 100. Our fast velo
ity evaluation method is des
ribed inSe
tion 5.A triangulation allows more 
exibility than equal-size blobs in approximat-3



ing the initial vorti
ity. We take advantage of this 
exibility to 
onstru
t theinitial triangulation adaptively, to resolve the initial vorti
ity with few degreesof freedom. As a result, our method 
an be used to model dis
ontinuous vortexpat
hes as well as smooth vorti
ity �elds. Our adaptive triangulation method isdis
ussed in Se
tion 6.In Se
tion 7 we present numeri
al results for smooth and non-smooth initialvorti
ity �elds. We 
ompute the evolution of single and multiple 
ir
ular andellipti
al pat
hes of smooth and 
onstant vorti
ity, and 
ompare with the exa
tsolution when available. Convergen
e studies for multiple pat
hes are performedby di�eren
ing. We 
ompare our method with vortex-blob and Lagrangian �niteelement methods and show the long-time a

ura
y, eÆ
ien
y and robustness ofour method.In Se
tion 8 we dis
uss generalizations of the method. We 
onsider vis
os-ity, boundary 
onditions, three-dimensional problems, higher-order methods. InSe
tion 9 we dis
uss our 
on
lusions.2 Vortex methodsIn this se
tion we review the vorti
ity formulation of the 2-D Euler equations,the vortex blob method and the Lagrangian �nite element method on whi
h thepresent method is based.The Euler equations of two-dimensional in
ompressible invis
id 
ow are�u�t + (u � r)u = �1�rp; (2.1)r � u = 0; (2.2)where � is the (
onstant) density of the 
uid, u = (ux; uy) is the velo
ity and pthe pressure. Both u and p are fun
tions of z � (x; y) and t. (We will �nd it
onvenient on several o

asions to use 
omplex notation, in whi
h z = (x; y) =x+ iy identi�es a point in IR2, thought of as the 
omplex plane.)The 
url of (2.1) gives the vorti
ity equation�!�t + (u � r)! = 0; (2.3)where ! := �xuy � �yux (2.4)is the vorti
ity. Thus the vorti
ity is transported passively along streamlines. By(2.2), u is the 
url of a ve
tor �eld; in two dimensions the ve
tor �eld has onlyone non-zero 
omponent, the stream fun
tion  . Thenux = � �y ; uy = �� �x : (2.5)4



and (2.4) be
omes a Poisson equation for the stream fun
tion:�� = !:In unbounded 
ow with zero velo
ity far from the origin, this equation 
an besolved with the boundary 
ondition r !0 at 1 to get the \Biot-Savart law"u(z; t) = ZIR2 K(z � z0)!(z0; t) dz0; (2.6)where K = 12�jzj2  �yx ! : (2.7)Flow in a domain with boundary will be 
onsidered in Se
tion 8.The 
ow 
an also be des
ribed by the 
ow map z : IR2� [0; T ℄! IR2 de�nedso that z(�; t) is the position of the 
uid parti
le whi
h at time t = 0 is at theposition �.By (2.6), z(�; t) satis�esdzdt (�; t) = ZIR2 K(z(�; t)� z0)!(z0; t) dz0: (2.8)Putting z0 = z(� 0; t) inside the integral givesdzdt (�; t) = ZIR2 K(z(�; t)� z(� 0; t))!(z(� 0; t); t) d� 0= ZIR2 K(z(�; t)� z(� 0; t))!0(� 0) d� 0 (2.9)sin
e the Ja
obian of z(�; t) is unity.Vortex methods are based on various re
ipes for evaluating the Biot-Savartintegral with a quadrature formula. Dis
retizations based on the formulation(2.9) give Lagrangian methods, where the spa
e variable is the initial lo
ationof the 
uid marker �. The 
onvergen
e study of vortex-blob methods is oftenbased on this formulation, whi
h has the weakness 
ommon to most Lagrangianmethods: they be
ome ina

urate as the grid is greatly distorted. A \Free-Lagrangian" method based on approximation of the vorti
ity at time t in (2.8)over
omes this diÆ
ulty and helps provide a more a

urate approximation of thevelo
ity.The \point-vortex method" [39℄ approximates (2.9) bydzidt =Xj 6=iK(zi � zj)!0(�j)h2; (2.10)it is very physi
al sin
e it moves N point vorti
es with 
ir
ulations �i = !0(�i)h2.Although the method 
onverges [22℄, it presents some diÆ
ulties. If two vorti
es
ome too 
lose together, the velo
ity approximation be
omes unbounded. Also,5



a distribution of point vorti
es is usually a poor approximation to a smoothvorti
ity distribution.Chorin [15℄ observed that the singularity 
an be molli�ed by 
onvolving thekernel with a blob fun
tion gÆ(z) to get a smoothed kernelKÆ = K � gÆ; gÆ(z) = 1Æ2 g �zÆ� :The resulting \vortex-blob" method isdzidt = NXj=1KÆ(zi � zj)!0(�j)h2: (2.11)Convergen
e results for this method are given in [24, 5, 1, 25℄. The numeri
albehavior of this method has been studied in [34, 42℄; it has been very widelyused in pra
ti
e and generalized to model three-dimensional turbulent 
ows withboundaries and 
ombustion [29, 14, 16℄.Lagrangian �nite element methods, on the other hand, approximate ! in (2.8)by a pie
ewise linear fun
tion on a triangulation. For ea
h t let Th(t) = f�i(t)gNTi=1be a triangulation 
overing the support of ! with N verti
es fzj(t)gNj=1, and letVh = fv(z) 2 C0(IR2) : vj�i is linear for ea
h igbe the spa
e of 
ontinuous pie
ewise linear fun
tions over Th(t). At ea
h time tthe vorti
ity !(z; t) is approximated by the pie
ewise linear interpolant !h(z; t) 2Vh. The velo
ity is approximated byuh(z; t) = ZIR2 K(z � z0)!h(z0; t) dz0 = NTXi=1 Z�i K(z0)!h(z0; t) dz0 (2.12)in [13℄ and by solving a Poisson problem in [2℄. A natural algorithm is thenobtained by transporting the verti
es of the triangulation along the streamlinesde�ned by dzidt = uh(zi; t)and leaving the topology of the triangulation un
hanged.In this paper, we use (2.12) to approximate the velo
ity. Ea
h termZ� K(z � z0)!h(z0; t) dz0 (2.13)in the sum (2.12) 
an be evaluated exa
tly, so the evaluation of the velo
ity at onevertex 
osts O(N) operations and the 
ost of the velo
ity evaluation is O(N2).To evaluate (2.13), we follow [13℄; �x a triangle � and a vertex z, and take a
oordinate system with origin at z. Then we 
an write!h(x; y; t) = a+ bx+ 
y6



on � . For ea
h i and j, letF ij = Z� K(z � z0)x0iy0j dz0: (2.14)Then Z� K(z � z0)!h(z0) dz0 = aF 00 + bF 10 + 
F 01:Let z1; z2; z3 be the verti
es of � , as in Figure 1, and set z4 = z1; z5 = z2for 
onvenien
e. We 
ompute the three integrals F ij by splitting � into threetriangles with vertex z, as in Figure 1, and writingZ� = 3Xj=1�j Z�jwhere �j = 1 if point z is to the left of zj+1zj+2 and �j = �1 otherwise.
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Figure 1: Splitting up the 
omputation of the Biot-Savart integral.On ea
h subtriangle �k, ea
h term 
an be expressed in polar 
oordinates andevaluated: F 00 =  �dx log r + dy��dx� � dy log r !7



F 10 =  A sin � 
os � + 12(d2x � d2y) log r � dxdy�A 
os2 � + 12(d2x � d2y)� + dxdy log r !F 01 =  F 10y �A�F 10x !where (see Figure 2), dx = x2 � x1, dy = y2 � y1, r = jz � z1j=jz � z2j, � is theangle dz2zz1, � is the angle that ~z � z forms with the x-axis and A is the area oftriangle �3.
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Figure 2: Triangle �3.3 Formal des
ription of the algorithmIn this se
tion we summarize our algorithm in a pro
edural form. The next threese
tions will be devoted to a detailed des
ription of the new features we haveadded. AlgorithmStep 1 - Input.Read the initial data from a �le. The initial �le 
ontains:� time integration parameters�nal time, time step, order of Runge-Kutta method� output 
ontrol parameters� triangulation parametersfrequen
y of retriangulationtype of triangulation method (M
Lain, uniform, adaptive)� fast velo
ity evaluation parameters 8



number of terms in expansionsnumber of neighbor 
ells
uto� for re�nement� type of initial datavorti
ity pro�le (smooth or dis
ontinuous)number of vortex pat
hes� parameters for the adaptive initial griderror toleran
emaximum level of re�nementStep 2 - Initial 
onditions.Generate the initial distribution of verti
es fz0i ; i = 1 : : :Ng a

ording to the initialvorti
ity. The following options are available:� read the initial triangulation from a �le� uniform or randomly generated verti
es� adaptive triangulation to resolve ! [des
ribed in Se
tion 6℄Assign the initial values of the vorti
ity !i = !i(z0i ).Step 3 - Main loop.do n = 1 : : :MCompute the velo
ity asso
iated to ! and z [see Velo
ity evaluation below℄:un�1 = F (!; zn�1)Store the output [every Ns time steps℄if the exa
t solution is known thenevaluate L1 and L1 relative error by 
omparison with the exa
t solutionend ifWrite output [errors, timing, triangulation, and so on℄ to �les.Move the pointsif [Euler's method℄thenzn = zn�1 + un�1�telse if [se
ond-order Runge-Kutta℄ then~z = zn�1 + un�1�t~u = F (!; ~z)zn = zn�1 + (un�1 + ~u)�t=2else [fourth order Runge-Kutta℄~z = zn�1 + un�1�t=2~u1 = F (!; ~z)~z = zn�1 + ~u1�t=2~u2 = F (!; ~z)~z = zn�1 + ~u2�t=2~u3 = F (!; ~z)zn = zn�1 + (un�1 + 2~u1 + 2~u2 + ~u3)�t=6end ifend do Velo
ity evaluation.9



u = F (!; z)� 
onstru
t a Delaunay triangulation of fzig [des
ribed in Se
tion 4℄� evaluate the velo
ity u at ea
h point zi, i = 1 : : :Nwith the fast summation method [des
ribed in Se
tion 5℄4 Delaunay triangulation4.1 Triangulation and interpolationGiven a set Z of N points zj in IR2, there are many ways to 
onne
t the pointsinto a mesh T of triangles 
overing the 
onvex hull CZ of Z. If fun
tion valuesfj = f(zj) are given at the verti
es, ea
h triangulation T produ
es a pie
ewiselinear interpolant T (z), the unique fun
tion whi
h is linear on ea
h triangle ofT , 
ontinuous and has T (zj) = fj for ea
h j. The erroreT (f) = maxz2CZ jf(z)� T (z)j: (4.1)in su
h an interpolant 
an be bounded in terms of the se
ond derivatives of f ,the longest edge length of T , and the \
ondition number" of T , a measure of theangles o

urring in T [50℄.We 
annot 
ontrol the se
ond derivatives of f , but we 
an minimize the errorin linear interpolation given Z by 
hoosing the best triangulation for a 
lass off . Bad triangulations, for most 
lasses have long thin triangles and long edges.Good triangulations have short edges and very few long thin triangles. A simpleexample is shown in Figure 3. The best triangulation for a given f 
an be veryexpensive to �nd.
rr rrr rr r��������������� ���

Bad������������������������������ rr rrr rr r��������������� ���
Good������Figure 3: Good and bad triangulations of a simple point set Z.An a�ordable alternative is provided by the \Delaunay triangulation". It isalmost optimal for error bounds, yet 
an be 
onstru
ted in O(N logN) time.Indeed, [50℄ shows that no other triangulation 
an redu
e the error bounds bymore than a fa
tor of two, while many fast methods for 
onstru
ting the Delau-nay triangulation have been proposed [9, 19, 21, 23, 27, 28, 30, 33, 43, 44℄. Inthis se
tion, we des
ribe the Delaunay triangulation and a fast method for its
onstru
tion, following [44℄. 10



4.2 De�nitions and data stru
turesThe Delaunay triangulation 
an be (and histori
ally has been) de�ned in manyways. Currently one popular de�nition is in terms of the Voronoi diagram.Suppose Z = fzj : j = 1; 2; : : : ; Ng is a set of N points in a set 
 � IR2; for
onvenien
e we assume 
 has a polygonal boundary. The Voronoi diagram of Zis the set of polygons Pj de�ned byPj = fz 2 
 : jz � zj j � jz � zij for all i 6= jg: (4.2)Thus Pj is the set of points in 
 whi
h are 
loser to zj than to any other point ziin Z. See Figure 4 for an example. The Voronoi diagram of Z is a useful tool foridentifying nearest neighbors, be
ause the nearest neighbors of zj are pre
iselythose points zi whose Voronoi polygons Pi share an edge with Pj . The Voronoidiagram is used to solve 
losest point problems in 
omputational geometry, forpre
isely this reason, in [9℄ and [35℄.

Figure 4: Voronoi diagram asso
iated with a set of points.The dual of the Voronoi diagram is the Delaunay triangulation, obtained by
onne
ting two points with a triangle edge i� their Voronoi polygons share anedge. In the ex
eptional 
ase when four points of Z lie on a 
ir
le, some edgesof their Voronoi polygons have zero length, and one 
an triangulate the 
o
ir-
ular points in any nondegenerate way, so the resulting Delaunay triangulationis not unique. This possibility requires 
areful treatment, be
ause the Delaunaytriangulation 
hanges by passing through su
h a 
ase [47℄.Another de�nition, whi
h leads to our method of 
onstru
tion, is throughthe 
ir
um
ir
le 
riterion; the 
ir
um
ir
le of any triangle 
ontains no otherpoint of Z in its interior. This determines the Delaunay triangulation up to thenonuniqueness 
aused by 
o
ir
ular points.11



Before dis
ussing the 
onstru
tion of the Delaunay triangulation, we mustspe
ify how it is to be stored. We store a triangulation by giving two integerarrays, itt and itv, in addition to the two real arrays needed to store the
oordinates xi and yi of the points in Z. Let NT be the number of triangles inthe Delaunay triangulation. (By Euler's formula, NT � 2N , whi
h simpli�es theassignment of storage 
onsiderably.) Then k = itv(i; j) is the index of the ithvertex zk of triangle Tj , for i = 1 to 3 and j = 1 to NT . Also, k = itt(i; j) isthe index of the triangle Tk whi
h lies a
ross edge i of triangle Tj . If edge i oftriangle Tj lies on the 
onvex hull of Z, we set itt(i; j) = 0. See Figure 5 for anexample of itt and itv.
qz1qz2
qz3 qz4

qz5qz6
��������������������AAAAAAA

AAAAAAA
�������������

T1 T2 T3T4
j 1 2 3 4itv(1; j) 2 1 1 1itv(2; j) 1 4 5 6itv(3; j) 3 3 4 5 j 1 2 3 4itt(1; j) 0 3 4 0itt(2; j) 2 0 0 0itt(3; j) 0 1 2 3Figure 5: A small triangulation and the 
orresponding triangle to triangle andvertex pointers itt and itv.4.3 M
Lain's methodNext we des
ribe an algorithm due to M
Lain [31℄, whi
h starts with a trianglebelonging to the Delaunay triangulation and adds triangles one at a time untildone, using the 
ir
um
ir
le 
riterion.To 
onstru
t the �rst triangle T1, we 
hoose a vertex, zi say, at random fromZ. Then the se
ond vertex, say zj , is 
hosen as a 
losest point to zi. The thirdvertex zk of T1 is 
hosen by the 
ir
um
ir
le 
riterion, applied to ea
h side of zizj .This 
riterion says that we sele
t the next vertex zk so that a) zk lies outside zizjand b) no other point of Z lies in the interior of the 
ir
um
ir
le of the resulting12



triangle; see Figure 6. This means that zk minimizes the signed distan
e t(z) ofthe 
ir
um
ir
le 
enter from the line through zi and zjt(z) = (z � zi) � (z � zj)2(z � zm) � nwhere zm is the midpoint of zizj , n is the unit normal to zizj, and � is the dotprodu
t. Any minimizer of t(z) may be 
hosen as the third vertex of T1.

qz1 q zj
q zi q z = zkqqzm q

q
�������

���� t(z) -�
Figure 6: Geometry of M
Lain's method.We now have the �rst triangle T1. We store the indi
es of zi, zj and zk in thearray itv(m; 1), and set itt(m;n) = �1 initially for 1 � m � 3 and 1 � n � 2N .We also swap two verti
es if ne
essary to orient zizjzk 
ounter
lo
kwise.The triangulation is now built one triangle at a time|ea
h triangle belongsto the �nal Delaunay triangulation. We loop through the indi
es n of existingtriangles, adding a triangle (if possible) to ea
h edge m of triangle n whi
h is notalready o

upied. It may be that it is impossible to add a triangle to edge m,be
ause there are no points of Z outside the line extending that edge. In that
ase, we mark m as an edge of the 
onvex hull of Z by setting itt(m;n) = 0,and pro
eed to the next edge. If possible, however, we �nd the third vertex ofthe new triangle by the 
ir
um
ir
le 
riterion, as a minimizer of t(z) over Z.If the minimizer is unique, it is taken as the third vertex of the new triangle.Otherwise, there are four or more 
o
ir
ular points in Z; the two verti
es of mand the minimizers of t(z). We then triangulate all 
o
ir
ular verti
es in anynondegenerate way.We now add the new triangle to itt and add its verti
es to the next emptylo
ation in itv. The new triangle may also be a neighbor of some previously 
on-stru
ted triangle whi
h we have not yet a

ounted for, and if so the appropriateentries must be made in itt. 13



We now pro
eed to the next edge and repeat. When we run out of uno

upiededges, the Delaunay triangulation will be 
omplete.4.4 A uniform 
ell methodM
Lain's method is robust and easy to program, but 
an be quite slow whenN is large. To speed it up, we introdu
e a 
ell stru
ture and vertex-to-trianglepointers. Cells were also used in [9, 30, 33℄ to speed up Voronoi diagram 
al
u-lations. The basi
 idea is that only nearby verti
es 
an a�e
t the addition of anew triangle, if the verti
es are reasonably uniform. Thus we 
an organize theverti
es into a spatial data stru
ture [41℄ and sear
h only nearby verti
es. The
ir
um
ir
le 
riterion allows us to 
he
k that we have in
luded all the verti
eswhi
h matter. Let C be the 
ir
le produ
ed by minimizing t(z) over a subsetof Z. Then no point outside C 
an be a global minimizer of t(z). Thus any
andidate for a new vertex ex
ludes all verti
es of Z outside C.There are two stages of the triangle addition pro
ess whi
h require O(N)work. First, we have to �nd the minimizer of t(z) over Z. Se
ond, we have to
he
k all previously found triangles to �nd those sharing an edge with the newtriangle.We redu
e the 
ost of the minimization step by organizing the verti
es Zinto a data stru
ture a

ording to their spatial lo
ation. We �rst put Z in are
tangle C with sides parallel to the 
oordinate axes. Then we subdivide C intoNC = O(pN) � O(pN) re
tangular 
ells and store ea
h zi in the 
ell where itlies. To do this, we use an array i
v of length N whi
h 
ontains the index ofea
h vertex and an array i
v1 of length NC whi
h 
ontains, in its jth lo
ation,the lo
ation in i
v where storage for the verti
es in 
ell j begins. Thus thepoints zj in 
ell i have their indi
es j stored in i
v between addresses i
v1(i)and i
v1(i+1)�1 in
lusive; we set i
v1(NC +1) = N +1 for 
onvenien
e. Thisdata stru
ture 
an be 
onstru
ted in O(N) work. An example is shown in Figure7. Now we redu
e the 
ost of minimizing t(z) as follows. Say we are �ndingminimizers of t(z) outside zizj . Find the 
ells i1 and i2 whi
h 
ontain zi and zj(usually i1 = i2) and 
onstru
t the smallest re
tangular union R of 
ells in the
ell stru
ture whi
h 
ontains both i1 and i2. Rather than minimizing t(z) overall points, we now �nd only those minimizers of t(z) whi
h lie in R.If R 
ontains no points outside zizj , we revert to M
Lain's pro
edure for thisedge. If there is a point in R on the 
orre
t side of zizj , then we will �nd aminimizer zk of t(z) over Z \ R. This point may not be the global minimizer,be
ause R may not 
ontain the latter. But anyminimizer of t(z) over all N pointsof Z will lie inside the 
ir
um
ir
le C of zizjzk. In pra
ti
e, the minimizer of t(z)over R will be the global minimizer almost all the time, if the point distributionis reasonably uniform.Hen
e if C � R, we have already found the minimizer of t(z) over Z. Other-wise, we expand R until it 
ontains C, and sear
h the new R. This produ
es all14
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ell data stru
ture.
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the global minimizers of t(z).If more than one minimizer is found, we must 
he
k previous triangles toavoid degenera
y. The new triangle 
an 
ross only triangles whi
h have all threeverti
es on C. To 
he
k these triangles eÆ
iently, we need pointers from thepoints of Z to triangles having them as verti
es. This requires 3NT � 6N integerlo
ations, but ea
h point belongs to six triangles only on the average. Hen
e thestorage method must allow for variations in the length of triangle storage frompoint to point, and this stru
ture must be 
onstru
ted simultaneously with thetriangulation rather than all at on
e.This situation is ideal for the use of a a linked list. This is a single arrayivt(i; j), where i = 1 to 2 and j = 1 to 3NT , with the triangle indi
es fora given point stored in a 
hain of non-
ontiguous lo
ations, with ea
h triangleindex stored in ivt(1; j) and ivt(2; j) o

upied by a pointer to the next triangleindex. To get started, a triangle Tk to whi
h zj belongs is stored in ivt(1; j) for1 � j � N ; then ivt(2; j) points to the lo
ation in ivt where the index of thelast triangle (in order of 
reation) to whi
h zj belongs is stored. If this lo
ation isk and l = ivt(1; k) then Tl is the last triangle to whi
h zj belongs and ivt(2; k)is the lo
ation in ivt where the next to last triangle index for zj is stored. Thestorage pro
eeds ba
kwards in this way until the end of the triangle list for thejth point is signaled by a �1 in ivt(2; n) for some n. We add a triangle to thelist of zj simply by resetting the end link ivt(2; j) and adding the triangle to thenext empty lo
ation at the end of ivt. See Figure 8 for an example of the linkedlist.Given this storage arrangement, we 
an easily look up all triangles havingzk as a vertex, 
he
k if all three verti
es lie on the 
ir
um
ir
le, and 
he
k fordegenera
y if ne
essary.The linked list also speeds up the se
ond O(N) stage of the triangle addi-tion pro
ess; 
he
k all previously 
onstru
ted triangles and �nd those sharing a
ommon edge with the new triangle, to add to itt. This is easy to speed up,be
ause ivt points from verti
es to triangles 
ontaining them; hen
e we 
an �ndall the desired triangles immediately in time proportional to their number andindependent of N .Finally, we update the pointers and pro
eed to the next edge of the growingtriangulation. When there are no more edges to be augmented, the triangulationis 
on
luded.4.5 An adaptive 
ell methodThe uniform 
ell method is highly eÆ
ient when the points are reasonably uni-form. Unfortunately, in appli
ations, we do not have uniform points. Even forinterpolation of a fun
tion, we want more data points where the fun
tion variesmore rapidly [37℄. Pra
ti
al situations often lead to highly nonuniform pointdistributions, for whi
h both numeri
al experiments and theory indi
ate that theuniform 
ell method requires 
lose to its worst-
ase O(N2) time. Even worse, the16
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orresponding linked list of vertex-to-triangle pointers.uniform method 
an be fooled simply by adding a few outlying points at a largedistan
e from the rest of the points; it will then 
onstru
t a 
ell stru
ture whi
his mu
h too 
oarse, and the only remedy for this is adaptivity.In this se
tion, we present an adaptive 
ell method whi
h runs mu
h fasterthan the uniform method on nonuniform point distributions. The idea is to sortpoints into 
ells of varying size, with no more than s points per 
ell. This isdone by re
ursively subdividing the re
tangle C until no 
ell 
ontains more thans points.At the end of the 
onstru
tion, we have partitioned C into NC sub
ells ofvarying sizes, as shown in Figure 9 for a small example with s = 3 and NC = 22.For ea
h 
ell i, we store a) data on its spatial lo
ation and b) the indi
es j ofthe points zj lying in 
ell i. Part a) is a
hieved by storing three pointers per
ell, arranged in a 3�NC array i
xy(n; i); L = i
xy(3; i) is the level of i in thesense that 
ell i is 2�L times smaller in ea
h dimension than the original 
ell C.Two more pointers nx = i
xy(1; i) and ny = i
xy(2; i) give the spatial lo
ationof the 
ell, as if it were part of a regular grid on C 
omposed entirely of 
ells oflevel L; its lower left 
orner is at the point (x = ax + nx � hx; y = ay + ny � hy).Here C = [ax; bx℄ � [ay; by℄ while the sides of i have lengths hx = 2�L(bx � ax)and hy = 2�L(by � ay) respe
tively. Part b) is a
hieved by storing a list i
v ofpoints lying in ea
h 
ell. Additional pointers i
v1 and i
v2 give the addressesin i
v of the beginning and end of the list of points in 
ell i. Thus 
ell i 
ontains17



(xj ; yj), where j = i
v(k) for k = i
v1(i); : : : ; i
v2(i).
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Figure 9: Adaptive 
ell stru
ture with no more than three points per 
ell.The 
ells are sorted lexi
ographi
ally within ea
h level, and arranged by level.Thus we use also pointers il
1 su
h that all the 
ells on level L are given byi = il
1(L); il
1(L) + 1; : : : ; il
1(L + 1) � 1. The purpose of lexi
ographi
ordering on ea
h level is to speed up the operation of sear
hing for a 
ell withgiven values of nx, ny and L; we simply 
arry out a binary sear
h of i
xy(1; i)and i
xy(2; i) for i between il
1(L) and il
1(L + 1) � 1. This operation isimportant when we 
onstru
t the list of neighbors of a given 
ell or when we �ndall 
ells whi
h interse
t a given geometri
 obje
t. This data stru
ture is similarto that used in [12, 48℄.Next we des
ribe the 
onstru
tion of the adaptive 
ell stru
ture. We beginwith the re
tangle C and subdivide it into four 
ells by bise
ting ea
h 
oordinate.We assign ea
h point zj to the 
ell in whi
h it lies. These 
ells 
onstitute level 1of the stru
ture. To 
onstru
t level 2, we run through 
ells 
reated at level 1 andbise
t any whi
h 
ontain more than s points, reassigning points to the sub
ellsin whi
h they lie. The resulting 
ells are added to the end of i
xy, i
v, i
v1and i
v2 in the order in whi
h they were formed. Cells whi
h are subdividedare marked for deletion, and when the level 2 
ells have all been 
reated, the18



subdivided 
ells from level 1 are deleted and storage is reassigned. Thus empty
ells are kept but subdivided 
ells are eliminated; the result is a partition of Cinto 
ells with disjoint interiors. After deletion, pointers il
1 are made. Thealgorithm now pro
eeds re
ursively one level at a time. At ea
h level, the 
ells
reated in the previous level are subdivided where ne
essary, and the new 
ellsassigned numbers i
xy and storage in i
v1 and i
v2. Subdivided 
ells aredeleted and storage moved up.When this pro
ess terminates, either be
ause the maximum number of levelsis rea
hed or be
ause no 
ell has more than s points in it, the 
ells on ea
h levelare sorted and rearranged in lexi
ographi
 order. Finally we make pointers iv
from points to 
ells, showing whi
h 
ell a point lies in, and we are done.We need to 
arry out two primitive operations on this data stru
ture. First,we have to �nd the nearest neighbor 
ells of a given 
ell i, all 
ells having a pointin 
ommon with i. If all the 
ells were the same size, the spatial lo
ation numbersof the desired 
ells would be obtained from i
xy(n; i) by adding 0, �1 or +1 toi
xy(1; i) and i
xy(2; i). A sear
h through the 
ells on level L = i
xy(3; i)would produ
e them. The 
ells are not all the same size, so we must look on alllevels for neighbors.For example, suppose we are looking for the lower left 
orner neighbor of i. Webegin on the same level as i by setting nx = i
xy(1; i)�1 and ny = i
xy(2; i)�1.These are the values i
xy(1; j) and i
xy(2; j) would have if a 
ell j of the samesize as i o

upied the lower left 
orner position. Thus we sear
h through 
ells onlevel L = i
xy(3; i) for a 
ell with numbers nx and ny. If the sear
h su

eeds,we are done. If it fails, we must look for a larger or smaller 
ell. A larger 
ell iseasier to �nd in general, so we set nx  bnx=2
, ny  bny=2
 and L  L � 1.and sear
h level L for the 
ell (nx; ny). This pro
edure is repeated until eitherwe �nd the 
ell or we rea
h the top level. If the latter o

urs, we need a smaller
ell. The 
orners and sides di�er here be
ause on the 
orners we are looking fora single 
ell, while on the sides we are looking for several smaller 
ells. On thelower left 
orner, for example, we seek a smaller 
ell by putting nx  2 � nx + 1,ny  2�ny+1, L L+1, and sear
hing on level L, then repeating this pro
edureas needed until the 
ell is found.On the sides, the sear
h for smaller neighbors is slightly more 
ompli
ated.We begin, say on the left side, with nx  nx � 1 and ny  ny. If no 
ell onlevel L with numbers (nx; ny) exists, then we look for smaller neighbors, possiblyseveral of them. First, we subdivide (nx; ny) into four 
ells and sta
k the right-hand two 
ells. The left two 
ells are dis
arded. We now run through the sta
k,sear
hing for ea
h 
ell on the level where it should exist. If found, it is addedto the neighbor list and we 
ontinue with the next sta
k entry. If no su
h 
ellexists, it is subdivided, the right-hand two 
ells are sta
ked and the left-handones dis
arded, and we 
ontinue with the next sta
k entry. When this pro
essterminates, we have the list of neighbors.Another operation we need to 
arry out with this data stru
ture is to �ndall 
ells whi
h interse
t a given geometri
al obje
t 
 su
h as a square or the19



interse
tion of a 
ir
le with a half-spa
e. A fast method uses re
ursion: Sta
kthe four top-level 
ells. Examine ea
h for existen
e and interse
tion; if it existsand interse
ts 
 it is added to our list, if it does not interse
t it is dis
arded, andif it does not exist but interse
ts, then it is subdivided, its sub
ells are sta
ked,and we pro
eed.An adaptive 
ell method for Delaunay triangulation is now a straightforwardextension of the uniform method. Only the sear
h strategy 
hanges, as follows.The �rst step is to sear
h the 
ell or the two 
ells 
ontaining the verti
es ziand zj of the 
urrent edge. If zk minimizes t(z) over this sear
h area, we 
omputethe 
ir
um
ir
le of zizjzk and test whether it is 
ontained in the sear
h area. Ifit is, we have found the global minimizer and 
an pro
eed. Otherwise, we mustenlarge the sear
h area.Our next step is then to �nd the nearest neighbor 
ells of the one or two
ells of the �rst sear
h area and take their union as the se
ond sear
h area. Weexpe
t a single layer of nearest neighbors to be suÆ
ient in most 
ases be
ausethey will \s
reen" the 
urrent edge from further points. The se
ond sear
h 
anagain have three out
omes. First suppose no point has yet been found whenthe se
ond sear
h terminates. Then it is quite likely but not 
ertain that zizj ison the boundary of the 
onvex hull of Z; thus we �nd all 
ells interse
ting thehalf-spa
e outside zizj and take their union as the third sear
h area. If, on theother hand, we have a lo
al minimizer zk, let C be the 
ir
um
ir
le of zi, zj andzk. If the interior of C is 
ontained in the se
ond sear
h area, we have found theglobal minimizer and 
an pro
eed.Otherwise, we must enlarge our s
ope to the third and �nal sear
h area, 
om-prising all 
ells whi
h interse
t C. After sear
hing the third sear
h area, we haveeither found all global minimizers of t(z) whi
h lie outside zizj , or determinedthat zizj lies on the boundary of the 
onvex hull of Z, and 
an pro
eed.A 
onsiderable speedup is obtained by pre
omputing all neighbors of nonempty
ells and storing them. This eliminates the ne
essity of repeatedly �nding theneighbors of 
ells, a 
onsiderable savings when s is large.4.6 Numeri
al resultsWe have implemented the three algorithms des
ribed in this se
tion in Fortranand tested their performan
e on many sets of data points. Results from onlyone set of test data will be reported here. The data 
onsists of four sets of N=4normally distributed points, 
entered at four points in [0; 1℄2 and with varian
esgiven by � = 0:15; 0:15=7; 0:15=72 ; 0:15=73 . An example with N = 800 is shownin Figure 10, where the fourth set of points is inside the third set and thereforeinvisible.Table 1 reports the results of triangulating this set of data points, with Nranging from 100 to 51,200. The 
olumn headings have the following meanings;N is the number of data points. 20



Figure 10: Sample Delaunay triangulation of N = 800 nonuniform points.
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NT is the number of triangles produ
ed.Tq is the CPU time in se
onds required by our implementation of M
Lain'smethod, estimated by extrapolation for N > 10; 000.Tu is the CPU time required by the uniform 
ell method, with NC = (bpN
)2
ells, estimated by extrapolation for N > 20; 000.Ta is the CPU time required by the adaptive 
ell method, using s = 25.NC is the number of 
ells 
reated by the adaptive method.CT = 104 �Ta=N logN is the s
aled CPU time 
onstant for the adaptive method.L is the highest level used in 
onstru
tion of the adaptive 
ell stru
ture.We 
an draw the following 
on
lusions from this table; �rst, both the uniformand adaptive methods are faster than the quadrati
 method as soon as N �200. Thus they are to be preferred for large problems if suÆ
ient memory isavailable. The uniform method requires about 26N integer memory in additionto 2N real storage for x and y; about 12N of the integer storage is used justto store the triangulation. Thus the uniform method uses only about twi
e theminimum amount of memory. The adaptive method typi
ally has similar storagerequirements, despite the larger amount of information it stores, be
ause wetake bigger 
ells and hen
e have fewer of them. It is diÆ
ult to give a tightupper bound for its memory usage, espe
ially when the number of points per 
ellis 
hosen very small. However, on this example, with neighbor lists stored, itrequired about 4N additional integer lo
ations for large N .Se
ond, on these nonuniformly distributed points, the uniform method runsqui
kly when N is small, but degenerates to O(N2) performan
e when N getslarge. This is to be expe
ted. The adaptive method, on the other hand, displaysa gratifyingly regular O(N logN) performan
e throughout the whole range of N .It beats the uniform method 
onsistently when N � 400, and outperforms thequadrati
 method as soon as N � 200. The 
onstan
y (and even slight de
rease)of CT indi
ates that the adaptive 
ell method is O(N logN) or better, even onthese extremely nonuniform point distributions.5 Fast velo
ity evaluationWe now 
onsider the most expensive part of our method, the velo
ity evaluation.Given ! pie
ewise linear on the triangulation T , we need to evaluate the velo
ityu(z) = Z K(z � z0)!(z0)dz0 (5.1)at ea
h vertex zj of T . Here we omit a 
onstant fa
tor and ignore 
onjugationfor simpli
ity, so K(z) = 1=z, and we integrate over T , the support of !, withrespe
t to dz0 = dx0dy0. 22



N Tq Tu Ta CT NC L100 0.14 0.11 0.20 4.3 28 8200 0.54 0.32 0.44 4.2 40 10400 2.1 1.1 0.97 4.0 58 10800 8.8 3.9 2.1 3.9 109 111600 38 13.3 4.4 3.7 178 123200 136 51 9.2 3.6 319 136400 566 198 19.6 3.5 583 1412800 2267* 779 41 3.4 1144 1425600 9068* 3118* 82 3.2 2275 1551200 36274* 12475* 169 3.1 4426 16Table 1: Timings for 
onstru
ting the Delaunay triangulation of N nonuniformlydistributed points, using the quadrati
, uniform and adaptive 
ell methods. As-terisks denote timings obtained by extrapolation for the quadrati
 and uniformmethods.Dire
tly evaluating u at the N verti
es of T via (2.12) 
osts O(N2) work witha large 
onstant. We now present a fast algorithm whi
h requires O(N4=3 log �)time to evaluate N values of u within an error toleran
e �, when T is quasi-uniform (when there are upper and lower bounds proportional to N on the num-ber of triangles in any �xed area). Our algorithm is based on the fast multipolemethod [12℄, but di�ers in forming moments of a 
ontinuous sour
e rather thanpoint 
harges.5.1 SplittingOur �rst step is to split the velo
ity u at ea
h vertex into lo
al and far-�eld partsuL and uF . To do this, let C0 be a re
tangle 
ontaining T and divide C0 intoNC square 
ells C of equal side length, say 2h. Fix a vertex z = zj . Thenu(z) = XC ZC K(z � z0)!(z0)dz0= uL(z) + uF (z) (5.2)where uL is the sum of those terms due to 
ells C within r 
ells of z, and uF isthe remainder (see Figure 11). ThusuF (z) = Xd(z;C)>(2r+1)h ZC K(z � z0)!(z0)dz0 (5.3)where the distan
e from a 
ell C (with 
enter 
) to the point z is de�ned byd(z; C) = max (j<(z � 
)j; j=(z � 
)j) : (5.4)23



Note that !(z0) is pie
ewise linear on the triangulation T ; thus the integralover ea
h 
ell C is a sum of integrals over subtriangles of triangles interse
ting C.The most eÆ
ient way to evaluate these integrals is to 
arry out a preliminarystep in whi
h the triangulation is re�ned wherever ne
essary to make ea
h trianglelie 
ompletely within a single 
ell C. This re�nement is implemented re
ursively;we sta
k all triangles, then 
ut ea
h one whi
h 
rosses a 
ell boundary and putthe resulting pair of triangles ba
k on the sta
k. When the sta
k is exhausted,no triangle 
rosses a 
ell boundary.
Bq b

?62h � -(2r + 1) � 2h
q z Cq 

Near Field Far Field

Figure 11: Cells and 
enters for fast velo
ity evaluation, with r = 1.5.2 Laurent expansion of uFNow 
onsider the far-�eld. Let C be a given 
ell (with 
enter 
) 
ontributing tothe far-�eld velo
ity evaluated at point z. Then for ea
h z0 2 C, we 
an expandK about 
 in a Laurent series:K(z � z0) = 1z � z0= 1z � 
 1Xn=0�z0 � 
z � 
 �n : (5.5)How well does this series 
onverge? By elementary geometry, we have����z0 � 
z � 
 ���� � p22r + 1 = �: (5.6)24



(Typi
ally r = 1 and � = 0:4714.) Hen
e the error (relative to 1=(z � 
)) intrun
ating the Laurent series of K after the pth term is bounded byEp = ������ 1Xn=p+1�z0 � 
z � 
 �n������ � �p+11� � � �p (5.7)sin
e � � 1=2. If r = 1, for example, we 
an guarantee Ep � 10�k with p � 3ksin
e �3 � 0:105. In any 
ase, we now assume an error toleran
e � has beenspe
i�ed, and r, h and p are 
hosen to make Ep � �.Then we have, within error �j!j1 = � R j!j,uF (z) = Xd(z;C)>(2r+1)h ZC pXn=0 1z � 
 �z0 � 
z � 
 �n !(z0)dz0= Xd(z;C)>(2r+1)h pXn=0Cn(z � 
)�n�1 (5.8)where the 
oeÆ
ients Cn for 
ell C are de�ned byCn = ZC(z0 � 
)n!(z0)dz0: (5.9)Sin
e ! is pie
ewise linear and we subdivided the triangulation where ne
essaryto make it 
ompatible with the 
ell stru
ture, we haveCn = XT�C Tn (5.10)where Tn = ZT (z0 � 
)n!(z0)dz0 (5.11)is the moment of a linear fun
tion over a single triangle T . Clearly we need onlyevaluate the modi�ed momentsT��n = ZT (z � 
)nn! x�y�dxdy (5.12)where �+ � � 1, and we have added a fa
tor of n! to simplify later formulas.Let's write z� 
 = ax+ by� 
 for the time being, where a and b are arbitrary.Then after evaluating T 00n , we 
an get the rest by di�erentiation:T��n = � ��a�� � ��b�� T 00n+�+� : (5.13)To evaluate T 00n , we apply the Divergen
e Theorem to getT 00n = ZT r � Fdxdy = Z�T F � �ds: (5.14)25



Here znn! = r � F = r �  zn+1a(n+ 1)! ; 0! = r �  0; zn+1b(n+ 1)!! (5.15)and �ds = (�yk;��xk)d�; 0 � � � 1 (5.16)if zk = xk + iyk are the three verti
es of T . Here � is the forward di�eren
eoperator �fk = fk+1 � fk with respe
t to the index k = 1; 2; 3 and we putz4 = z1. It follows thatT 00n = 3Xk=1 �yka�zk� zn+2k(n+ 2)!! (5.17)= 3Xk=1 ��xkb�zk � zn+2k(n+ 2)!! (5.18)To simplify the 
al
ulation of T 10n and T 01n , we di�erentiate (5.17) with respe
tto b and (5.18) with respe
t to a. Finally, we set a = 1 and b = i to getT 00n = i2 3Xk=1 �zk�zk� zn+2k(n+ 2)!! (5.19)T 10n = i 3Xk=1�(�xk)2(�zk)2� zn+3k(n+ 3)!!+ �xk�zk� xkzn+2k(n+ 2)!! (5.20)T 01n = 3Xk=1�(�yk)2(�zk)2� zn+3k(n+ 3)!!+ �yk�zk� ykzn+2k(n+ 2)!! : (5.21)Note as a 
he
k that T 10n + iT 01n = (n+ 1)T 00n+1. Note also that this 
al
ulationworks for any polygon, not just a triangle.5.3 An O(N3=2 log �) algorithmSeparation of lo
al intera
tions from the far-�eld and Laurent expansion of thelatter leads already to algorithms whi
h 
ost O(N3=2 log �) time with N quasi-uniformly distributed triangles and an error toleran
e �. To 
onstru
t su
h analgorithm, divide T into NC 
ells C of side length 2h, ea
h 
ontaining O(N=NC )triangles (we 
an ignore preliminary subdivision as it only a�e
ts the 
onstant)and 
hoose parameters r and p = O(log �) to make Ep � �. The number NCwill be 
hosen later to a
hieve maximal eÆ
ien
y. Then evaluate uL(zj), for ea
hvertex zj , dire
tly in O(N=NC ) time per vertex or O(N2=NC) total time. Forthe far-�eld, form Laurent 
oeÆ
ients for ea
h 
ell in O(pN) time (sin
e ea
htriangle 
ontributes to p 
oeÆ
ients) and evaluate O(NC) p-term Laurent seriesat N points in O(pNNC) time. Choosing NC = O(N1=2) minimizes the totaltime whi
h is then O(N3=2p) where p = O(log �). Thus this gives an O(N3=2 log �)algorithm with N quasi-uniformly distributed triangles.26



5.4 An O(N4=3 log �) algorithmWe next add a further observation whi
h redu
es the time to O(N4=3 log �) withN quasi-uniformly distributed triangles. The observation is that the far-�eld issmooth, hen
e well approximated by a Taylor series in ea
h 
ell. The Taylor series
an be 
omputed by summing over the far-�eld 
ontributions from ea
h far-�eld
ell, then evaluated on
e and for all at ea
h vertex. This further de
oupling ofsour
es from points of evaluation leads to an O(N4=3 log �) algorithm.Thus 
onsider a 
ell B, with 
enter b, 
ontaining triangle verti
es zj where wewish to evaluate uF (z). Ea
h term in ea
h Laurent series has a Taylor expansion1(z � 
)n+1 = 1Xm=0 n+mm !(b� 
)�n�m�1(b� z)m (5.22)about the 
ell 
enter b. Thus,uF (z) = 1Xm=0Bm(b� z)m (5.23)where the Taylor 
oeÆ
ient Bm in 
ell B is given byBm = 1m!XC (b� 
)�m pXn=0(n+m)!(b� 
)�n�1Cnn! : (5.24)The error in trun
ating the Taylor series after p terms is bounded byEp = ������ 1Xm=p+1Bm(b� z)m������ (5.25)� 1Xm=p+1 2j!j1(2(r + 1)h)�m�1(p2h)m (5.26)� j!j1(r + 1)h�p (5.27)with � = 1=(p2(r + 1)). Clearly this 
an be made � � by 
hoi
e of p on
e r andh are �xed, and p = O(log �).This transformation leads to an O(N4=3 log �) algorithm as follows. As before,we divide T into NC 
ells ea
h with O(N=NC) triangles. The lo
al part 
ostsO(N2=NC) as before. The far-�eld part 
osts O(pN) to form Laurent 
oeÆ
ients,O(N2Cp2) to 
onvert Laurent to Taylor series and O(Np) to evaluate Taylor series.Hen
e NC = O((N=p)2=3) gives the minimum time and it is O(N4=3j log �j2=3) =O(N4=3 log �).5.5 Re�nementsThere are three or four re�nements to the �nal algorithm whi
h 
olle
tively pro-du
e a fa
tor of three or four speedup for large N , and one whi
h makes thealgorithm O(N logN log �) for large N .27



First and most trivially, empty 
ells 
ontaining zero vorti
ity should be ig-nored in forming moments, and the powers of verti
es required to form andtransform the moments should be pre
omputed and stored.Somewhat less trivially, we observe that the far-�eld be
omes smoother atlonger distan
es. Thus more distant 
ells need 
ontribute to fewer terms inLaurent or Taylor series. If we need p0 terms for the nearest far-�eld 
ells toget error �, then a 
ell at distan
e (2ih; 2jh) from the evaluation 
ell need only
ontribute to p 
oeÆ
ients wherep = p0 log((2r + 1)2h2=2)log(((2i � 1)2 + (2j � 1)2)h2=2) : (5.28)This re�nement usually speeds up large 
omputations by a fa
tor of 2.Another re�nement 
on
erns the preliminary subdivision of triangles to makethem lie pre
isely in 
ells. Clearly we want to 
ut as few triangles as possible,sin
e the 
ost of the lo
al part in
reases with the number of triangles. Also,it is not ne
essary to have triangles 
ompletely 
ontained in 
ells if they arenearly 
ontained. Thus we spe
ify a distan
e q by whi
h a triangle may extendoutside a 
ell boundary, so a triangle must go 2qh outside to be 
ut. Typi
al 
uttriangulations for various values of q are shown in Figure 12. The error boundswill be a�e
ted by q sin
e the far-�eld 
an 
ome nearer, but in pra
ti
e even su
hlarge values as q = 0:32 produ
e little or no 
hange in the error. This is be
ausemost triangles are far away, where q is irrelevant. The CPU time, however, 
anbe drasti
ally redu
ed by taking q large, be
ause many fewer lo
al intera
tionsneed be 
omputed. For example, the number of triangles is 
ut in half by takingq = 0:32 instead of q = 0:02, with no in
rease in the error. This leads to a fa
torof two speedup in the lo
al intera
tions.The algorithm requires a 
hoi
e of 
ell size, and its speed depends on the
hoi
e. Su
h a parameter is diÆ
ult to estimate a priori; 
ells too small requiretoo many subdivisions, and too many Laurent-Taylor 
onversions, while 
ells toolarge require too mu
h lo
al work. The real remedy for this is adaptivity, asused in our Delaunay triangulation method or [12, 48℄, but this 
ompli
ates thehandling of Taylor expansions. We implemented instead a simple method for
hoosing 
ell sizes, based on minimizing the CPU time at ea
h step. We keepan in
rement i = �1, and do nx  nx + i at ea
h step, where nx is the numberof 
ells in the x-dire
tion. The number of 
ells in the y-dire
tion is 
hosen tokeep the 
ells approximately square. The in
rement i 
hanges sign wheneverthe CPU time required for the 
urrent fast velo
ity evaluation ex
eeds the CPUtime required for the last one. This 
hoi
e of parameter keeps us within one
ell of a lo
al minimum of CPU time, even if we start the 
omputation with thewrong number of 
ells. It also adapts automati
ally to odd-shaped distributionsof vorti
ity.We also observe that the algorithm 
an easily be made to run inO(N logN log �)time on quasi-uniform triangulations. To do this, we simply observe that the for-mula (5.24) whi
h 
onverts Laurent to Taylor 
oeÆ
ients at a 
ost of O(N2Cp2)28



Figure 12: The original and (alternate 
ells of the) subdivided triangulationwith N = 500 and q = 0:02, 0.08 and 0.32. The subdivided triangulations have1146, 750 and 507 verti
es respe
tively.
29



is a 
orrelation whi
h 
an be 
omputed in O(NC logNCp log p) with the FFT.Then 
hoosing NC = O(N) gives an O(N logN log �) algorithm. However, webelieve the overhead of this approa
h would be large enough that little speedupwould result in pra
ti
al problems; hen
e we have not implemented it. It wouldbe important in three-dimensional problems.Finally, the restri
tion to quasi-uniform triangulations 
an be removed bymaking the algorithm adaptive, exa
tly as in [12℄. In our 
omputations, however,we did not implement an adaptive method be
ause of its 
omplexity.5.6 Numeri
al resultsWe now present numeri
al results whi
h show that our algorithm a
hieves 
on-siderable speedups over dire
t evaluation. Table 2 gives the result of fast anddire
t velo
ity evaluations for uniformly distributed random vorti
es in [�1; 1℄2with random ! values uniformly distributed on [�1; 1℄. We take q = 0:2 and� = 10�3, whi
h requires p = 10 with r = 1. The other numeri
al parameters aregiven in the table along with the times Td and Tf for dire
t and fast evaluationand the maximum relative error Ef in fast evaluation. Here N is the number ofverti
es, NT the number of triangles, and N 0T is the number of triangles after thesubdivision of the triangulation required to put ea
h triangles within q of lyingin a single 
ell.N NT Td Tf 100Tf=N4=3 Ef pNC N 0T100 183 2.31 2.36 0.51 0:48 � 10�6 4 243200 378 9.63 4.88 0.42 0:72 � 10�6 6 493400 773 39.5 10.9 0.37 0:11 � 10�5 9 1053800 1566 161 24.3 0.33 0:90 � 10�6 12 20201600 3161 658 55.5 0.30 0:48 � 10�6 15 38403200 6352 2655 122 0.26 0:54 � 10�6 20 73776400 12744 10683 271 0.23 0:77 � 10�6 27 1440512800 25529 42732* 627 0.21 0:14 � 10�5 34 2757625600 51115 170928* 1453 0.19 0:92 � 10�6 45 5419751200 102295 683712* 3431 0.18 0:93 � 10�6 59 106686Table 2: Timings for fast and dire
t velo
ity evaluation methods with NT trian-gles. Asterisks denote timings obtained by extrapolation for the dire
t method.We observe that the fast method breaks even for about N = 100 and a
hievesa speedup of about 200 when N = 51200. For N � 1000, we get a tenfoldspeedup. The fast velo
ity evaluation is slightly faster than O(N4=3) in pra
ti
e,and the error is mu
h smaller than the error bound.30



6 Initial triangulationWe must address one more 
omputational issue, in order to have a robust method:where do we put the verti
es initially? Say we are given an initial vorti
ity�eld; smooth, dis
ontinuous, or worse. Then we should pla
e the verti
es zjto minimize the error in representing ! by a pie
ewise linear fun
tion on theDelaunay triangulation of the verti
es. To do this, we use adaptive re�nement ofa 
oarse initial triangulation.Thus we begin with a uniform square mesh 
overing the support of !, and
ut ea
h square into a pair of isos
eles right triangles. This is our 
oarse ini-tial triangulation, whi
h we now re�ne as follows. We put all the triangles ona sta
k, and sweep through the sta
k, testing whether ea
h triangle needs to besubdivided. To test a triangle, we �rst evaluate ! at the node whi
h would beprodu
ed by subdividing the triangle. We also evaluate the linear interpolantat the same node, and 
ompute the di�eren
e between the two values. If ! iswithin a toleran
e � (relative to the maximum value of ! so far en
ountered) ofthe interpolant at the new node, the triangle is a

epted. Otherwise, the trian-gle is subdivided by Mit
hell's newest-node bise
tion method [32℄, maintaining
ompatibility by subdividing neighbors as ne
essary, and the new triangles aresta
ked. We then repeat the pro
edure with the next triangle in the sta
k, untilthe sta
k is �nished. Using the maximum value of j!j so far en
ountered produ
esa triangulation on whi
h the error is likely to be smaller than �j!j1 rather thanlarger, though of 
ourse any method 
an be fooled into a

epting a substandardtriangle with errors whi
h are a
tually too large.Mit
hell's subdivision pro
edure begins by assigning one vertex of ea
h trian-gle in the initial triangulation as a \peak," and the side opposite the peak as thebase. (In our 
ase, the initial triangulation 
onsists of isos
eles right trianglesand the peak is the vertex at the right angle, opposite the hypotenuse.) Then itsubdivides triangles by dividing the base and the neighboring triangle oppositethe peak, with the new vertex being assigned as the peak of ea
h of the fournew triangles 
reated by the subdivision. Compatibility is maintained by alwayssubdividing 
ompatible pairs of triangles; if the neighbor opposite the peak isnot 
ompatibly subdivisible, it is itself divided re
ursively until 
ompatibility ismaintained: See Figure 13. Be
ause we begin with isos
eles right triangles, there
ursion is always �nite. The fa
t that we subdivide triangles 
ompatibly givesa slight safety fa
tor, be
ause even if a triangle is wrongly a

epted, it will stillbe subdivided if one of its neighbors with peak opposite it is subdivided.7 Numeri
al resultsIn this se
tion we present numeri
al results that show the a

ura
y, eÆ
ien
yand robustness of the method. Our results show that the method maintains itsa

ura
y for very long periods of time, on simple and 
omplex test 
ases. Itis 
exible and robust, and 
an 
ompute even dis
ontinuous solutions, with no31
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agged for subdivision, but the peak (
ir
le) of its neighbor T2 does notlie opposite T1. Hen
e we must re�ne T2 and its neighbor T3. Similarly, thepeak of T3 does not lie opposite T2, so we must re�ne T4 and T3. The peakof T4 lies opposite T3, so the re
ursion stops here. We then divide trianglesba
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numeri
al parameters ex
ept the resolution and time step, and little numeri
aldi�usion.First, we dis
uss the norms and 
onserved quantities we plan to measure.There are six reasonable quantities to measure, the L1, L2 and L1 errors in thevelo
ity and the vorti
ity, and for smooth solutions the results are essentiallyindependent of the 
hoi
e of norm. Sin
e we present numeri
al results withnonsmooth as well as smooth vorti
ity �elds, we prefer the errors in velo
ity, asmoother quantity and a primitive variable with dire
t physi
al meaning. Theerror in velo
ity is appropriate for 
omparing our method to other methods, sin
ethe representation of the vorti
ity in other methods is quite di�erent. The L1norm seems more appropriate than L1 or L2, sin
e the velo
ity �eld of a singlevortex blob is not in L1 or L2, so these norms depend on the support of the grid,and not only on h, even if the vorti
ity has 
ompa
t support. Thus our mainmeasure of error is the relative L1 norm of the velo
ity errorEu � maxz ju(z; t) � uh(z; t)jmaxz ju(z; t)jwhere u is the exa
t and uh the 
omputed velo
ity �eld. The maximum over z isapproximated by the larger of the maximum over the verti
es and the maximumerror in the linear interpolant of uh at one random point per triangle.There are also two useful 
onserved quantities whi
h we 
he
k, the 
ir
ulation� := ZIR2 !(z; t) dz (7.1)and the se
ond moment of the vorti
ityM2 := ZIR2 jzj2!(z; t) dz: (7.2)Conservation of 
ir
ulation follows from 
onservation of vorti
ity along the stream-lines; ZIR2 !(z; t) dz = ZIR2 !(z(�; t); t) d� = ZIR2 !0(�) d�:The Ja
obian j�z=��j = 1 be
ause the 
ow is in
ompressible. Conservation ofthe se
ond moment is proved for example on page 528 of [3℄. The se
ond momentis a good measure of numeri
al di�usion, be
ause physi
al di�usion makes these
ond moment non
onstant in time.7.1 Comparison with vortex-blob methodsIn a vortex-blob method the velo
ity �eld is 
omputed using (2.11). The 
on-vergen
e properties of su
h a method depend on the blob fun
tion. Several 
on-vergen
e results for vortex-blob methods are given in [1℄. Here we brie
y re
allsome of the main results. Let u(z; t) be the exa
t velo
ity �eld at position z and33



time t, and uh;Æ(z; t) the velo
ity �eld produ
ed by a vortex-blob method of gridsize h and blob size Æ. The dis
rete L2 error, or \
onsisten
y error" is de�ned bye2(t) = (Xi ju(zi; t)� uh;Æ(zi; t)j2h2)1=2 ;where zi(t) is the exa
t position of the i-th parti
le of 
uid at time t. It 
anbe shown that, for a �nite time interval T and for smooth initial 
onditions, thefollowing estimate holds:max0�t�T e2(t) � C  Æp + �hÆ �L Æ! :Here the 
onstant C depends on the initial 
ondition and on T , and the 
onstantsp and L are determined by the blob fun
tion. For Gaussian blob fun
tions,L =1, so with Æ = hq, the error estimate be
omesmax0�t�T e2(t) � Chpq;where p is the order of the blob fun
tion. In theory it is possible to obtain anarbitrarily high order of 
onvergen
e by 
hoosing p large and q 
lose to one. Ex-perien
e shows, however, that for p large and q 
lose to one there is a 
onsiderableloss of a

ura
y after a short time. We used the Gaussian blob fun
tion of orderp = 4 [34℄ g(r) = 1� (2e�r2 � 12e�r2=2);where r = jzj.As a test problem we 
onsider Perlman's test 
ase [34℄ with vorti
ity!(z) = ( (1� jzj2)7 jzj � 10 jzj > 1 : (7.3)The 
orresponding velo
ity �eld is given byu(z) = f(jzj) y�x ! ; (7.4)where f(r) = 8><>: � 116r2 (1� (1� r2)8) r � 1� 116r2 r > 1 :The 
ow is radially symmetri
 and rotates about the origin. The parti
les nearthe origin 
omplete one rotation at time t = 4�, while the parti
les on jzj = 1
omplete one rotation at t = 32�. 34



At time t = 0 we pla
e the parti
les on a regular square grid of size h = 0:4,0.2, 0.1 or 0.05, inside a 
ir
le of radius R = 1:2, and set !i = !(zi) where ! isde�ned by (7.3). The system of ODEs_zi = uÆ(zi; t)is integrated up to t = 32� by a Runge-Kutta method of order 4, with time step�t = 0:05. The results reported in Figure 14 show that large q gives a higherorder of 
onvergen
e for short times, but for smaller q the a

ura
y is maintainedfor longer times.We repeated the 
al
ulations with our algorithm, using the same initial 
on-ditions, and solving the system of ODEs by a Runge-Kutta method of order 4,with n = 64, 96, 128 and 192 time steps up to T = 32�. Figure 15 plots the rel-ative L1 error in velo
ity and the moment errors versus time. It is evident thatour method is more a

urate than the vortex-blob method for a given number ofdegrees of freedom. The errors are not smooth fun
tions of time, be
ause of there
onne
tion, but remain uniformly small.The 
omputation of the velo
ity �eld with a fast multipole-based vortex-blobmethod is slightly faster than with our method; Figure 15 also plots the time-averaged errors against the total CPU time. However, our method a
hieves bettera

ura
y, so the average error de
reases faster as CPU time in
reases. Note,however, that we are 
omparing very simple versions of these algorithms; little
an be inferred about the relative performan
e of possible produ
tion versions ofthese 
odes.Vortex-blob methods preserve some 
onservation properties of the Euler equa-tions. In a vortex-blob method, the dis
rete analogues of � and M2 are�(N) := NXi=1 !ih2 (7.5)M (N)2 := NXi=1 !ijzij2h2 (7.6)and �(N) is obviously 
onserved. It is easy to show that M (N)2 is also 
onserved[40℄. Conservation of the se
ond moment is important, sin
e the rate of 
hangeof the se
ond moment is related to the numeri
al di�usion of the method. This isone reason why vortex-blob methods are attra
tive for invis
id 
ow. They havebeen used for slightly vis
ous 
ow in 
onjun
tion with random and deterministi
methods for the treatment of vorti
ity di�usion [15, 18, 40℄.Our method does not preserve the 
ir
ulation and the se
ond moment. Figure15 plots the relative errors in the 
ir
ulation and se
ond moment; with h = 0:05the se
ond moment errors are less than 0:4% up to t = 32�. In view of theextension of the method to the Navier-Stokes equations, we use this to estimatethe minimum vis
osity that is possible to treat with su
h a method for a givengrid parameter h. For the Navier-Stokes equations!t + u � r! = ��!35



the se
ond moment of Perlman's test 
ase evolves a

ording toM2(t) =M2(0) + 4�t:Sin
e M2(0) = �=72, m2 � M2(t)�M2(0)M2(0) = 288�t� :At t = 32�, m2 = 9216�. An error of 0:4% 
orresponds to � = 8 � 10�7, afairly small vis
osity. This suggests that our method 
an be 
ombined with themethod of [40℄ to solve the Navier-Stokes equations for small Reynolds number
ows. Note, however, that we do not observe a linear growth of error with time.Rather, the se
ond moment is roughly 
onstant, suggesting that our method maybe even less di�usive than this simple estimate would imply.
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Figure 14: Errors versus time for the vortex blob method with h = 0:4, 0.2,0.1 and 0.05 and n = 64, 96, 128 and 192 time steps. Top row: Relative L1errors in velo
ity versus time. Se
ond row: Time-averaged relative L1 errorsin velo
ity versus SPARC-2 CPU time in se
onds. Left 
olumn: Supergaussianblob, q = 0:7. Center: Supergaussian blob, variable q = 0:9, 0.8, 0.7 and 0.6.Right: Finite-
ore blob, q = 0:4.7.2 Re
onne
tion versus �xed topologyWe next reprodu
e the results presented in [13℄ and 
ompare them with thoseprodu
ed with our method, for Perlman's test 
ase (7.3). The initial triangulation36
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Figure 15: Comparison with vortex-blob methods; relative L1 velo
ity, 
ir
ula-tion and moment errors (left to right) versus time (�rst row) and the 
orrespond-ing time-averaged errors versus SPARC-2 CPU time (se
ond row) for our method.The four runs plotted used the following parameters: Mesh sizes h = 0:4, 0.2,0.1 and 0.05. N = 29, 113, 441 and 1793 verti
es. n = 64, 96, 128 and 192 timesteps.
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was produ
ed by the MODULEF library of �nite element 
odes [10℄, with h =1=6; 1=8; 1=12; 1=16 and 1=24. The system of ODEs is integrated by a Runge-Kutta method of order 2, with �t = �=8. For ea
h value of h we make two runs.In the �rst we keep the topology of the triangulation un
hanged and evaluatethe velo
ity dire
tly, as in [13℄. In the se
ond run we 
onstru
t a Delaunaytriangulation at ea
h time step, using the adaptive 
ell te
hnique of Se
tion4, and use the fast velo
ity evaluation of Se
tion 5. Figure 16 
ompares thetriangulations in the two 
ases, for h = 1=12 and t = 0; 2�; 4�, and also showsthe Delaunay triangulation for later times t = 8�; 16�; 32�. Clearly withoutre
onne
tion the grid be
omes very distorted and degenerates after a 
ertaintime, when triangles with negative area form, while the Delaunay triangulationremains regular for long times. Figure 17 shows the velo
ity and moment errorsas a fun
tion of time up to T = 8�. The distortion of the �xed grid 
ausesa dramati
 in
rease in the error, while with a Delaunay triangulation the errorremains small. Note that thin triangles o

ur even with a Delaunay triangulation,but that the error remains small nonetheless. This is di�erent from �nite elementmethods, for example, where su
h thin triangles would produ
e disaster. Here,we use the triangulation only to evaluate the Biot-Savart integral, we need notsolve a linear system. The time-averaged errors versus CPU times are reportedin Figure 18. It is 
lear that the fast velo
ity evaluation method is essential forattaining small errors in reasonable 
omputation times.7.3 The adaptive methodWe now test our method on Perlman's test 
ase, without the handi
ap of a uni-form initial grid. We �rst �x a grid re�nement toleran
e � = 0:064 and halve thetime step until the �rst two digits of the errors do not 
hange for 0 � t � 32�, us-ing fourth-order Runge-Kutta. This gives us a time step �t = �=2 whi
h makestime dis
retization errors negligible in 
omparison with spatial dis
retization er-rors for this �. Then we run three more 
ases, with � = 0:016, 0.004 and 0.001,redu
ing �t ea
h time. Figure 19 displays the resulting triangulations at t = 0;t = 4� and t = 32�. Figure 20 plots the errors against time and CPU time;they remain uniformly small over time and de
rease very rapidly with in
reasing
omputational e�ort.7.4 Kir
hho�'s ellipti
al vortexWe now turn to a more 
hallenging test 
ase, a pat
h of pie
ewise 
onstantvorti
ity. An exa
t 
ir
ular pat
h of 
onstant vorti
ity is easy to 
onstru
t, butshares with Perlman's test 
ase an unrealisti
 radial symmetry. We use a moreinteresting test 
ase, the Kir
hho� ellipti
al vortex, a uniformly rotating ellipti
alpat
h of 
onstant vorti
ity with exa
t velo
ity �eld given in Appendix A. TheKir
hho� vortex is of 
onsiderable physi
al interest [7℄ as well as numeri
allyuseful. 38



Figure 16: Fixed (top row) and Delaunay (se
ond row) triangulations at timest = 0, 2� and 4� (left to right), and Delaunay triangulations at later times t = 8�,16� and 32� (last row).
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Figure 17: Comparison between �xed topology and Delaunay triangulation withh = 1=6; 1=8; 1=12; 1=16; 1=24. First row: Relative L1 error in velo
ity, 
ir
ula-tion errors and se
ond moment errors versus time, for Delaunay triangulation.Se
ond row: the same quantities for �xed topology.
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Figure 18: Comparison between �xed topology and Delaunay triangulationwith h = 1=6; 1=8; 1=12; 1=16; 1=24. First row: Time-averaged relative L1 errorin velo
ity, 
ir
ulation errors and se
ond moment errors versus Cray-2 CPU time,for Delaunay triangulation. Se
ond row: the same quantities for �xed topology.
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Figure 19: Adaptive triangulation of Perlman's test 
ase at times t = 0, 4� and32� (left to right), with � = 0:064 (top row), 0.016 (se
ond row), and 0.004 (lastrow).
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Figure 20: Errors for Perlman's test 
ase, with an adaptive grid re
onne
tedat every step. First row: Relative L1 error in velo
ity, 
ir
ulation errors andse
ond moment errors versus time. Se
ond row: Time-averaged quantities versusCray-2 CPU time. The four runs plotted used the following parameters: Meshtoleran
es � = 0:064, 0.016, 0.004 and 0.001. N = 50, 205, 725 and 2709 verti
es.n = 64, 96, 128 and 192 time steps.
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Resolving the ellipti
al vortex with an adaptive grid requires that we varythe number L of re�nement levels allowed together with the toleran
e �. We take� = 0:064, 0.016, 0.004 and 0.001, with L = 8, 10, 12 and 14 levels of re�nementof an initial uniform grid with h = 0:48, and n = 32, 48, 64 and 96 time steps,using fourth-order Runge-Kutta.Figure 21 shows the vorti
ity �eld at t = 0, T=4 and T=2, where T = 9� =28:274334 is the rotational period of the Kir
hho� ellipse with aspe
t ratio 2,and strength 1. The vorti
ity �eld is plotted by giving ea
h triangle a gray-s
alevalue equal to �!=j!j1, where �! is the average over the triangle, 0 is lightest and1 is darkest. In the more a

urate 
al
ulations, the ellipse returns very 
losely toits original position after one period. Note that the 
uid inside the ellipse rotatesas a rigid body (sin
e ! is 
onstant there); the 
uid outside undergoes a more
ompli
ated deformation.Figure 22 plots the L1 and L1 errors in velo
ity and vorti
ity and the momenterrors against time. Clearly the L1 error in vorti
ity isO(1), as one would expe
t,while the L1 error in velo
ity is uniformly small.

Figure 21: Grays
ale plots of the Kir
hho� ellipti
al vortex at times t = 0, T=4and T=2 (left to right), with � = 0:016 (top row) and 0.004 (last row).44
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Figure 22: Errors for the Kir
hho� ellipti
al vortex. First row: Relative L1 andL1 errors in vorti
ity and L1 error in velo
ity versus time. Se
ond row: RelativeL1 error in velo
ity, 
ir
ulation and se
ond moment errors versus time. Thefour runs plotted used the following parameters: L = 8, 10, 12 and 14 levels ofre�nement. N = 468, 1064, 2320 and 4700 verti
es. n = 32, 48, 64 and 96 timesteps.
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7.5 Intera
ting vortex pat
hesOur �nal numeri
al examples are 
ows 
omposed of several intera
ting vortexpat
hes. Sin
e exa
t solutions are unavailable, we estimate the errors in vorti
ityand velo
ity by di�eren
ing. We evaluate the vorti
ity and velo
ity �elds, storedon the triangulation, by linear interpolation to �xed uniform grid, then di�eren
esu

essive 
al
ulations. This gives error estimates whi
h agree well with the exa
terrors when the latter are available.Our �rst test 
ase without an exa
t solution uses three randomly pla
edpat
hes, ea
h a s
aled version of Perlman's test 
ase. The triangulation is plottedin Figure 23, for � = 0:016 and 0.004, at times t = 0, 25 and 200. The errorsestimated by di�eren
ing are plotted in Figure 24, using � = 0:064, 0.016 and0.004 and fourth-order Runge-Kutta with n = 96, 128 and 192 time steps up tot = 200.Our se
ond test 
ase is the intera
tion of 
ir
ular pat
hes of 
onstant vorti
ity,as studied in [11, 51, 49℄ by spe
ialized methods. We do not expe
t great a

ura
yfrom our general-purpose 
ode; we are pushing the limits of adaptivity. Figure 25shows the vorti
ity 
omputed with � = 0:004 and 0.001, at times t = 0, 10 and 40.The errors estimated by di�eren
ing are plotted in Figure 26, using � = 0:064,0.016, 0.004 and 0.001 with fourth-order Runge-Kutta with n = 64, 96, 128 and192 time steps up to t = 40.
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Figure 23: Three intera
ting pat
hes of smooth vorti
ity, at times t = 0, 25 and200 (left to right), with � = 0:016 (top row) and 0.004 (se
ond row).
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Figure 24: Errors for smooth pat
hes of vorti
ity, estimated by di�eren
ing.Relative L1 error in velo
ity, 
ir
ulation errors and se
ond moment errors vstime. 47



Figure 25: Three intera
ting pat
hes of 
onstant vorti
ity, at times t = 0, 10and 40 (left to right), with � = 0:004 (top row) and 0.001 (bottom row).
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Figure 26: Errors for 
onstant pat
hes of vorti
ity, estimated by di�eren
ing.Relative L1 error in velo
ity, 
ir
ulation errors and se
ond moment errors versustime. 48



8 GeneralizationsOur method 
an be extended to model more general 
ows. In this se
tion we
onsider the following generalizations:� Boundary 
onditions for the 2-D Euler equations.� The Navier-Stokes equations in IR2.� Boundary 
onditions for the 2-D Navier-Stokes equations and vorti
ity gen-eration at the boundaries.� Higher order methods.� Euler and Navier-Stokes equations in IR3.We have not implemented these generalizations; this is work in progress.8.1 Boundary 
onditions for the 2-D Euler equationsLet 
 be the domain 
ontaining the 
ow, �
 its boundary, and � the outwardunit normal (see Figure 27).

Ω ∂Ω

ν

Figure 27: A domain 
 and its boundary �
.The no-
ow boundary 
ondition readsu � � = 0 on �
: (8.1)In the vorti
ity formulation, this 
ondition must be translated from the velo
ityto the vorti
ity. This 
an be obtained in the following way. From equation (2.5)49



it follows that the tangential derivative of  along the boundary vanishes:� �� = 0 on �
;where � denotes the unit ve
tor tangent to �
. This means that  is 
onstantalong the boundary and, sin
e the stream fun
tion is determined only up to a
onstant anyway, we 
an set it to be zero. The Poisson equation for  is therefore8><>: �� = ! in 
 = 0 on �
 : (8.2)This is a standard problem and there are many ways to solve it numeri
ally. Anattra
tive method in this setting is to represent  as the volume potentialV !(x) = Z
G(x� y)!(y)dyof !, with G(x) = (2�)�1 log jxj the free-spa
e Green fun
tion of ��, plus thesolution  � of 8><>: �� � = 0 in 
 � = �V ! on �
 : (8.3)The velo
ity due to the volume potential is pre
isely what we evaluated in Se
-tion 5, using pie
ewise linear vorti
ity, while r � 
an be found by solving ase
ond-kind Fredholm integral equation on �
 [20℄. The integral equation 
anbe solved very eÆ
iently by iteration and the fast algorithms of [38, 12, 45℄.These approa
hes are parti
ularly attra
tive if 
 is moving as time passes.Alternatively, one 
ould use a standard �nite element Galerkin method withpie
ewise linear elements to solve (8.2), then 
al
ulate u by numeri
al di�erenti-ation.If 
 is 
onvex and simply 
onne
ted, then the algorithm des
ribed in Se
tion4 
an be used to 
onstru
t the triangulation. For more general non-
onvex ornon-simply-
onne
ted domains, that algorithm 
an easily be modi�ed to removetriangles outside 
.8.2 The Navier-Stokes equationsWe 
onsider the 2-D Navier-Stokes equations in R2. The equation for the vor-ti
ity is �!�t + (u � r)! = ��!;where � is the kinemati
 vis
osity. The velo
ity 
an be re
onstru
ted from thevorti
ity using the Biot-Savart law (2.6). We 
an solve the Navier-Stokes equa-tions numeri
ally by a fra
tional step method. In the 
onve
tion step we move50



the verti
es as above, and in the di�usion step we solve the di�usion equationfor !. Let !n(z) denote the pie
ewise linear vorti
ity distribution at time tn.After the 
onve
tion step for a time step �t, we have a new vorti
ity distribution~!n(z), pie
ewise linear on a new triangulation. During the di�usion step we haveto solve the equation 8>><>>: �!�t = ��!!(z; tn) = ~!n(z) (8.4)One way to 
ompute !n+1(z) is to solve (8.4) exa
tly using the gaussian kernel�(z; t) = (1=4�t) exp(�jzj2=4t). This would give�!n(z) = ZR2 �(z � ~z; ��t)~!n(~z) d~z: (8.5)Then the pie
ewise linear fun
tion !n+1(z) is obtained by proje
ting �!n into thespa
e of pie
ewise linear fun
tions with the same values at the nodes:!n+1(zi) = �!n(zi); i = 1; : : : ; N:This pro
edure, however, is not very a

urate, be
ause the proje
tion onto pie
e-wise linear fun
tions introdu
es high frequen
y 
omponents in the vorti
ity dis-tribution, produ
ing a spurious di�usion. A simple 1-D 
al
ulation shows thatthe lo
al trun
ation error is O(h2p��t). This makes the method ina

urate forsmall time steps. The Green's fun
tion approa
h requires the 
omputation ofthe integral (8.5). A naive implementation of this integral would give a 
om-putational 
omplexity O(N2). Fast algorithms have been 
onstru
ted for this
ase; the 
omplexity is redu
ed to O(N) [46℄. One advantage of this approa
his that it does not su�er from any stability restri
tion, and therefore it 
an beused with arbitrarily large values of ��t. In view of these 
onsiderations, thisapproa
h seems interesting in the presen
e of large vis
osities. For small valuesof the vis
osity, alternative approa
hes 
an be 
onsidered. We propose here twopossibilities, one based on the dis
retization of the Lapla
ian on a Voronoi mesh,the other obtained by 
ollo
ation.The dis
rete Lapla
ian is de�ned in the following way. For any simply 
on-ne
ted bounded domain P � R2 with regular boundary �P, it isZP ��dz = Z�P ���� dsDis
retizing this relation on a Voronoi polygon Pi (see Figure 4), one de�nes thedis
rete Lapla
ian B byB�(zi) = 1Ai Xj 6=i �(zj)� �(zi)jzj � zij lijwhere Ai is the area of the Voronoi polygon 
orresponding to zi, and lij is thelength of the edge 
orresponding to points zi and zj .51



The di�usion equation (8.4) for ! be
omes8>><>>: d!idt = Xj 6=i �ij!j!i(tn) = ~!n(zi) i = 1; : : : ; N (8.6)with �ij = 8>>>><>>>>: 1Ai lijjzj � zij j 6= i� 1Ai Xk 6=i likjzk � zij j = iThe Voronoi diagram and the Delaunay triangulation are dual stru
tures. It iseasy to obtain one, on
e the other is known.The dis
rete Lapla
ian has been used for the solution of the Navier-Stokesequation in 
onjun
tion with the vortex-blob method for the 
omputation of thevelo
ity [40℄. In that 
ase the primary variables were the 
ir
ulation asso
iatedto ea
h vortex. It was possible to prove several 
onservation properties for thedi�usion equation dis
retized on a Voronoi mesh. In our 
ase, the vorti
itydistribution is a pie
ewise linear fun
tion on the Delaunay triangulation andsu
h 
onservation properties no longer hold. It would be worthwhile to explorethe properties of the dis
retization of the heat equation on a Voronoi mesh.An alternative approa
h, whi
h is more 
onsistent with our framework, 
on-sists in a 
ollo
ation-Galerkin method. Multiplying both sides of (8.4) by a testfun
tion �(z) with 
ompa
t support and integrating, we obtainddt Z �(z)!(z; t) dz = �� Z r�(z) � r!(z; t) dz: (8.7)We asso
iate to a given triangulation a set of pie
ewise linear fun
tions f�k(z); k =1; : : : ; Ng su
h that �k(zi) = Æik;and 
onsider the proje
tion of equation (8.7) on the spa
e of pie
ewise linearfun
tions on the triangulation. We obtain:Xi Mki _!i = ��Xi Kki!i (8.8)where Mki = Z �k(z)�i(z) dz; Kki = Z r�k(z) � r�i(z) dz:The quantities Mij and Kij are easily 
omputable from the triangulation. Mij isthe mass matrix and Kij is the sti�ness matrix asso
iated to the triangulation[17℄. These matri
es 
an be easily 
omputed from the triangulation. System52



(8.8) 
ould be dis
retized in time by a Crank-Ni
olson method in order to avoidthe stability restri
tion on the time step:Xj Mkj!n+1j � !nj��t +Xj Kkj!n+1j + !nj2 = 0 (8.9)It is not 
lear to the authors what is the best way to solve the large, sparse linearsystem (8.9) for !n+1. The LU fa
torization does not seem to be 
onvenient,sin
e the triangulation 
hanges at every time step. Probably the best strategy
onsists of an iterative method su
h as a pre
onditioned 
onjugate gradient orGMRES.8.3 Boundary 
onditions for the Navier-Stokes equationsWe 
onsider now the treatment of the boundary 
onditions for the Navier-Stokesequations in a bounded region 
. The no-slip boundary 
ondition for a boundaryat rest reads u = 0 on �
:In order to enfor
e this 
ondition on �
 we make use of Chorin's method, whi
h
onsists in pla
ing a vortex sheet on the boundary to 
ompensate for the tan-gential 
omponent of the velo
ity indu
ed by the vorti
ity distribution inside thedomain [15℄.We dis
retize the time and 
onsider a fra
tional-step method for the semidis-
rete Navier-Stokes equations. Let !n(z) be the vorti
ity distribution at time tn.The system is updated in the following way:a) Solve Eq. (8.2) for  n(z) and 
ompute the velo
ity �eld un = r? n. Thisvelo
ity �eld satis�es the no-
ow 
ondition, but not the no-slip 
ondition.b) Consider the intermediate vorti
ity!n+ 12 = !n + 2(un � �)Æ�
where � is the unit ve
tor tangent to the boundary. Solve the di�usionequation for !: 8>><>>: �!�t = �!!(z; tn) = !n+ 12 (z) (8.10)and determine ~!n+1(z).
) Compute the velo
ity �eld 
orresponding to the vorti
ity distribution ~!n+1(z)and solve the Euler equations in the time interval (tn; tn+1).53



The new vorti
ity distribution will be denoted !n+1(z). The 
onvergen
e ofthis algorithm for the semidis
rete equations is proved in [8℄ in the 
ase of thehalf plane. We propose here the following dis
retization of the algorithm. Letus suppose we know the vorti
ity distribution !n� (z) whi
h is asso
iated to agiven triangulation T n at time tn. The �rst step 
onsists in solving the Poissonequation for  n with Diri
hlet boundary 
onditions. Then, on
e the velo
ity unis 
omputed on the boundary, the di�usion step is dis
retized in the followingway. First, the triangulation is extended beyond �
, by re
e
ting the triangleswith one side on �
. If the size of the triangles is small 
ompared to the radius of
urvature of �
, the triangulation on the exterior of 
 reprodu
es a symmetri

opy of the �rst line of triangles, with a small distortion (see Figure 28). After thetriangulation has been extended, the fun
tion  n(z) is extended symmetri
allybeyond �
. This will provide a dis
retization of the zero Neumann 
ondition forthe di�usion equation.
zk�1 zk zk+1 
�


Figure 28: Symmetri
 extension of the triangulation beyond �!.Next we multiply (8.10) by �k and integrate:ddt Z �k(z)!n(z) dz = � Z �k�!n dz + 2 Z �k(un � �)Æ�
 dz; k = 1; : : : ; N(8.11)If zk is inside 
 then the se
ond term on the right hand side is zero, and oneobtains an equation of the form (8.8). If zk is on �
 then one obtainsXi Cki _!i = �Xi Mki!i + 2Wkwhere Wk is a line integral along the segments zk�1zk and zkzk+1.54



8.4 Higher order methodsOur method introdu
es several approximations; spa
e and time dis
retization,and trun
ation of the series in the fast velo
ity evaluation. In Se
tion 5 we sawhow to 
ontrol the error in the fast velo
ity evaluation, and time dis
retizationerror 
an be made small by using high order ODE solvers. Runge-Kutta ormultistep methods 
an be used for this purpose. The main 
ause of ina

ura
ylies in the spatial dis
retization. In this se
tion we improve the spatial a

ura
yof the method.The spatial dis
retization error in our method is due to the approximation of! by a pie
ewise linear fun
tion. Su
h an approximation is se
ond order in thesize of the triangles. A better a

ura
y 
ould be obtained by using basis fun
tionsthat are polynomials of degree greater than one. There are several possibilitiesfor obtaining higher order a

ura
y in the approximation of fun
tions of twovariables, whi
h are 
ommonly used in the �nite element method. Most of thesete
hniques, however, require values of the fun
tion at points that are not verti
esof a triangle [17℄. Su
h te
hniques have an intrinsi
 diÆ
ulty in this setting.Suppose we make use of the value of the fun
tion ! at the middle of the edge ofthe triangles. If we move these points with the 
ow, their vorti
ity is un
hanged,but at the next time step their lo
ation will not be in the middle of the edgeof a triangle. If we leave the point at the middle of the edge, then at the nexttime step the value of the vorti
ity at this point will 
hange. We may think of
orre
ting this e�e
t by adding a term that takes into a

ount the fa
t that themiddle of the edge is not a Lagrangian point (up to O(h2)), but then topologi
aldiÆ
ulties arise.For these reasons, it is more 
onvenient to use a higher-order approximationformula based on quantities de�ned at the verti
es of the triangulation. Wepropose to use the spa
e of pie
ewise 
ubi
 polynomials on the triangulation,with equal 
oeÆ
ients for the x2y and xy2 terms.On ea
h triangle su
h a fun
tion �(x; y) is de�ned by 9 parameters:�(x; y) = a1 + a2x+ a3y + a4x2 + a5xy + a6y2+a7x3 + a8(x2y + xy2) + a9y3: (8.12)The nine parameters are uniquely de�ned by giving the value of the fun
tion andits partial derivatives at the three nodes of the triangle.Let us denote by u and v the x and y 
omponents of the velo
ity u, and by� and � the 
omponents of r!:� � �!�x ; � � �!�y :Then, by taking the x and y derivative of the equation for ! (Equation (2.3) inSe
tion 2) one obtains the transport equations for !, � and �:d!dt = 0; 55



d�dt = ���u�x� + �v�x�� ;d�dt = ���u�y � + �v�y �� ;where ddt � �t + (u � r):If we are able to 
ompute u, v, ux, vx, uy and vy due to a pie
ewise 
ubi
 poly-nomial of the form (8.12) then we 
an solve the system of di�erential equationsdxidt = u(zi);dyidt = v(zi);d�idt = �(ux(zi)�i + vx(zi)�i);d�idt = �(uy(zi)�i + vy(zi)�i:It is possible to extend our velo
ity evaluation method to 
ompute su
h quan-tities. Indeed, u is split into a lo
al term uL and a far �eld term uF . The �rstinvolves terms of the form Z� K(z � z0)!h(z0; t) dz0where !h is a polynomial of the form (8.12). Su
h integrals 
an be 
omputed ana-lyti
ally as shown in [13℄. The derivative of the �eld 
an be 
omputed analyti
allyas well; Z� �K�x (z � z0)!h(z0) dz0
an be integrated exa
tly as a line integral along the boundaries of the tri-angulation T , and the far �eld 
ontribution is automati
ally provided by theO(N4=3 log �) algorithm (see Se
tion 5.4) whi
h returns the �rst p terms of theTaylor expansion of the �eld.A last observation 
on
erns the expe
ted order of a

ura
y of su
h an al-gorithm. Pie
ewise linear elements give O(h2), quadrati
 elements O(h3), and
ubi
 elements O(h4). However we are not using the full subspa
e of pie
ewise
ubi
 elements here, be
ause ea
h element has 9 free parameters instead of 10.This degrades the a

ura
y of the approximation to O(h3). For smooth 
owsthe higher a

ura
y should 
ompensate for the extra work needed to 
omputethe derivative of the velo
ity �eld. We expe
t the 
omputational time to be nomore than twi
e the time required for the pie
ewise linear method for the samenumber of the points, be
ause the far �eld terms are obtained for free. For verysmooth 
ows, it might even be more e
onomi
al to use quarti
 polynomials toget O(h5) a

ura
y, and evolve se
ond derivatives as well.56



8.5 Extension to three dimensionsThe method here presented 
ould be extended, in prin
iple, to the in
ompressibleEuler and Navier-Stokes equations in three dimensions. The extension, however,is not a trivial one.The hardest problem is the 
omputation of the Biot-Savart integral on apie
ewise linear vorti
ity distribution. It is not 
lear whether a pie
ewise linearfun
tion times the Biot-Savart kernel 
an be integrated analyti
ally on a tetrahe-dron in three dimensions. If it is not possible, then one should try to redu
e the
omputation of su
h integrals to 
ombinations of integrals that depend on fewerparameters. Then these new \spe
ial fun
tions" 
ould be tabulated and theirvalues 
omputed by interpolation. The feasibility of su
h a pro
edure, however,is questionable, sin
e the next problem is the development of a fast algorithm forthe 
omputation of the far �eld in three dimensions. The fast multipole methodin three dimensions is not as eÆ
ient as it is in two dimensions. This would makethe velo
ity evaluation quite slow. Furthermore, the problem of the boundary
onditions in ! in three dimensions is more 
ompli
ated than in 2-D.In view of these 
onsiderations, we think that a di�erent approa
h 
ouldbe more e�e
tive. A �nite element method 
ould be used to solve the Poissonequation for the ve
tor velo
ity potential ~ (x; y; z; t):��~ = ~!;the velo
ity �eld is then u = r� ~ : (8.13)In order to dis
retize this equation, we need to 
onstru
t a 3D grid whi
h is the3D analogue of the Delaunay triangulation. This 
an be done by dividing thespa
e into Delaunay tetrahedra, that are de�ned in a way similar to the twodimensional 
ase. Then we 
onsider a basis B of pie
ewise linear fun
tions onthe triangulation, f�i(x); i = 1; : : : ; Ng. By going to a weak formulation andproje
ting on the subspa
e B, the Poisson equation is dis
retized in the usualform: Xj Kij ~ j =Xj Mij~!jwhere the matri
es M and K are the mass and sti�ness matrix 
orresponding tothe given triangulation in spa
e. In order to obtain the values of ui � u(xi), wemultiply equation (8.13) by �i and integrate. We obtain for u�i ; i = 1; : : : ; N; � =1; 2; 3, the following system:Xij Miju�j =Xj �S�ij 
j � S
ij �j � (8.14)where (�; �; 
) is a 
y
li
 permutation of (1; 2; 3), (x1; x2; x3) � (x; y; z), andS�ij = Z �i(x)��j(x)�x� dx:57



The Euler equations in three dimensions are�~!�t + (u � r)~! = (~! � r)uThis equation 
an be written as d~!dt = (~! � r)u (8.15)along the 
uid lines dx=dt = u.Let ~
 be the right hand side of Equation (8.15):
� = 3X�=1!� �u��x� :Then we 
an 
ompute a pie
ewise linear approximation of 
� at the nodes in theusual way. We obtain the system for 
�i :Xj Mij
�j =Xj 3X�=1!�j S�iju�j :On
e u�i and 
�j are known, the position and vorti
ity at the nodes 
an beupdated by solving the equations _xi = ui_~!i = ~
iOf 
ourse there is no guarantee that the natural invariants of the three di-mensional Euler equations are 
onserved in this dis
rete method. In parti
ular,the total vorti
ity will not be 
onserved. One should 
he
k how well 
onservationof these physi
al invariants is maintained.The extension to the Navier-Stokes equations 
ould be done in a way similarto the two dimensional 
ase, i.e. with a splitting method. The di�usion step forthe vorti
ity ve
tor 
ould be treated by a Galerkin-Crank-Ni
olson method.9 Con
lusionsWe have presented an eÆ
ient and a

urate new adaptive method for the 2-D Euler equations. Our method resembles the vortex method, but di�ers inapproximating the vorti
ity by triangulation and interpolation rather than a sumof blobs. This alteration produ
es a method whi
h is more a

urate for long-time
omputations.The eÆ
ien
y of our method is due to an eÆ
ient Delaunay triangulationmethod, to a fast velo
ity evaluation te
hnique related to the fast multipole58



method, and to the 
onstru
tion of an adaptive initial grid. Our numeri
al re-sults demonstrate that ea
h of these te
hniques plays an essential role in makingour 
omputations a

urate and eÆ
ient. We present a wide spe
trum of nu-meri
al results, for simple 
lassi
al test problems as well as 
omplex problemswithout known solutions. In all 
ases, our method exhibits long-time a

ura
y.Even dis
ontinuous initial data 
an be evolved a

urately using our adaptive gridte
hnique.The method generalizes in various ways, to three-dimensional problems, vis-
ous 
ow and domains with boundaries, and appears highly promising as a toolfor engineering analysis of 
omplex 
uid 
ows.A The Kir
hho� ellipti
al vortexA rotating ellipti
al pat
h of 
onstant vorti
ity is an exa
t solution of the Eulerequations. A dis
ussion of this topi
 
an be found, for example, in [26℄. Wesummarize it here for 
ompleteness.Let x0Oy0 denote a �xed 
artesian frame of referen
e in IR2. Let us 
onsiderthe 2D Euler equations with the following initial 
ondition for the vorti
ity:!(x0; y0; 0) = 8>>>><>>>>: !1 if x02a2 + y02b2 < 10 if x02a2 + y02b2 � 1where !1 is 
onstant.Let us make the ansatz that the solution for the vorti
ity distribution is anellipti
al pat
h of 
onstant vorti
ity whi
h rotates without 
hanging shape withan angular velo
ity !0. We shall prove that this ansatz is 
onsistent with thePoisson equation for the stream fun
tion and we derive an expression for !0.Let us 
onsider a frame of referen
e whi
h is at rest with the rotating ellipseand let us denote by x and y its 
oordinates. In this frame of referen
e the streamfun
tion does not depend on time. Let 
 denote the region with vorti
ity !1. Inthe region outside 
 the stream fun
tion satis�es the equation�2 �x2 + �2 �y2 = 0 (A.1)The 
uid lines 
an not 
ross the boundary �
. The boundary 
ondition on �
is therefore �u � � = !0r � �where � and � are unit ve
tors respe
tively normal and tangent to the boundary,and r = (x; y). The boundary 
ondition for  is therefore�� �� = !0r � � (A.2)59



It is 
onvenient to make use of ellipti
al 
oordinatesx = 
 
osh � 
os �; y = 
 sinh � sin � (A.3)where 
2 = a2 � b2. In these 
oordinates the Lapla
e equation for the streamfun
tion be
omes: 8>>>><>>>>: �2 ��2 + �2 ��2 = 0 in R2n
� �� = �!0
2 sin � 
os � on �
 (A.4)This equation 
an be solved by separation of variables.Let  = X(�)H(�) + ~A� + ~B� + ~C. By inserting this expression into (A.4)and imposing that the velo
ity u vanishes at in�nity, one �nds = !04 (a+ b)2e�2� 
os 2� + ~A� (A.5)The 
onstant ~A is obtained by imposing that the 
ir
ulation is the integral of !:I�
 u � d� = �ab!;that is � Z 2�0 � �� d� = �ab!:This gives ~A = 12ab!:The stream fun
tion inside 
 is obtained by the Poisson equation�2 �x2 + �2 �y2 = �!1; (A.6)with boundary 
onditions uxa2 + vyb2 = !0y xa2 � !0x yb2equivalent to 
ondition (A.2). Equation (A.6) is satis�ed by a stream fun
tionof the form  = �12!(Ax2 +By2) (A.7)provided A+B = �1 and Aa2 �Bb2 = �!0(a2 � b2)=!. We have to 
he
k nowthat there is no slip a
ross �
. For this purpose we 
ompute u �� from (A.5) and(A.7) and 
ompare the two expressions. From (A.5),u � � = �� ext�� = !02 (a+ b)2e�2� 
os 2� � 12ab!60



Suppose � = �0 de�nes �
. Then
 
osh(�0) = a; 
 sinh(�0) = band therefore (a+ b) exp(�2�0) = 
. It follows that� ext�� �����
 = �12!0
2 
os 2� + 12ab!In order to 
ompute u � � from (A.7), let us express  in terms of � and � using(A.3):  int = �12!1
2(A 
osh2 � 
os2 � +B sinh2 � sin2 �):It is � int�� �����
 = �!1ab2 (A+B + (A�B) 
os 2�):By equating the 
oeÆ
ients of 
os 2� in the two expressions we obtain!1ab2 (A�B) = 12!0
2;whi
h, together with equations for A and B gives!0 = ab!1(a+ b)2 :The relation between the 
oordinates (x; y) and (x0; y0) is thereforex0 = x 
os!0t� y sin!0t;y0 = x sin!0t+ y 
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