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1 IntrodutionVortex methods are powerful and sophistiated numerial methods for om-puting inompressible turbulent ows Beause they are grid-free and nat-urally adaptive, they reate little or no numerial di�usion and preservefeatures whih other methods may distort. Vortex methods are partiularlyuseful when omputing free-surfae, free-spae and external ows, beauseonly the support of the vortiity need be disretized. Some reent work onvortex methods an be found in [?℄.A typial vortex method involves several steps; veloity evaluation, vor-tex motion, di�usion and boundary onditions. In this paper, we fous onthe most expensive and diÆult step, the veloity evaluation. We employstandard tehniques for the vortex motion and onsider invisid free-spaeow to eliminate di�usion and boundary onditions. General bakgroundmaterial on vortex methods is presented in Setion 2.The standard veloity evaluation approximates the Biot-Savart law by a�xed quadrature rule, with weights onserved by inompressibility and inde-pendent of the singularity in the Biot-Savart kernel. Smoothing is requiredto make the quadrature rule aurate.There are three major and interrelated diÆulties with the standard ap-proah. First, the use of �xed quadrature weights loses auray as the owbeomes disorganized. Perlman [15℄ and Beale and Majda [4℄ observed largeosillations in the error during long-time integrations. These osillationsare not present in triangulated vortex methods [17℄, regridded methods [14℄,or Beale's method [3℄, whih generate new weights at eah step. Seond,smoothing is required beause the quadrature weights ignore the singularity;this lowers the order of onvergene. Third, if any produt integration [9, 10℄or similar tehniques are used to treat the singularity, the variable weightsprelude the use of the fast multipole method [5℄ on whih the pratialityof the method depends.This paper presents a di�erent veloity evaluation method whih over-omes these diÆulties. A new quadrature rule at eah step preserves long-time auray. Smoothing is unneessary sine the method integrates theBiot-Savart law with order-q auray for any �xed q. Only the nearbyweights vary with the singularity, so the fast multipole method an still beapplied.Our method is desribed in Setion 3. It is based on loally-orretedquadrature rules for multidimensional singular kernels [19℄ and proeeds in3



stages. First a data struture groups the N vorties into ells onvenientfor integration. Then a global order-q quadrature rule whih ignores thesingularity is built. The fast multipole method evaluates this rule eÆiently(yielding a regridded vortex method if smoothing is used). Finally, we orretthe weights of vorties near the evaluation point and the appropriate termsof the veloity, using the detailed alulations from Appendix A.Numerial results presented in Setion 4 show that this method has sev-eral nie features. It runs in O(N logN) CPU time with N vorties andahieves essentially qth order auray for any spei�ed q. It deals e�e-tively with arbitrary initial distributions of vorties. Long-time auray ispreserved. The method is naturally parallel sine eah point is orretedindependently.The method extends naturally to 3-D alulations, Navier-Stokes equa-tions, and ows in bounded domains. It is equipped with a natural interpo-lation whih gives the vortiity at any point (see Appendix B).
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2 Vortex methods for 2-D EulerThe Euler equations for the veloity �eld (u(x; y; t); v(x; y; t)) of two-dimensionalinompressible invisid ow are_u+ uux + vuy + px=� = 0 (2.1)_v + uvx + vvy + py=� = 0 (2.2)ux + vy = 0; (2.3)where subsripts denote partial derivatives, overdots denote time derivatives,� is the (onstant) density of the uid and p(x; y; t) the pressure.The vortiity ! := vx � uy satis�es the vortiity equation_! + u!x + v!y = 0;whih implies that the vortiity is passively transported along streamlines.By inompressibility, we an write u in terms of a stream funtion  :u =  y; v = � x:The de�nition of vortiity then yields a Poisson equation for the streamfuntion: �� = !:In ow without boundaries with zero veloity at in�nity, this implies theBiot-Savart law(u(x; y; t); v(x; y; t)) = ZIR2 K(z � z0)!(z0; t) dx0dy0: (2.4)Here it is onvenient to introdue the omplex variable z = x + �y (where� = p�1) and the Biot-Savart kernelK(z) = �2��z = (�y; x)2�(x2 + y2) :The ow map ' : IR2� [0; T ℄!IR2 is de�ned so that '(�; t) is the positionat time t of the uid partile initially at �. Sine a uid partile moves withveloity (u; v), the Biot-Savart law (2.4) implies that '(�; t) satis�es_'(�; t) = ZIR2 K('(�; t)� z)!(z; t) dxdy:5



Changing variables z  '(z; t) in the integral gives_'(�; t) = ZIR2 K('(�; t)� '(z; t))!('(z; t); t) dxdy= ZIR2 K('(�; t)� '(z; t))!(z; 0) dxdy (2.5)sine the Jaobian of '(�; t) is unity and vortiity is onstant along stream-lines.Vortex methods use various reipes for evaluating the Biot-Savart integralnumerially. Lagrangian methods usually evaluate (2.5), traing bak thevortiity to the initial time and usually losing auray as the initial griddistorts. Free-Lagrangian methods approximate the veloity at eah time tvia (2.4).The point vortex method [16℄, for example, approximates (2.5) by_zi =Xj 6=iK(zi � zj)!(�j; 0)h2where initially the vorties zi(t) are the N verties �j of an equidistant gridwith side h. This is very physial sine it moves N point vorties with iru-lations �j = !(�j)h2. Although the method onverges [11℄, it presents seriousomputational diÆulties: Sine the kernel is unbounded, the omputed ve-loity an blow up if vorties ome too lose. Chorin and Bernard showedin [?℄ that the point vortex method an give problems when omputing themotion of vortex sheets.Most vortex methods, however, have been based on Chorin's version [7℄ inwhih the singularity is smoothed by onvolution with a blob funtion gÆ(z):KÆ = K � gÆ; gÆ(z) = 1Æ2g �zÆ� :This gives the standard vortex blob method_zi = NXj=1KÆ(zi � zj)!(�j; 0)h2:Convergene theory for this method is presented in [1, 4, 8, 12℄. The nu-merial behavior of this method has been studied in [15, 3℄, for example.It has been very widely used in pratie and generalized to model omplex6



three-dimensional visous turbulent ows with boundaries and ombustion[6, 7, 13℄.Triangulated vortex methods [17, ?℄ approximate ! in (2.4) by a pieewiselinear funtion on a triangulation. For eah t let Th(t) = f�i(t)gNTi=1 be atriangulation overing the support of !, with N verties fzj(t)gNj=1, and letVh = fv(z) 2 C0(IR2) : vj�i is linear for eah igbe the spae of ontinuous pieewise linear funtions over Th(t). At eahtime t the vortiity !(z; t) is approximated by the pieewise linear interpolant!h(z; t) 2 Vh. The veloity is approximated byuh(z; t) = ZIR2 K(z � z0)!h(z0; t) dz0 = NTXi=1 Z�i K(z � z0)!h(z0; t) dz0:A variant of the fast multipole method and a fast Delaunay triangulationsheme are used to speed up the alulation, and an adaptive initial tri-angulation sheme to resolve omplex initial data. This method appearsstraightforward to extend to ows in bounded domains, three-dimensionalproblems, and visous ows. However, it appears quite diÆult to make atriangulated vortex method with higher than seond-order auray in spae.Triangulated vortex methods an be viewed as generating a new quadra-ture rule|one based on produt integration|at eah time step. Anotherinteresting approah to onstruting a new rule at eah step was presentedby Beale [3℄.In this paper, we onstrut a qth-order quadrature rule for the evaluationof the Biot-Savart law (2.4) at eah time step. Thus we obtain eÆient andaurate free-Lagrangian vortex methods of any desired order.A general vortex method is outlined in Figure 1. Here the vorties aremoved by a seond-order Runge-Kutta method for simpliity; any ODE solveran be used. The veloity evaluation is desribed in detail in the next setion.
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AlgorithmRead parameters from input file:Time step k, initial and final times ti and tf.Initial vortex loations �j and strengths !j = !(�j; ti) for 1 � j � N .Control parametersExat solution parameters (if available)Set t = ti.Time loop: while t < tf dot = t+ kCompute weights wij and evaluate veloities ui of vorties zi:ui = PNj=1wijK(zi � zj)!j � R K(zi � z)!(z; t)dxdyFirst half-step of seond-order Runge-Kutta:Zi = zi + kuiCompute weights wij and evaluate veloities Ui of temporary positions Zi:Ui = PNj=1wijK(Zi � Zj)!j � R K(Zi � z)!(z; t + k)dxdySeond half-step of seond-order Runge-Kutta:zi = zi + k(ui + Ui)=2Measure error, plot results, write output, et.End of time loop: end doFigure 1: General outline of a free-Lagrangian vortex method.
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3 Veloity evaluationWe now desribe the veloity evaluation used in our method, fousing onquadrature rules for the Biot-Savart law with arbitrary quadrature points.Our onstrution has four stages. First, we partition the smallest ret-angle B = [a; b℄� [; d℄ ontaining all the vorties into retangular ells eahontaining a �xed number of vorties, determined by the order of aurayq. Seond, we onstrut a quadrature rule of order q on smooth funtions,ignoring the singularity. Third, the weights of this smooth rule are used to doan unorreted veloity evaluation with the fast multipole method. Finally,we orret loally by reomputing the weights of vorties near eah evalua-tion point and re-evaluating the appropriate terms of the sum. We onludewith error bounds for the orreted rule.3.1 Data strutureWe �rst partition B into retangular ells ontaining preisely p or p + 1points zj eah, where p will be hosen in Setion 3.2.Let B = B1 be the level-0 root of the tree. Divide B1 in half along itslongest edge, with the dividing plane loated so that eah half of B1 ontainseither bN=2 or bN=2 + 1 points. This gives the level-1 ells B2 and B3.Reursively, split B2 and B3 along their longest edges to get B4 throughB7, eah ontaining bN=4 or bN=4+ 1 points zj. Repeat this proedure Ltimes to get M = 2L ells Bi on the �nest level L, numbered from i =M toi = 2M � 1, eah ontaining p = bN=M or p + 1 points zj. The union ofall the ells on any given level is B. The tree struture is stored by listingthe boundaries of eah ell Bi = [ai; bi℄ � [i; di℄ from i = 1 to i = 2M � 1,a total of 4 � 2M numbers, and indexing the points into a list so that thepoints zj 2 Bi are given by j = j(s) for s = b(i); : : : ; e(i) and three integerfuntions j, b and e. This an be done in O(N logN), but the simplestmethod requires sorting eah ell before eah subdivision, giving a total ostO(N log2N) for the tree onstrution with an O(N logN) sorting methodsuh as Heapsort. Figure 2 shows an example. We note that hierarhialdata strutures with similar properties { though not this partiular struture{ have been extensively disussed in [18℄.Remark: The tree struture permits eÆient O(L) lookup of the level-Lell ontaining any point z 2 B. Begin at the root B1 and disard all hildrennot ontaining z; repeat reursively with B1 replaed by the remaining hild9



Figure 2: Levels 1 through 6 in the tree struture with N = 1137 pseudo-random uniformly distributed points on [0; 1℄2.10



until level L is reahed. Similarly, all ells interseting a given retangle Ran be listed in time proportional to L times their number. We will use thisto onstrut singular rules.The ell struture an likewise be used to determine the smallest distanebetween two vorties dm = mini 6=j jzi � zjj:First, the minimum distane dm between any two distint vorties in thesame level-L ell is omputed. This requires O(Np2) CPU time. Then foreah vortex zi, level-L ells interseting the ball of radius dm around zi arelisted and dm is replaed by the minimum distane to any other vortex inthose ells. Sine the minimum dm found so far is used at eah step, it israrely neessary to searh additional ells and the total ost is O(N).3.2 Smooth rulesWe now onstrut qth-order quadrature rules with the N quadrature pointszj for integrating smooth funtions over the retangle B. Let q � 1 be thedesired order of auray of the rule, assume N � m := q(q+1)=2, and hoosean integer L � 0 with p := bN=2L � m. The data struture just onstruteddivides B into M = 2L retangular subells Bi with disjoint interiors suhthat B is their union and eah Bi ontains either p or p + 1 points zj. Oneah Bi, we onstrut loal weights W ji for zj 2 Bi whih integrate the mmonomials xkyl with 0 � k + l � q � 1 exatly over Bi. Beause of thewell-known ill-onditioning of the power basis, we onstrut these weights bysolving the following equivalent system of m linear equations in at least punknowns:Xzj2Bi Pk(xj)Pl(yj)W ij = ZBi Pk(x)Pl(y)dxdy = Æk0Æl0jBij 0 � k+l � q�1:(3.1)Here jBij = (bi � ai)(di � i) is the area of Bi andPk(x) = pk(t); x = xm + txh;where pk(t) are the usual Legendre polynomials on [�1; 1℄ and xm = (bi +ai)=2, xh = (bi � ai)=2, with similar expressions for the y variable. Sinep � m, this system of m equations in at least p unknowns generially hassolutions. We ompute the solution W ij of least Eulidean norm, using the11



QR deomposition routine from LAPACK [2℄. Setion 3.3 disusses what todo when no solution exists. The weights of the rule W are then de�ned tobe Wj =W ij where zj 2 Bi.Remark: The tehnique employed to onstrut this quadrature rule hasmany generalizations and appliations. The general idea is that we approx-imate a linear funtional F (') of funtions ' on eah ell by a weightedombination of evaluations Ei(') = '(zi) at the points zi, with the weightsdetermined to integrate polynomials of degree � q� 1 exatly over eah elland have small norm. For example, suppose we want to interpolate the val-ues of the vortiity to a point z = (x; y) whih is not one of the vorties zi.We an onstrut weights for interpolation by requiring them to be exat onmonomials of degree � q � 1 on the ell Bi where z lies, yielding qth-orderauray on smooth funtions. This yields a least-squares problem simi-lar to the equations (3.1) for the smooth rule integration weights, but withPk(x)Pl(y) replaing RBi Pk(x)Pl(y)dxdy on the right-hand side. This teh-nique, whih we use to ontour the vortiity, is disussed further in AppendixB.3.3 Error boundsThe weights Wj now integrate all monomials xkyl with 0 � k + l � q � 1exatly over all level-L ells Bi for M � i � 2M � 1. In [19℄, we showedthat this property alone results in order-q auray, with a ondition numberappearing in the error bound:Theorem 1 Let B = [Mi=1Bi where Bi = [ai; bi℄ � [i; di℄. Suppose that Wintegrates xkyl exatly over eah Bi for 0 � k + l � q � 1. Then for any Cqfuntion g on B, the errorE = ZB g(z)dxdy � NXj=1Wjg(zj)satis�es jEj � 
jBj(h=2)q Xk+l=q 1k!l! jj�kx�lygjjC0(B)where h = maximax(bi � ai; di � i) is the longest ell edge,
 = 1 + 1jBj NXj=1 jWjj12



is the ondition number of the rule W , jBj = (b� a)(d� ) is the area of B,and the C0 norm is de�ned byjj'jjC0(B) := maxz2B j'(z)jfor ontinuous funtions ' on B.Note that 
 plays the role of a ondition number for W , mediating be-tween the intrinsi diÆulty of integrating g (as measured by the derivativesof g) and the auray of the �nal result. In general, 
 annot be boundedfor arbitrary points, but we an easily ompute it a posteriori, yielding anexellent diagnosti for the quality of the rule. If all the weights are positive,
 = 2; otherwise, 
 > 2.Remark: There are several ways to redue eah ell ondition number
i = 1 + 1jBij Pzj2Bi jWjj and thus obtain a better global ondition number
 = Pi
i. Usually taking more points per ell redues 
, sine the addi-tional degrees of freedom are not needed to satisfy (3.1) and an be appliedto reduing the 2-norm of W ij . However, this inreases the ost of omputingW onsiderably and inreases the ell size h, so taking larger p is not ost-e�etive if applied globally. It an be applied adaptively, however, by goingup to a di�erent level of the tree struture when neessary. To implementthis, we speify a tolerane 
m. When 
i � 
m, we merge Bi with its sib-ling in the tree struture, obtaining a ell BI ontaining twie as many pointszj. We then reompute all weights Wj for whih zj 2 BI , usually obtaining
I � 
m at the ost of a larger QR deomposition and a larger ell size h.If 
I is still too large, the proess may be repeated.This adaptive tehnique also permits treatment of the degenerate aseswhen no solution exists to (3.1) on ell Bi, beause the points zj are not insuÆiently general position. Suh a ell an be merged with its sibling, afterwhih a solution is muh more likely to exist. The proess may be repeatedif neessary.3.4 Unorreted veloity evaluationNext we evaluate the unorreted sumsu(zi) = NXj=1WjK(zi � zj)!j 1 � i � N13



whih approximate the Biot-Savart law (2.4), using the weights Wj designedfor smooth funtions and ignoring the singularity of the Biot-Savart kernelK(z) when z = 0. We exlude the in�nite term j = i. Note that if asmoothed kernel is used in plae of K, we have a regridded vortex methodwhih may be more aurate than standard vortex methods.Diret evaluation of these sums osts O(N2) CPU time, whih rapidlybeomes prohibitive for the large numbers of vorties needed to model inter-esting ows. Thus we use the adaptive fast multipole method (FMM) of [5℄to evaluate this sum to any presribed auray � in O(N logN log �) CPUtime. In pratie, the FMM is faster than diret evaluation on a Spar-2with � = 10�7 whenever N � 300, and muh faster when N � 1000 or so.3.5 Singular rulesWe now selet and orret ertain weights Wj of the smooth rule W , foreah evaluation point zi, to produe a singular rule w whih will integratesingular funtions f(z) = '(z)K(z � zi) more aurately when ' is smooth.For onveniene let �(z) = K(z � s) where s = zi.The weights to be orreted are seleted by forming a list of ells Bi inthe tree struture built for the smooth rule W and orreting all the weightsWj for vorties zj lying in some ell on the list. For eah ell Bi on the list,we onstrut the orreted weights wj for zj 2 Bi by requiring wj to satisfythe linear system of 2m equations whih expresses that Pk(x)Pl(y)�(z) isintegrated exatly for 0 � k + l � q � 1:Xzj2Bi wjPk(xj)Pl(yj)�(zj) = ZBi Pk(x)Pl(y)�(z)dxdy (3.2)for 0 � k+ l � q�1 and both real and imaginary parts of �. Exat formulasfor the integrals on the right-hand side of (3.2) are derived in Appendix A.In order for these equations generially to have solutions w, we annotuse the ells Bi on the lowest level L of the tree struture, beause eahof these ontains only p � m or p + 1 of the points zj. Instead, we usehalf as many larger ells on level L0 := L � 1, eah ontaining at leastp0 := N=2L0 � 2m points. Thus (3.2) will generially be solvable by a QRdeomposition, obtaining w as least 2-norm solution if it exists.In order to keep the number of orreted ells bounded while orretingenough to ensure auray, we selet ells for orretion by the following14



approah. The user spei�es a dimensionless orretion radius r, typially oforder unity. We �nd the ell Bi = [ai; bi℄�[i; di℄ in whih the evaluation pointlies, and let R = [�r(bi�ai)=2; r(bi�ai)=2℄� [�r(di� i)=2; r(di� i)=2℄.We then orret all ells interseting the retangle s+R. This sales the sizeof the orreted area to the loal ell size and therefore to the loal density ofnodes, keeping the number of orreted points per evaluation point s boundedas N!1 with r �xed. We found r � 1 to give exellent results in pratie.The lookup of ells to be orreted osts only O(L) per ell. The ompletealgorithm is presented in Figure 3.3.6 Error boundsThe key requirement in the error bound proved in [19℄ is that we must or-ret all ells suÆiently lose to the evaluation point s. For notational on-veniene, let's renumber the M ells used in the singular rule, so that the�rst n are orreted and the last M � n are not: thus B = [Mi=1Bi whereeah ell Bi ontains at least 2m points for 1 � i � n and at least m pointsfor n + 1 � i � M . Let h = maximax(bi � ai; di � i) be the maximum elledge. Then we have weights wj suh thatZBi �(z)xkyldxdy = Xzj2Biwj�(zj)xkjyljfor 0 � k + l � q � 1 and 1 � i � n, whileZBi xkyldxdy = Xzj2Bi wjxkj yljfor 0 � k + l � q � 1 and n+ 1 � i � M . Assume that � is Cq and that itsqth order derivatives satisfy a growth ondition:j�kx�ly�(z)j � CÆ�2�k�l jz � sj � Æ > 0for k + l = 0 and k + l = q. This assumption is very mild sine it does noteven guarantee that � is in L1(B). It is satis�ed by the Biot-Savart kernel�(z) = K(z � s).With these assumptions, we proved the following error bound in [19℄:Theorem 2 Fix � > 0 and orret the O(1) ells interseting s + R wherer = ��1=q. Then the error in integrating '�� over B with the loally orreted15



Veloity evaluationSet parameters:Degrees of freedom required per ell: m = q(q + 1)=2 .Top level in ell struture: L = blog2(N=m).Points per ell: p = N=2L.Construt ell data struture:B1 = B = smallest retangle enlosing all the points zi.do l = 1; L� 1Divide level-l ells along longest edge with half the pointsin eah subell, yielding level-l + 1 ells.end doResult: 2L ells on level L with p or p+ 1 points eah.Compute smooth weights Wi one ell at a time.do i = 1; 2LCompute least-2-norm solution W ofPzj2Bi WjPk(xj)Pl(yj) = Æk0Æl0jBij for 0 � k + l � q � 1end doUse smooth weights and FMM to evaluate unorreted veloity field U:do i = 1; NUi = PNj=1WjK(zi � zj)!jend doCorret veloity field ui one point at a time.do i = 1; Nui = UiFind ell BI ontaining evaluation point zi.List ells Bn interseting retangle entered at zi, with size rBI.foreah Bn doForm and solve least-squares problem for Wj on ell Bn:Pzj2Bn Pk(xj)Pl(yj)K(zi � zj)Wj = RBn Pk(x)Pl(y)K(zi � z)dxdyCorret ontribution from Bn to Ui to get ui:ui = ui +Pzj2Bn(wj �Wj)K(zi � zj)!jend forend do Figure 3: Veloity evaluation algorithm.16



rule w is bounded byE = ������ZB '(z)�(z)dxdy � NXj=1wj'(zj)�(zj)������� C(
 + 
�) �j log hjhqjj'jjCq(B) + �jj'jjC0(B)�where C depends only on B and the derivatives of �,
 = 1 + 1jBj MXj=1 jwjj and 
� = 1 + 1jBj MXj=1 jwj�(zj)j:This theorem implies that we need only orret a �xed number of points asN !1 if we are satis�ed with an \O(�+hk)" error bound. This error boundis natural in this ontext, sine the fast multipole method itself evaluates theunorreted veloity �eld only to auray �.Remark: It is not neessary to orret the loal weights wj to the sameorder of auray as the global weights W . Indeed, an eÆient approah is tohoose distint global and loal orders qg and ql, with qg � ql, orrespondingto roughly equal degrees of freedom mg = qg(qg + 1)=2 and ml = ql(ql +1). This better balanes the work required by the global and loal weightonstrutions, sine ells of the same size an be used for both alulations.Table 1 shows good hoies of global and loal weights whih roughly balanethe degrees of freedom. In pratie, almost all the CPU time is devoted toloal orretions.qg 1 2 3 4 4 5 6 7 9 10ql 1 1 2 2 3 3 4 5 6 7mg 1 3 6 10 10 15 21 28 45 55ml 2 2 6 6 12 12 20 30 42 56Table 1: Global and loal orders (qg; ql) and required degrees of freedom(mg; ml) per ell.Remark: In pratie, one does not know the exat number of vorties inadvane, and hoie of L may therefore be diÆult. Too many points per ellis wasteful, while too few an lead to large errors if the number of degreesof freedom is not enough to ahieve the desired order of auray. Thus our17



ode determines L internally, using a user-spei�ed parameter S � 1 whihindiates the degree of safety desired. The ode determines L suh that eahlevel-L ell ontains at least bSm points, where m = q(q + 1)=2. If qg 6= ql,two safety parameters Sg and Sl are used.
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4 Implementation and numerial resultsWe implemented a version of the algorithm desribed above in Fortran andstudied several numerial examples. We measured the auray and eÆienyof the veloity evaluation sheme in isolation, using smooth initial vortiity�elds. Then we measured the error in a long-time alulation with Perl-man's standard test example. Finally, we studied the long-time interationof several smooth pathes of vortiity.4.1 Veloity evaluationFirst, we studied the auray of the veloity evaluation for several hoiesof the orders qg and ql, using two smooth initial vortiity �elds for whih theveloity an be evaluated analytially. These are the Gaussian!G(x; y; t) = e�(x2+y2)=�2 ; � = 12 ;and the Perlman test ase!P (x; y; t) = �max(0; 1� x2 � y2)�7 :The orresponding veloity �elds are(u; v) = �2(e�(x2+y2)=�2 � 1)2(x2 + y2) (y;�x)and (u; v) = (max(0; 1� x2 � y2))8 � 116(x2 + y2) (y;�x):These are stationary radial solutions of the Euler equations with shear andpopular test ases for vortex methods.In order to test our method, we used several di�erent tehniques to gen-erate the initial distribution of vorties. The most severe was simply togenerate uniformly distributed random vorties on the support of the initialvortiity. The least severe is to use the verties of an equispaed grid or agrid adapted to the initial vortiity, as in [17℄. An intermediate hoie is thefollowing adaptive random grid. Given N and n with n2 < N , �rst distributen2 vorties uniformly over the smallest retangle R enlosing the support of19



the vortiity. To do this, divide R into a n � n grid and hoose a point zirandomly in the ith grid ell. Of the remaining M = N � n2 vorties, putmi = $M j!(zi; 0)jPi j!(zi; 0)j%ormi+1 random vorties in the ith ell of the n�n grid. Thus the remainingvorties are distributed in regions where the vortiity is large, providing somedegree of adaptivity despite their randomness.We generated N = 200; 400; : : : ; 51200 vorties in an adaptive randomgrid on the square [�2; 2℄2 with n2 � N=4 for eah of the above two exam-ples and evaluated the veloity at eah of the vorties, using rules of orders(qg; ql) = (2; 1); (3; 2); (5; 3) and (6; 4). We took r = 1 and Sg = Sl = 1:5 inall ases. The resulting relative disrete L1 errors EG and EP for !G and !Prespetively, memory usages M (in thousands of integers), CPU times T inseonds on a Spar-2 workstation and other statistis are reported in Table2. Figure 4 shows some of the ell strutures for these alulations.The veloity evaluation learly requires CPU times and memory pro-portional to the number of vorties N , with a onstant of proportionalitydepending on the order q. The CPU time is dominated by the orretionof loal weights, whih in turn is mostly due to solving least-squares prob-lems. Exat evaluation of the Biot-Savart kernel and forming the matrix ofLegendre polynomials require less than a few perent of the orretion timeall told. Thus we expet the method would be a natural andidate for par-allel omputing, sine eah point is orreted independently. At some ostin memory, the least-squares systems ould be farmed out to many smallproessors to solve.In all ases, the error appears to be dereasing roughly aording to thetheoretial estimate O(� + hql). Note that when N doubles, the maximumell size h dereases by a fator p2, so we expet the error to derease bya fator 2ql=2 until � is reahed. The value of � appears to be of order 10�3to 10�4, suÆient for two to three digit auray; smaller � would requirelarger r, implying more orreted ells per point and longer running time.As one would expet, higher-order methods require more vorties to yieldhigher-order onvergene. However, we note that higher-order methods aswell as lower-order ones have 
 � 2 for large N .
20



(qg; ql) = (2; 1)N EG EP M T L 
200 .55-0 .25+1 4.1 2.5 5 2.32400 .94-1 .49-0 8.3 4.7 6 2.23800 .35-1 .63-1 16.5 7.6 7 2.071600 .17-1 .26-1 33.9 13.8 8 2.063200 .87-2 .10-1 65.7 26.1 9 2.026400 .49-2 .55-2 131 53.9 10 2.0412800 .31-2 .34-2 263 107 11 2.0225600 .21-2 .23-2 525 217 12 2.0251200 .14-2 .16-2 1050 423 13 2.04
(qg; ql) = (3; 2)N EG EP M T L 
200 .14+1 .61+1 3.8 7.3 4 6.89400 .20-0 .22+1 7.6 15.3 5 3.36800 .70-1 .92-1 15.1 25.0 6 2.411600 .88-2 .46-1 30.1 44.0 7 2.143200 .47-2 .84-2 60.1 78.3 8 2.106400 .22-2 .35-2 120 147 9 2.0812800 .14-2 .15-2 240 294 10 2.0625600 .10-2 .11-2 480 579 11 2.0651200 .62-3 .70-3 961 1180 12 2.10(qg; ql) = (5; 3)N EG EP M T L 
200 .14+1 .17+2 3.6 16.8 3 22.7400 .18+1 .49+2 7.2 41.2 4 66.0800 .27-0 .37+1 14.4 73.1 5 12.21600 .24-1 .56-0 28.7 123 6 3.63200 .33-2 .30-1 57.3 223 7 3.66400 .90-3 .27-2 114 438 8 2.912800 .66-3 .96-3 229 860 9 2.825600 .30-3 .39-3 458 1770 10 2.851200 .27-3 .31-3 916 3530 11 2.8
(qg; ql) = (6; 4)N EG EP M T L 
200 .20-0 .16+1 3.5 39.3 2 47.2400 .99-0 .41+2 7 115 3 814800 .10+1 .13+2 14 298 4 2191600 .10-1 .14+1 28 591 5 18.83200 .95-2 .11-0 56 1030 6 4.396400 .57-3 .50-2 112 1730 7 2.6012800 .24-3 .66-3 223 2810 8 2.3325600 .15-3 .25-3 447 5540 9 2.2251200 .72-4 .91-4 893 10900 10 2.18Table 2: Relative L1 errors EP and EG, memory usage (in K)M , CPU timesT (in seonds on a Spar-2), number of levels L and ondition number 
for evaluating the veloity due to Perlman-type and Gaussian vortiity �eldswith N points and a quadrature rule of orders (qg; ql).
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Figure 4: Cell strutures for veloity evaluation with adaptive random gridfor a Gaussian vortiity with (qg; ql) = (3; 2) and N = 100; 400; 1600; 6400vorties. 22



4.2 Long-time aurayWe also tested the long-time auray of the method on the Perlman testase, running for 0 � t � 100 � 32�, a �nal time at whih the fastest-moving partiles of uid (near the origin) have ompleted 8 revolutions whilethe slowest have ompleted only one. This strong shear is usually onsidereda severe test for a vortex method. We started with an adaptive random gridand used fourth-order Runge-Kutta for the time integration, with quadratureof orders (2; 2). We used N = 400; 800; 1600; 3200; 6400; 12800 vorties withNT = 100; 140; 200; 280; 400; 560 time steps from t = 0 to t = 100. In allases we took r = 1 and Sg = Sl = 1:5. The resulting relative disrete L1errors in the veloity are shown in Figure 5, in base-2 logarithmi sale to aidin the study of onvergene. They learly on�rm the long-time seond-orderauray of the method; the osillations observed by Perlman [15℄ are notseen. This pleasant behavior of the error is undoubtedly due to the ab initioalulation of the quadrature rule at eah time step. Partiularly enouragingis the slower inrease of the error when more vorties are employed. Toensure that this behavior was not due to the redution of the time step, theomputation has been repeated with smaller time steps, yielding the sameresults.4.3 Interating vortex pathesWe also omputed the evolution of several interating vortex pathes, eahgiven by a shifted and saled Gaussian. Thus the initial vortiity is given by!(x; y; 0) = mXj=1
j exp(�((x� xj)2 + (y � yj)2)=�2j)where (xj; yj) 2 [�2; 2℄2, �j 2 [0; 1℄ and 
j 2 [�1; 1℄ are pseudorandomuniformly distributed numbers suh that the irles of radius �j with enters(xj; yj) do not overlap. We used m = 4 pathes, with parameters shown inTable 3. We used N = 6400; 12800 and 25600 vorties with quadratures oforders (qg; ql) = (2; 2), with r = 1 and Sg = Sl = 1:5. The evolution of thisow is shown in Figure 6. The �gures show the �nal result at t = 28 withthree di�erent values of N ; the large-sale features of the results are learlyonverged. 23
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Figure 5: Relative L1 errors in the evolution of a Perlman path to timet = 100, omputed with a quadrature rule of orders (2; 2). From top tobottom, the lines plotted are the base-2 logarithms of the relative disrete L1errors in the veloity omputed with N = 400; 800; 1600; 3200; 6400; 12800points and NT = 100; 140; 200; 280; 400; 560 time steps up to t = 100.24



Figure 6: Evolution of four pathes of Gaussian vortiity, omputed with(qg; ql) = (2; 2) and N = 25600 vorties. The bottom row shows the �nalresult (t = 28) omputed with (from left to right) N = 25600, 12800 and6400 vorties. 25



j xj yj �j 
j1 -0.6988 -1.7756 0.6768 -0.45152 1.4363 -1.4566 0.3294 0.49683 -0.1722 0.4175 0.5807 -0.96434 -1.5009 -0.0937 0.2504 0.3418Table 3: Strengths 
j, enters (xj; yj) and sales �j for four Gaussian pathesof vortiity.
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A Exat integration formulasGiven z0, a ell C = [a; b℄� [; d℄ and a degree q, we require the integralsuij(z0) = ZC 1z0 � zPi(x)Pj(y)dxdyfor 0 � i + j � p = q � 1. HerePi(x) = pi(t) t = (x� xm)=xhwith xm = (b + a)=2, xh = (b � a)=2 and pi the Legendre polynomial onjtj � 1 de�ned by the reurrenep0(t) = 1; p1(t) = t; pi+1(t) = 2i+ 1i+ 1 p1(t)pi(t)� ii+ 1pi�1(t)for i � 1. Similar expressions hold for the y variable.The alulation proeeds in three steps: First, we express the produt ofLegendre polynomials in the formPi(x)Pj(y) = pXk=0 pXl=0Qijkl(z0 � z)k(�z0 � �z)l (A.1)where z = x+ �y. We de�ne Qijkl = 0 for onveniene, whenever any of i; j; kor l is negative or k + l exeeds i+ j. Then we haveuij(z0) = pXk=0 pXl=0Qijkl ZC(z0 � z)k�1(�z0 � �z)ldxdy= pXk=0 pXl=0QijklSkl(z0 � C)where Skl(C) = ZC zk�1�zldxdyStep two is to evaluate Skl when k = 0, and step three is to evaluate Skl whenk > 0. Note that we need only evaluate Skl one and for all, for 0 � k+ l � p.Step one is done by using the reurrene for Legendre polynomials, in theform Pj+1(y) = 2j + 1j + 1 P1(y)Pj(y)� jj + 1Pj�1(y)27



whih follows from (A.1). Multiplying by Pi(x), using (A.1) twie and equat-ing oeÆients givesQi;j+1kl = 2j + 1j + 1 hQ0100Qijkl +Q0110Qijk�1;l +Q0101Qijk;l�1i� jj + 1Qi;j�1kl :We use this reurrene to evaluate Qi;j+1kl for i = 0; 1; 2; : : : ; p and j =1; 2; : : : ; p� i.To evaluate the �rst two olumns of the reurrene, for whih j = 0; 1,we use the orresponding reurrene on i, whih is derived by interhangingx and y and i and j:Qi+1;jkl = 2i+ 1i + 1 hQ1000Qijkl +Q1010Qijk�1;l +Q1001Qijk;l�1i� ii+ 1Qi�1;jklfor j = 0; 1 and i = 1; 2; : : : ; p�j. This leaves only the four sets of oeÆientswith i; j = 0; 1 to be evaluated, and three are easy to ompute diretly fromthe de�nition:Q0000 = 1Q1000 = 12xh (z0 + �z0 � 2xm); Q1010 = �12xh ; Q1001 = �12xhQ0100 = 12�yh (z0 � �z0 � 2�ym); Q0110 = �12�yh ; Q0101 = 12�yhThe fourth set an be alulated most easily by multiplying:P1(x)P1(y) = 1xhyh (x� xm)(y � ym)= P1(x)P0(y)P0(x)P1(y)= (Q1000 +Q1010(z0 � z) +Q1001(�z0 � �z))(Q0100 +Q0110(z0 � z) +Q0101(�z0 � �z))implies Q1100 = Q1000Q0100Q1110 = Q1000Q0110 +Q1010Q0100Q1101 = Q1000Q0101 +Q1001Q0100Q1120 = Q1010Q0110Q1111 = Q1010Q0101 +Q1001Q0110Q1102 = Q1001Q0101:28



The reurrene pattern is shown in the following table:Q00 Q01 ! Q02 ! : : : Q0p&Q10 Q11 ! Q12 ! : : :# # &Q20 Q21 ! Q22... ... ...# #Qp�1;0 Qp�1;1#Qp0
(A.2)

Several approahes are possible to step two, using either omplex or realvariable tehniques. The omplex approah is super�ially simpler but en-ounters diÆulty when programming a onvenient branh of the omplexlogarithm. Hene we present a real-variable approah to the integralsS0l(C) = ZC 1z �zldxdy= ZC �zjzj2 �zldxdy= Z ba Z d x� �yx2 + y2 (x� �y)ldydx= Z d Z ba �12 log(x2 + y2)�x (x� �y)ldxdy� � Z ba Z d �12 log(x2 + y2)�y (x� �y)ldydxwhere subsripts x and y denote partial derivatives. When we integrate byparts, the double integrals anel, and two one-dimensional integrals remain:S0l(C) = 12 Z d log(x2 + y2)(x� �y)ldy jba� �2 Z ba log(x2 + y2)(x� �y)ldx jd : (A.3)Integrating by parts again gives further anellation, eliminates the loga-rithms, and yieldsS0l(C) = �l + 1 hFl+1(x; y)� (��)l+1Fl+1(y;�x)i jx=bx=a jy=dy=29



where Fl+1(x; y) = Z x0 xx2 + y2 (x� �y)l+1dx:Pulling out one fator of x��y from the power and using that x2 = x2+y2�y2gives Fl+1(x; y) = Z x0 (x� �y)ldx� �yGl+1(x; y)where Gl+1(x; y) = Z x0 1x2 + y2 (x� �y)l+1dx= Fl(x; y)� �yGl(x; y):The seond line omes from applying the same trik to Gl+1. Thus we have apair of oupled reurrene relations for the F 's and the G's, whih an easilybe solved to yield(l + 1)S0l = (2x)l+1Xl � (�2�y)l+1Yl jx=bx=a jy=dy=Xl = ��2 lXk=1 1k �x� �y2x �k � �4 log(x2 + y2) + tan�1 �yx�Yl = ��2 lXk=1 1k  x� �y�2�y !k � �4 log(x2 + y2)� tan�1 �yx� :Sine Xl and Yl satisfy trivial reurrene relations, this formula is easy toevaluate. Note that (2x)l+1Xl vanishes if x = 0 and (�2�y)l+1Yl vanishes ify = 0.Step three involves integrating polynomials over a retangle sine k > 0,so an be done several ways. Perhaps the simplest is to employ produtGaussian quadrature of suÆiently high order to be exat on polynomials ofthe degree involved. We present a slightly more eÆient approah, based onthe Cauhy integral formula and reurrene relations.The Cauhy integral formula for a possibly non-analyti funtion reads�C(z)f(z) = 12�� Z�C f(�)� � z � ZC �f� �� 1� � z dA(�)where �C is the harateristi funtion of the set C and z is not on theboundary �C of C. Put f(z) = 1l + 1zk�zl+130



so that �f��z = zk�zl:For z = 0, we have f = 0 and thereforeSkl(C) = 12�(l + 1) Z�C �k�1��l+1d�Parametrize eah edge of C as a line segment�(t) = t�j+1 + (1� t)�jwhere �j are the verties of C (1 � j � 5, with �5 = �1 for onveniene).Then Skl(C) = 12�(l + 1) 4Xj=1(�j+1 � �j)Tkl(�j; �j+1)where Tkl(a; b) = Z 10 (tb + (1� t)a)k�1(t�b + (1� t)�a)l+1dtfor 0 � k + l � q and omplex numbers a and b.Tkl an be evaluated exatly by the binomial theorem or by Gaussianintegration sine k � 1. We present a reurrene relation based on integrationby parts. First, observe that when k = 1 the integral is trivial:T1l = 1(l + 2)(�b� �a)(�bl+2 � �al+2):For k � 2, we integrate by parts to obtainTkl = 1(l + 2)(�b� �a)(bk�1�bl+2 � ak�1�al+2)� (k � 1)(b� a)(l + 2)(�b� �a) Tk�1;l+1:Thus k an be redued and l inreased until the �rst exponent goes to 1,whereupon T1;k+l�1 is trivial. The reurrene an be solved expliitly, butthe resulting formula is best evaluated by reurrene.B Natural interpolation and ontouringA ommon diÆulty in vortex methods is that the vortiity is known only atsattered data points, so some form of interpolation must be used to evaluate31



the vortiity at other points. One advantage of the approah of this paper isthe natural interpolation tehnique provided by the tree struture. Supposewe have vorties zj in a ell C and we want to know the vortiity at a pointz in C. We approximate !(z) by a weighted sum!(z) � Xzj2C 
j(z)!(zj);where the interpolation weights 
j(z) form the least 2-norm solution of theunderdetermined linear systemXzj2C 
j(z)Pk(xj)Pl(yj) = Pk(x)Pl(y); 0 � k + l � q � 1:This gives an qth order interpolation formula on eah ell, with reasonablysmall weights if there are enough interpolation points zj in C.We found this tehnique useful in ontouring the vortiity produed byour method. To ontour the vortiity, we �rst interpolated ! to a suÆiently�ne equidistant grid on the omputational domain, then found the level setsof the linear interpolant to the grid values. This produes ontinuous ontourlines. Figure 7 shows the points, the ells, and �ve ontour levels produedwhen this tehnique is applied to the funtion!(x; y) = os(kx) os(ky) + � sin(kx) sin(ky); k = 11; � = 1=10:(The points and ells are omitted from the last piture for larity.) Wegenerated N = 129, 515, 2051 and 8197 pseudorandom uniformly distributedpoints in [0; 1℄2, interpolated them to an equidistant grid with M = 10, 20,40 and 80 points per side with fourth-order auray, and ontoured theresulting values. With 8197 points on a 80 by 80 grid, for example, weobtained three-digit auray at eah grid point, and j!(z)j was less than0:5 � 10�2 at eah endpoint of the 2018 segments obtained. The 10 by 10grid, of ourse, annot resolve this funtion, but the 20 by 20 grid does well.
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Figure 7: Contour lines produed by fourth-order sattered data interpola-tion, for random points on [0; 1℄2. 33
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