
2-D Vortex Methodsand Singular Quadrature RulesJohn Strain �Department of Mathemati
sandLawren
e Berkeley LaboratoryUniversity of CaliforniaBerkeley, California 94720January 13, 2000Abstra
tA new high-order vortex method for the 2-D Euler equations ispresented. The method eliminates smoothing by 
onstru
ting a sin-gular quadrature rule for the Biot-Savart law at ea
h time step, usingquadtrees and orthogonal polynomials. Theory and numeri
al exper-iments show that the method is a

urate and eÆ
ient, yielding ex
el-lent long-term a

ura
y in almost optimal CPU time.
�Resear
h supported by a NSF Young Investigator Award, Air For
e OÆ
e of S
ienti�
Resear
h Grant FDF49620-93-1-0053, and the Applied Mathemati
al S
ien
es Subprogramof the OÆ
e of Energy Resear
h, U.S. Department of Energy under Contra
t DE-AC03-76SF00098. 1



Contents1 Introdu
tion 32 Vortex methods for 2-D Euler 53 Velo
ity evaluation 93.1 Data stru
ture . . . . . . . . . . . . . . . . . . . . . . . . . . . 93.2 Smooth rules . . . . . . . . . . . . . . . . . . . . . . . . . . . 113.3 Error bounds . . . . . . . . . . . . . . . . . . . . . . . . . . . 123.4 Un
orre
ted velo
ity evaluation . . . . . . . . . . . . . . . . . 133.5 Singular rules . . . . . . . . . . . . . . . . . . . . . . . . . . . 143.6 Error bounds . . . . . . . . . . . . . . . . . . . . . . . . . . . 154 Implementation and numeri
al results 194.1 Velo
ity evaluation . . . . . . . . . . . . . . . . . . . . . . . . 194.2 Long-time a

ura
y . . . . . . . . . . . . . . . . . . . . . . . . 234.3 Intera
ting vortex pat
hes . . . . . . . . . . . . . . . . . . . . 23A Exa
t integration formulas 27B Natural interpolation and 
ontouring 31List of Figures1 Vortex method algorithm . . . . . . . . . . . . . . . . . . . . . 82 Tree stru
ture with p or p+ 1 points per 
ell. . . . . . . . . . 103 Velo
ity evaluation algorithm . . . . . . . . . . . . . . . . . . 164 Tree stru
tures for velo
ity evaluation. . . . . . . . . . . . . . 225 Long-time a

ura
y for a Perlman pat
h . . . . . . . . . . . . 246 Four Gaussian vortex pat
hes (N = 25600). . . . . . . . . . . 257 Contouring examples. . . . . . . . . . . . . . . . . . . . . . . . 33
2



1 Introdu
tionVortex methods are powerful and sophisti
ated numeri
al methods for 
om-puting in
ompressible turbulent 
ows Be
ause they are grid-free and nat-urally adaptive, they 
reate little or no numeri
al di�usion and preservefeatures whi
h other methods may distort. Vortex methods are parti
ularlyuseful when 
omputing free-surfa
e, free-spa
e and external 
ows, be
auseonly the support of the vorti
ity need be dis
retized. Some re
ent work onvortex methods 
an be found in [?℄.A typi
al vortex method involves several steps; velo
ity evaluation, vor-tex motion, di�usion and boundary 
onditions. In this paper, we fo
us onthe most expensive and diÆ
ult step, the velo
ity evaluation. We employstandard te
hniques for the vortex motion and 
onsider invis
id free-spa
e
ow to eliminate di�usion and boundary 
onditions. General ba
kgroundmaterial on vortex methods is presented in Se
tion 2.The standard velo
ity evaluation approximates the Biot-Savart law by a�xed quadrature rule, with weights 
onserved by in
ompressibility and inde-pendent of the singularity in the Biot-Savart kernel. Smoothing is requiredto make the quadrature rule a

urate.There are three major and interrelated diÆ
ulties with the standard ap-proa
h. First, the use of �xed quadrature weights loses a

ura
y as the 
owbe
omes disorganized. Perlman [15℄ and Beale and Majda [4℄ observed largeos
illations in the error during long-time integrations. These os
illationsare not present in triangulated vortex methods [17℄, regridded methods [14℄,or Beale's method [3℄, whi
h generate new weights at ea
h step. Se
ond,smoothing is required be
ause the quadrature weights ignore the singularity;this lowers the order of 
onvergen
e. Third, if any produ
t integration [9, 10℄or similar te
hniques are used to treat the singularity, the variable weightspre
lude the use of the fast multipole method [5℄ on whi
h the pra
ti
alityof the method depends.This paper presents a di�erent velo
ity evaluation method whi
h over-
omes these diÆ
ulties. A new quadrature rule at ea
h step preserves long-time a

ura
y. Smoothing is unne
essary sin
e the method integrates theBiot-Savart law with order-q a

ura
y for any �xed q. Only the nearbyweights vary with the singularity, so the fast multipole method 
an still beapplied.Our method is des
ribed in Se
tion 3. It is based on lo
ally-
orre
tedquadrature rules for multidimensional singular kernels [19℄ and pro
eeds in3



stages. First a data stru
ture groups the N vorti
es into 
ells 
onvenientfor integration. Then a global order-q quadrature rule whi
h ignores thesingularity is built. The fast multipole method evaluates this rule eÆ
iently(yielding a regridded vortex method if smoothing is used). Finally, we 
orre
tthe weights of vorti
es near the evaluation point and the appropriate termsof the velo
ity, using the detailed 
al
ulations from Appendix A.Numeri
al results presented in Se
tion 4 show that this method has sev-eral ni
e features. It runs in O(N logN) CPU time with N vorti
es anda
hieves essentially qth order a

ura
y for any spe
i�ed q. It deals e�e
-tively with arbitrary initial distributions of vorti
es. Long-time a

ura
y ispreserved. The method is naturally parallel sin
e ea
h point is 
orre
tedindependently.The method extends naturally to 3-D 
al
ulations, Navier-Stokes equa-tions, and 
ows in bounded domains. It is equipped with a natural interpo-lation whi
h gives the vorti
ity at any point (see Appendix B).
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2 Vortex methods for 2-D EulerThe Euler equations for the velo
ity �eld (u(x; y; t); v(x; y; t)) of two-dimensionalin
ompressible invis
id 
ow are_u+ uux + vuy + px=� = 0 (2.1)_v + uvx + vvy + py=� = 0 (2.2)ux + vy = 0; (2.3)where subs
ripts denote partial derivatives, overdots denote time derivatives,� is the (
onstant) density of the 
uid and p(x; y; t) the pressure.The vorti
ity ! := vx � uy satis�es the vorti
ity equation_! + u!x + v!y = 0;whi
h implies that the vorti
ity is passively transported along streamlines.By in
ompressibility, we 
an write u in terms of a stream fun
tion  :u =  y; v = � x:The de�nition of vorti
ity then yields a Poisson equation for the streamfun
tion: �� = !:In 
ow without boundaries with zero velo
ity at in�nity, this implies theBiot-Savart law(u(x; y; t); v(x; y; t)) = ZIR2 K(z � z0)!(z0; t) dx0dy0: (2.4)Here it is 
onvenient to introdu
e the 
omplex variable z = x + �y (where� = p�1) and the Biot-Savart kernelK(z) = �2��z = (�y; x)2�(x2 + y2) :The 
ow map ' : IR2� [0; T ℄!IR2 is de�ned so that '(�; t) is the positionat time t of the 
uid parti
le initially at �. Sin
e a 
uid parti
le moves withvelo
ity (u; v), the Biot-Savart law (2.4) implies that '(�; t) satis�es_'(�; t) = ZIR2 K('(�; t)� z)!(z; t) dxdy:5



Changing variables z  '(z; t) in the integral gives_'(�; t) = ZIR2 K('(�; t)� '(z; t))!('(z; t); t) dxdy= ZIR2 K('(�; t)� '(z; t))!(z; 0) dxdy (2.5)sin
e the Ja
obian of '(�; t) is unity and vorti
ity is 
onstant along stream-lines.Vortex methods use various re
ipes for evaluating the Biot-Savart integralnumeri
ally. Lagrangian methods usually evaluate (2.5), tra
ing ba
k thevorti
ity to the initial time and usually losing a

ura
y as the initial griddistorts. Free-Lagrangian methods approximate the velo
ity at ea
h time tvia (2.4).The point vortex method [16℄, for example, approximates (2.5) by_zi =Xj 6=iK(zi � zj)!(�j; 0)h2where initially the vorti
es zi(t) are the N verti
es �j of an equidistant gridwith side h. This is very physi
al sin
e it moves N point vorti
es with 
ir
u-lations �j = !(�j)h2. Although the method 
onverges [11℄, it presents serious
omputational diÆ
ulties: Sin
e the kernel is unbounded, the 
omputed ve-lo
ity 
an blow up if vorti
es 
ome too 
lose. Chorin and Bernard showedin [?℄ that the point vortex method 
an give problems when 
omputing themotion of vortex sheets.Most vortex methods, however, have been based on Chorin's version [7℄ inwhi
h the singularity is smoothed by 
onvolution with a blob fun
tion gÆ(z):KÆ = K � gÆ; gÆ(z) = 1Æ2g �zÆ� :This gives the standard vortex blob method_zi = NXj=1KÆ(zi � zj)!(�j; 0)h2:Convergen
e theory for this method is presented in [1, 4, 8, 12℄. The nu-meri
al behavior of this method has been studied in [15, 3℄, for example.It has been very widely used in pra
ti
e and generalized to model 
omplex6



three-dimensional vis
ous turbulent 
ows with boundaries and 
ombustion[6, 7, 13℄.Triangulated vortex methods [17, ?℄ approximate ! in (2.4) by a pie
ewiselinear fun
tion on a triangulation. For ea
h t let Th(t) = f�i(t)gNTi=1 be atriangulation 
overing the support of !, with N verti
es fzj(t)gNj=1, and letVh = fv(z) 2 C0(IR2) : vj�i is linear for ea
h igbe the spa
e of 
ontinuous pie
ewise linear fun
tions over Th(t). At ea
htime t the vorti
ity !(z; t) is approximated by the pie
ewise linear interpolant!h(z; t) 2 Vh. The velo
ity is approximated byuh(z; t) = ZIR2 K(z � z0)!h(z0; t) dz0 = NTXi=1 Z�i K(z � z0)!h(z0; t) dz0:A variant of the fast multipole method and a fast Delaunay triangulations
heme are used to speed up the 
al
ulation, and an adaptive initial tri-angulation s
heme to resolve 
omplex initial data. This method appearsstraightforward to extend to 
ows in bounded domains, three-dimensionalproblems, and vis
ous 
ows. However, it appears quite diÆ
ult to make atriangulated vortex method with higher than se
ond-order a

ura
y in spa
e.Triangulated vortex methods 
an be viewed as generating a new quadra-ture rule|one based on produ
t integration|at ea
h time step. Anotherinteresting approa
h to 
onstru
ting a new rule at ea
h step was presentedby Beale [3℄.In this paper, we 
onstru
t a qth-order quadrature rule for the evaluationof the Biot-Savart law (2.4) at ea
h time step. Thus we obtain eÆ
ient anda

urate free-Lagrangian vortex methods of any desired order.A general vortex method is outlined in Figure 1. Here the vorti
es aremoved by a se
ond-order Runge-Kutta method for simpli
ity; any ODE solver
an be used. The velo
ity evaluation is des
ribed in detail in the next se
tion.
7



AlgorithmRead parameters from input file:Time step k, initial and final times ti and tf.Initial vortex lo
ations �j and strengths !j = !(�j; ti) for 1 � j � N .Control parametersExa
t solution parameters (if available)Set t = ti.Time loop: while t < tf dot = t+ kCompute weights wij and evaluate velo
ities ui of vorti
es zi:ui = PNj=1wijK(zi � zj)!j � R K(zi � z)!(z; t)dxdyFirst half-step of se
ond-order Runge-Kutta:Zi = zi + kuiCompute weights wij and evaluate velo
ities Ui of temporary positions Zi:Ui = PNj=1wijK(Zi � Zj)!j � R K(Zi � z)!(z; t + k)dxdySe
ond half-step of se
ond-order Runge-Kutta:zi = zi + k(ui + Ui)=2Measure error, plot results, write output, et
.End of time loop: end doFigure 1: General outline of a free-Lagrangian vortex method.
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3 Velo
ity evaluationWe now des
ribe the velo
ity evaluation used in our method, fo
using onquadrature rules for the Biot-Savart law with arbitrary quadrature points.Our 
onstru
tion has four stages. First, we partition the smallest re
t-angle B = [a; b℄� [
; d℄ 
ontaining all the vorti
es into re
tangular 
ells ea
h
ontaining a �xed number of vorti
es, determined by the order of a

ura
yq. Se
ond, we 
onstru
t a quadrature rule of order q on smooth fun
tions,ignoring the singularity. Third, the weights of this smooth rule are used to doan un
orre
ted velo
ity evaluation with the fast multipole method. Finally,we 
orre
t lo
ally by re
omputing the weights of vorti
es near ea
h evalua-tion point and re-evaluating the appropriate terms of the sum. We 
on
ludewith error bounds for the 
orre
ted rule.3.1 Data stru
tureWe �rst partition B into re
tangular 
ells 
ontaining pre
isely p or p + 1points zj ea
h, where p will be 
hosen in Se
tion 3.2.Let B = B1 be the level-0 root of the tree. Divide B1 in half along itslongest edge, with the dividing plane lo
ated so that ea
h half of B1 
ontainseither bN=2
 or bN=2
 + 1 points. This gives the level-1 
ells B2 and B3.Re
ursively, split B2 and B3 along their longest edges to get B4 throughB7, ea
h 
ontaining bN=4
 or bN=4
+ 1 points zj. Repeat this pro
edure Ltimes to get M = 2L 
ells Bi on the �nest level L, numbered from i =M toi = 2M � 1, ea
h 
ontaining p = bN=M
 or p + 1 points zj. The union ofall the 
ells on any given level is B. The tree stru
ture is stored by listingthe boundaries of ea
h 
ell Bi = [ai; bi℄ � [
i; di℄ from i = 1 to i = 2M � 1,a total of 4 � 2M numbers, and indexing the points into a list so that thepoints zj 2 Bi are given by j = j(s) for s = b(i); : : : ; e(i) and three integerfun
tions j, b and e. This 
an be done in O(N logN), but the simplestmethod requires sorting ea
h 
ell before ea
h subdivision, giving a total 
ostO(N log2N) for the tree 
onstru
tion with an O(N logN) sorting methodsu
h as Heapsort. Figure 2 shows an example. We note that hierar
hi
aldata stru
tures with similar properties { though not this parti
ular stru
ture{ have been extensively dis
ussed in [18℄.Remark: The tree stru
ture permits eÆ
ient O(L) lookup of the level-L
ell 
ontaining any point z 2 B. Begin at the root B1 and dis
ard all 
hildrennot 
ontaining z; repeat re
ursively with B1 repla
ed by the remaining 
hild9



Figure 2: Levels 1 through 6 in the tree stru
ture with N = 1137 pseudo-random uniformly distributed points on [0; 1℄2.10



until level L is rea
hed. Similarly, all 
ells interse
ting a given re
tangle R
an be listed in time proportional to L times their number. We will use thisto 
onstru
t singular rules.The 
ell stru
ture 
an likewise be used to determine the smallest distan
ebetween two vorti
es dm = mini 6=j jzi � zjj:First, the minimum distan
e dm between any two distin
t vorti
es in thesame level-L 
ell is 
omputed. This requires O(Np2) CPU time. Then forea
h vortex zi, level-L 
ells interse
ting the ball of radius dm around zi arelisted and dm is repla
ed by the minimum distan
e to any other vortex inthose 
ells. Sin
e the minimum dm found so far is used at ea
h step, it israrely ne
essary to sear
h additional 
ells and the total 
ost is O(N).3.2 Smooth rulesWe now 
onstru
t qth-order quadrature rules with the N quadrature pointszj for integrating smooth fun
tions over the re
tangle B. Let q � 1 be thedesired order of a

ura
y of the rule, assume N � m := q(q+1)=2, and 
hoosean integer L � 0 with p := bN=2L
 � m. The data stru
ture just 
onstru
teddivides B into M = 2L re
tangular sub
ells Bi with disjoint interiors su
hthat B is their union and ea
h Bi 
ontains either p or p + 1 points zj. Onea
h Bi, we 
onstru
t lo
al weights W ji for zj 2 Bi whi
h integrate the mmonomials xkyl with 0 � k + l � q � 1 exa
tly over Bi. Be
ause of thewell-known ill-
onditioning of the power basis, we 
onstru
t these weights bysolving the following equivalent system of m linear equations in at least punknowns:Xzj2Bi Pk(xj)Pl(yj)W ij = ZBi Pk(x)Pl(y)dxdy = Æk0Æl0jBij 0 � k+l � q�1:(3.1)Here jBij = (bi � ai)(di � 
i) is the area of Bi andPk(x) = pk(t); x = xm + txh;where pk(t) are the usual Legendre polynomials on [�1; 1℄ and xm = (bi +ai)=2, xh = (bi � ai)=2, with similar expressions for the y variable. Sin
ep � m, this system of m equations in at least p unknowns generi
ally hassolutions. We 
ompute the solution W ij of least Eu
lidean norm, using the11



QR de
omposition routine from LAPACK [2℄. Se
tion 3.3 dis
usses what todo when no solution exists. The weights of the rule W are then de�ned tobe Wj =W ij where zj 2 Bi.Remark: The te
hnique employed to 
onstru
t this quadrature rule hasmany generalizations and appli
ations. The general idea is that we approx-imate a linear fun
tional F (') of fun
tions ' on ea
h 
ell by a weighted
ombination of evaluations Ei(') = '(zi) at the points zi, with the weightsdetermined to integrate polynomials of degree � q� 1 exa
tly over ea
h 
elland have small norm. For example, suppose we want to interpolate the val-ues of the vorti
ity to a point z = (x; y) whi
h is not one of the vorti
es zi.We 
an 
onstru
t weights for interpolation by requiring them to be exa
t onmonomials of degree � q � 1 on the 
ell Bi where z lies, yielding qth-ordera

ura
y on smooth fun
tions. This yields a least-squares problem simi-lar to the equations (3.1) for the smooth rule integration weights, but withPk(x)Pl(y) repla
ing RBi Pk(x)Pl(y)dxdy on the right-hand side. This te
h-nique, whi
h we use to 
ontour the vorti
ity, is dis
ussed further in AppendixB.3.3 Error boundsThe weights Wj now integrate all monomials xkyl with 0 � k + l � q � 1exa
tly over all level-L 
ells Bi for M � i � 2M � 1. In [19℄, we showedthat this property alone results in order-q a

ura
y, with a 
ondition numberappearing in the error bound:Theorem 1 Let B = [Mi=1Bi where Bi = [ai; bi℄ � [
i; di℄. Suppose that Wintegrates xkyl exa
tly over ea
h Bi for 0 � k + l � q � 1. Then for any Cqfun
tion g on B, the errorE = ZB g(z)dxdy � NXj=1Wjg(zj)satis�es jEj � 
jBj(h=2)q Xk+l=q 1k!l! jj�kx�lygjjC0(B)where h = maximax(bi � ai; di � 
i) is the longest 
ell edge,
 = 1 + 1jBj NXj=1 jWjj12



is the 
ondition number of the rule W , jBj = (b� a)(d� 
) is the area of B,and the C0 norm is de�ned byjj'jjC0(B) := maxz2B j'(z)jfor 
ontinuous fun
tions ' on B.Note that 
 plays the role of a 
ondition number for W , mediating be-tween the intrinsi
 diÆ
ulty of integrating g (as measured by the derivativesof g) and the a

ura
y of the �nal result. In general, 
 
annot be boundedfor arbitrary points, but we 
an easily 
ompute it a posteriori, yielding anex
ellent diagnosti
 for the quality of the rule. If all the weights are positive,
 = 2; otherwise, 
 > 2.Remark: There are several ways to redu
e ea
h 
ell 
ondition number
i = 1 + 1jBij Pzj2Bi jWjj and thus obtain a better global 
ondition number
 = Pi
i. Usually taking more points per 
ell redu
es 
, sin
e the addi-tional degrees of freedom are not needed to satisfy (3.1) and 
an be appliedto redu
ing the 2-norm of W ij . However, this in
reases the 
ost of 
omputingW 
onsiderably and in
reases the 
ell size h, so taking larger p is not 
ost-e�e
tive if applied globally. It 
an be applied adaptively, however, by goingup to a di�erent level of the tree stru
ture when ne
essary. To implementthis, we spe
ify a toleran
e 
m. When 
i � 
m, we merge Bi with its sib-ling in the tree stru
ture, obtaining a 
ell BI 
ontaining twi
e as many pointszj. We then re
ompute all weights Wj for whi
h zj 2 BI , usually obtaining
I � 
m at the 
ost of a larger QR de
omposition and a larger 
ell size h.If 
I is still too large, the pro
ess may be repeated.This adaptive te
hnique also permits treatment of the degenerate 
aseswhen no solution exists to (3.1) on 
ell Bi, be
ause the points zj are not insuÆ
iently general position. Su
h a 
ell 
an be merged with its sibling, afterwhi
h a solution is mu
h more likely to exist. The pro
ess may be repeatedif ne
essary.3.4 Un
orre
ted velo
ity evaluationNext we evaluate the un
orre
ted sumsu(zi) = NXj=1WjK(zi � zj)!j 1 � i � N13



whi
h approximate the Biot-Savart law (2.4), using the weights Wj designedfor smooth fun
tions and ignoring the singularity of the Biot-Savart kernelK(z) when z = 0. We ex
lude the in�nite term j = i. Note that if asmoothed kernel is used in pla
e of K, we have a regridded vortex methodwhi
h may be more a

urate than standard vortex methods.Dire
t evaluation of these sums 
osts O(N2) CPU time, whi
h rapidlybe
omes prohibitive for the large numbers of vorti
es needed to model inter-esting 
ows. Thus we use the adaptive fast multipole method (FMM) of [5℄to evaluate this sum to any pres
ribed a

ura
y � in O(N logN log �) CPUtime. In pra
ti
e, the FMM is faster than dire
t evaluation on a Spar
-2with � = 10�7 whenever N � 300, and mu
h faster when N � 1000 or so.3.5 Singular rulesWe now sele
t and 
orre
t 
ertain weights Wj of the smooth rule W , forea
h evaluation point zi, to produ
e a singular rule w whi
h will integratesingular fun
tions f(z) = '(z)K(z � zi) more a

urately when ' is smooth.For 
onvenien
e let �(z) = K(z � s) where s = zi.The weights to be 
orre
ted are sele
ted by forming a list of 
ells Bi inthe tree stru
ture built for the smooth rule W and 
orre
ting all the weightsWj for vorti
es zj lying in some 
ell on the list. For ea
h 
ell Bi on the list,we 
onstru
t the 
orre
ted weights wj for zj 2 Bi by requiring wj to satisfythe linear system of 2m equations whi
h expresses that Pk(x)Pl(y)�(z) isintegrated exa
tly for 0 � k + l � q � 1:Xzj2Bi wjPk(xj)Pl(yj)�(zj) = ZBi Pk(x)Pl(y)�(z)dxdy (3.2)for 0 � k+ l � q�1 and both real and imaginary parts of �. Exa
t formulasfor the integrals on the right-hand side of (3.2) are derived in Appendix A.In order for these equations generi
ally to have solutions w, we 
annotuse the 
ells Bi on the lowest level L of the tree stru
ture, be
ause ea
hof these 
ontains only p � m or p + 1 of the points zj. Instead, we usehalf as many larger 
ells on level L0 := L � 1, ea
h 
ontaining at leastp0 := N=2L0 � 2m points. Thus (3.2) will generi
ally be solvable by a QRde
omposition, obtaining w as least 2-norm solution if it exists.In order to keep the number of 
orre
ted 
ells bounded while 
orre
tingenough to ensure a

ura
y, we sele
t 
ells for 
orre
tion by the following14



approa
h. The user spe
i�es a dimensionless 
orre
tion radius r
, typi
ally oforder unity. We �nd the 
ell Bi = [ai; bi℄�[
i; di℄ in whi
h the evaluation pointlies, and let R = [�r
(bi�ai)=2; r
(bi�ai)=2℄� [�r
(di� 
i)=2; r
(di� 
i)=2℄.We then 
orre
t all 
ells interse
ting the re
tangle s+R. This s
ales the sizeof the 
orre
ted area to the lo
al 
ell size and therefore to the lo
al density ofnodes, keeping the number of 
orre
ted points per evaluation point s boundedas N!1 with r
 �xed. We found r
 � 1 to give ex
ellent results in pra
ti
e.The lookup of 
ells to be 
orre
ted 
osts only O(L) per 
ell. The 
ompletealgorithm is presented in Figure 3.3.6 Error boundsThe key requirement in the error bound proved in [19℄ is that we must 
or-re
t all 
ells suÆ
iently 
lose to the evaluation point s. For notational 
on-venien
e, let's renumber the M 
ells used in the singular rule, so that the�rst n are 
orre
ted and the last M � n are not: thus B = [Mi=1Bi whereea
h 
ell Bi 
ontains at least 2m points for 1 � i � n and at least m pointsfor n + 1 � i � M . Let h = maximax(bi � ai; di � 
i) be the maximum 
elledge. Then we have weights wj su
h thatZBi �(z)xkyldxdy = Xzj2Biwj�(zj)xkjyljfor 0 � k + l � q � 1 and 1 � i � n, whileZBi xkyldxdy = Xzj2Bi wjxkj yljfor 0 � k + l � q � 1 and n+ 1 � i � M . Assume that � is Cq and that itsqth order derivatives satisfy a growth 
ondition:j�kx�ly�(z)j � CÆ�2�k�l jz � sj � Æ > 0for k + l = 0 and k + l = q. This assumption is very mild sin
e it does noteven guarantee that � is in L1(B). It is satis�ed by the Biot-Savart kernel�(z) = K(z � s).With these assumptions, we proved the following error bound in [19℄:Theorem 2 Fix � > 0 and 
orre
t the O(1) 
ells interse
ting s + R wherer
 = ��1=q. Then the error in integrating '�� over B with the lo
ally 
orre
ted15



Velo
ity evaluationSet parameters:Degrees of freedom required per 
ell: m = q(q + 1)=2 .Top level in 
ell stru
ture: L = blog2(N=m)
.Points per 
ell: p = N=2L.Constru
t 
ell data stru
ture:B1 = B = smallest re
tangle en
losing all the points zi.do l = 1; L� 1Divide level-l 
ells along longest edge with half the pointsin ea
h sub
ell, yielding level-l + 1 
ells.end doResult: 2L 
ells on level L with p or p+ 1 points ea
h.Compute smooth weights Wi one 
ell at a time.do i = 1; 2LCompute least-2-norm solution W ofPzj2Bi WjPk(xj)Pl(yj) = Æk0Æl0jBij for 0 � k + l � q � 1end doUse smooth weights and FMM to evaluate un
orre
ted velo
ity field U:do i = 1; NUi = PNj=1WjK(zi � zj)!jend doCorre
t velo
ity field ui one point at a time.do i = 1; Nui = UiFind 
ell BI 
ontaining evaluation point zi.List 
ells Bn interse
ting re
tangle 
entered at zi, with size r
BI.forea
h Bn doForm and solve least-squares problem for Wj on 
ell Bn:Pzj2Bn Pk(xj)Pl(yj)K(zi � zj)Wj = RBn Pk(x)Pl(y)K(zi � z)dxdyCorre
t 
ontribution from Bn to Ui to get ui:ui = ui +Pzj2Bn(wj �Wj)K(zi � zj)!jend forend do Figure 3: Velo
ity evaluation algorithm.16



rule w is bounded byE = ������ZB '(z)�(z)dxdy � NXj=1wj'(zj)�(zj)������� C(
 + 
�) �j log hjhqjj'jjCq(B) + �jj'jjC0(B)�where C depends only on B and the derivatives of �,
 = 1 + 1jBj MXj=1 jwjj and 
� = 1 + 1jBj MXj=1 jwj�(zj)j:This theorem implies that we need only 
orre
t a �xed number of points asN !1 if we are satis�ed with an \O(�+hk)" error bound. This error boundis natural in this 
ontext, sin
e the fast multipole method itself evaluates theun
orre
ted velo
ity �eld only to a

ura
y �.Remark: It is not ne
essary to 
orre
t the lo
al weights wj to the sameorder of a

ura
y as the global weights W . Indeed, an eÆ
ient approa
h is to
hoose distin
t global and lo
al orders qg and ql, with qg � ql, 
orrespondingto roughly equal degrees of freedom mg = qg(qg + 1)=2 and ml = ql(ql +1). This better balan
es the work required by the global and lo
al weight
onstru
tions, sin
e 
ells of the same size 
an be used for both 
al
ulations.Table 1 shows good 
hoi
es of global and lo
al weights whi
h roughly balan
ethe degrees of freedom. In pra
ti
e, almost all the CPU time is devoted tolo
al 
orre
tions.qg 1 2 3 4 4 5 6 7 9 10ql 1 1 2 2 3 3 4 5 6 7mg 1 3 6 10 10 15 21 28 45 55ml 2 2 6 6 12 12 20 30 42 56Table 1: Global and lo
al orders (qg; ql) and required degrees of freedom(mg; ml) per 
ell.Remark: In pra
ti
e, one does not know the exa
t number of vorti
es inadvan
e, and 
hoi
e of L may therefore be diÆ
ult. Too many points per 
ellis wasteful, while too few 
an lead to large errors if the number of degreesof freedom is not enough to a
hieve the desired order of a

ura
y. Thus our17




ode determines L internally, using a user-spe
i�ed parameter S � 1 whi
hindi
ates the degree of safety desired. The 
ode determines L su
h that ea
hlevel-L 
ell 
ontains at least bSm
 points, where m = q(q + 1)=2. If qg 6= ql,two safety parameters Sg and Sl are used.

18



4 Implementation and numeri
al resultsWe implemented a version of the algorithm des
ribed above in Fortran andstudied several numeri
al examples. We measured the a

ura
y and eÆ
ien
yof the velo
ity evaluation s
heme in isolation, using smooth initial vorti
ity�elds. Then we measured the error in a long-time 
al
ulation with Perl-man's standard test example. Finally, we studied the long-time intera
tionof several smooth pat
hes of vorti
ity.4.1 Velo
ity evaluationFirst, we studied the a

ura
y of the velo
ity evaluation for several 
hoi
esof the orders qg and ql, using two smooth initial vorti
ity �elds for whi
h thevelo
ity 
an be evaluated analyti
ally. These are the Gaussian!G(x; y; t) = e�(x2+y2)=�2 ; � = 12 ;and the Perlman test 
ase!P (x; y; t) = �max(0; 1� x2 � y2)�7 :The 
orresponding velo
ity �elds are(u; v) = �2(e�(x2+y2)=�2 � 1)2(x2 + y2) (y;�x)and (u; v) = (max(0; 1� x2 � y2))8 � 116(x2 + y2) (y;�x):These are stationary radial solutions of the Euler equations with shear andpopular test 
ases for vortex methods.In order to test our method, we used several di�erent te
hniques to gen-erate the initial distribution of vorti
es. The most severe was simply togenerate uniformly distributed random vorti
es on the support of the initialvorti
ity. The least severe is to use the verti
es of an equispa
ed grid or agrid adapted to the initial vorti
ity, as in [17℄. An intermediate 
hoi
e is thefollowing adaptive random grid. Given N and n with n2 < N , �rst distributen2 vorti
es uniformly over the smallest re
tangle R en
losing the support of19



the vorti
ity. To do this, divide R into a n � n grid and 
hoose a point zirandomly in the ith grid 
ell. Of the remaining M = N � n2 vorti
es, putmi = $M j!(zi; 0)jPi j!(zi; 0)j%ormi+1 random vorti
es in the ith 
ell of the n�n grid. Thus the remainingvorti
es are distributed in regions where the vorti
ity is large, providing somedegree of adaptivity despite their randomness.We generated N = 200; 400; : : : ; 51200 vorti
es in an adaptive randomgrid on the square [�2; 2℄2 with n2 � N=4 for ea
h of the above two exam-ples and evaluated the velo
ity at ea
h of the vorti
es, using rules of orders(qg; ql) = (2; 1); (3; 2); (5; 3) and (6; 4). We took r
 = 1 and Sg = Sl = 1:5 inall 
ases. The resulting relative dis
rete L1 errors EG and EP for !G and !Prespe
tively, memory usages M (in thousands of integers), CPU times T inse
onds on a Spar
-2 workstation and other statisti
s are reported in Table2. Figure 4 shows some of the 
ell stru
tures for these 
al
ulations.The velo
ity evaluation 
learly requires CPU times and memory pro-portional to the number of vorti
es N , with a 
onstant of proportionalitydepending on the order q. The CPU time is dominated by the 
orre
tionof lo
al weights, whi
h in turn is mostly due to solving least-squares prob-lems. Exa
t evaluation of the Biot-Savart kernel and forming the matrix ofLegendre polynomials require less than a few per
ent of the 
orre
tion timeall told. Thus we expe
t the method would be a natural 
andidate for par-allel 
omputing, sin
e ea
h point is 
orre
ted independently. At some 
ostin memory, the least-squares systems 
ould be farmed out to many smallpro
essors to solve.In all 
ases, the error appears to be de
reasing roughly a

ording to thetheoreti
al estimate O(� + hql). Note that when N doubles, the maximum
ell size h de
reases by a fa
tor p2, so we expe
t the error to de
rease bya fa
tor 2ql=2 until � is rea
hed. The value of � appears to be of order 10�3to 10�4, suÆ
ient for two to three digit a

ura
y; smaller � would requirelarger r
, implying more 
orre
ted 
ells per point and longer running time.As one would expe
t, higher-order methods require more vorti
es to yieldhigher-order 
onvergen
e. However, we note that higher-order methods aswell as lower-order ones have 
 � 2 for large N .
20



(qg; ql) = (2; 1)N EG EP M T L 
200 .55-0 .25+1 4.1 2.5 5 2.32400 .94-1 .49-0 8.3 4.7 6 2.23800 .35-1 .63-1 16.5 7.6 7 2.071600 .17-1 .26-1 33.9 13.8 8 2.063200 .87-2 .10-1 65.7 26.1 9 2.026400 .49-2 .55-2 131 53.9 10 2.0412800 .31-2 .34-2 263 107 11 2.0225600 .21-2 .23-2 525 217 12 2.0251200 .14-2 .16-2 1050 423 13 2.04
(qg; ql) = (3; 2)N EG EP M T L 
200 .14+1 .61+1 3.8 7.3 4 6.89400 .20-0 .22+1 7.6 15.3 5 3.36800 .70-1 .92-1 15.1 25.0 6 2.411600 .88-2 .46-1 30.1 44.0 7 2.143200 .47-2 .84-2 60.1 78.3 8 2.106400 .22-2 .35-2 120 147 9 2.0812800 .14-2 .15-2 240 294 10 2.0625600 .10-2 .11-2 480 579 11 2.0651200 .62-3 .70-3 961 1180 12 2.10(qg; ql) = (5; 3)N EG EP M T L 
200 .14+1 .17+2 3.6 16.8 3 22.7400 .18+1 .49+2 7.2 41.2 4 66.0800 .27-0 .37+1 14.4 73.1 5 12.21600 .24-1 .56-0 28.7 123 6 3.63200 .33-2 .30-1 57.3 223 7 3.66400 .90-3 .27-2 114 438 8 2.912800 .66-3 .96-3 229 860 9 2.825600 .30-3 .39-3 458 1770 10 2.851200 .27-3 .31-3 916 3530 11 2.8
(qg; ql) = (6; 4)N EG EP M T L 
200 .20-0 .16+1 3.5 39.3 2 47.2400 .99-0 .41+2 7 115 3 814800 .10+1 .13+2 14 298 4 2191600 .10-1 .14+1 28 591 5 18.83200 .95-2 .11-0 56 1030 6 4.396400 .57-3 .50-2 112 1730 7 2.6012800 .24-3 .66-3 223 2810 8 2.3325600 .15-3 .25-3 447 5540 9 2.2251200 .72-4 .91-4 893 10900 10 2.18Table 2: Relative L1 errors EP and EG, memory usage (in K)M , CPU timesT (in se
onds on a Spar
-2), number of levels L and 
ondition number 
for evaluating the velo
ity due to Perlman-type and Gaussian vorti
ity �eldswith N points and a quadrature rule of orders (qg; ql).
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Figure 4: Cell stru
tures for velo
ity evaluation with adaptive random gridfor a Gaussian vorti
ity with (qg; ql) = (3; 2) and N = 100; 400; 1600; 6400vorti
es. 22



4.2 Long-time a

ura
yWe also tested the long-time a

ura
y of the method on the Perlman test
ase, running for 0 � t � 100 � 32�, a �nal time at whi
h the fastest-moving parti
les of 
uid (near the origin) have 
ompleted 8 revolutions whilethe slowest have 
ompleted only one. This strong shear is usually 
onsidereda severe test for a vortex method. We started with an adaptive random gridand used fourth-order Runge-Kutta for the time integration, with quadratureof orders (2; 2). We used N = 400; 800; 1600; 3200; 6400; 12800 vorti
es withNT = 100; 140; 200; 280; 400; 560 time steps from t = 0 to t = 100. In all
ases we took r
 = 1 and Sg = Sl = 1:5. The resulting relative dis
rete L1errors in the velo
ity are shown in Figure 5, in base-2 logarithmi
 s
ale to aidin the study of 
onvergen
e. They 
learly 
on�rm the long-time se
ond-ordera

ura
y of the method; the os
illations observed by Perlman [15℄ are notseen. This pleasant behavior of the error is undoubtedly due to the ab initio
al
ulation of the quadrature rule at ea
h time step. Parti
ularly en
ouragingis the slower in
rease of the error when more vorti
es are employed. Toensure that this behavior was not due to the redu
tion of the time step, the
omputation has been repeated with smaller time steps, yielding the sameresults.4.3 Intera
ting vortex pat
hesWe also 
omputed the evolution of several intera
ting vortex pat
hes, ea
hgiven by a shifted and s
aled Gaussian. Thus the initial vorti
ity is given by!(x; y; 0) = mXj=1
j exp(�((x� xj)2 + (y � yj)2)=�2j)where (xj; yj) 2 [�2; 2℄2, �j 2 [0; 1℄ and 
j 2 [�1; 1℄ are pseudorandomuniformly distributed numbers su
h that the 
ir
les of radius �j with 
enters(xj; yj) do not overlap. We used m = 4 pat
hes, with parameters shown inTable 3. We used N = 6400; 12800 and 25600 vorti
es with quadratures oforders (qg; ql) = (2; 2), with r
 = 1 and Sg = Sl = 1:5. The evolution of this
ow is shown in Figure 6. The �gures show the �nal result at t = 28 withthree di�erent values of N ; the large-s
ale features of the results are 
learly
onverged. 23
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Figure 5: Relative L1 errors in the evolution of a Perlman pat
h to timet = 100, 
omputed with a quadrature rule of orders (2; 2). From top tobottom, the lines plotted are the base-2 logarithms of the relative dis
rete L1errors in the velo
ity 
omputed with N = 400; 800; 1600; 3200; 6400; 12800points and NT = 100; 140; 200; 280; 400; 560 time steps up to t = 100.24



Figure 6: Evolution of four pat
hes of Gaussian vorti
ity, 
omputed with(qg; ql) = (2; 2) and N = 25600 vorti
es. The bottom row shows the �nalresult (t = 28) 
omputed with (from left to right) N = 25600, 12800 and6400 vorti
es. 25



j xj yj �j 
j1 -0.6988 -1.7756 0.6768 -0.45152 1.4363 -1.4566 0.3294 0.49683 -0.1722 0.4175 0.5807 -0.96434 -1.5009 -0.0937 0.2504 0.3418Table 3: Strengths 
j, 
enters (xj; yj) and s
ales �j for four Gaussian pat
hesof vorti
ity.
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A Exa
t integration formulasGiven z0, a 
ell C = [a; b℄� [
; d℄ and a degree q, we require the integralsuij(z0) = ZC 1z0 � zPi(x)Pj(y)dxdyfor 0 � i + j � p = q � 1. HerePi(x) = pi(t) t = (x� xm)=xhwith xm = (b + a)=2, xh = (b � a)=2 and pi the Legendre polynomial onjtj � 1 de�ned by the re
urren
ep0(t) = 1; p1(t) = t; pi+1(t) = 2i+ 1i+ 1 p1(t)pi(t)� ii+ 1pi�1(t)for i � 1. Similar expressions hold for the y variable.The 
al
ulation pro
eeds in three steps: First, we express the produ
t ofLegendre polynomials in the formPi(x)Pj(y) = pXk=0 pXl=0Qijkl(z0 � z)k(�z0 � �z)l (A.1)where z = x+ �y. We de�ne Qijkl = 0 for 
onvenien
e, whenever any of i; j; kor l is negative or k + l ex
eeds i+ j. Then we haveuij(z0) = pXk=0 pXl=0Qijkl ZC(z0 � z)k�1(�z0 � �z)ldxdy= pXk=0 pXl=0QijklSkl(z0 � C)where Skl(C) = ZC zk�1�zldxdyStep two is to evaluate Skl when k = 0, and step three is to evaluate Skl whenk > 0. Note that we need only evaluate Skl on
e and for all, for 0 � k+ l � p.Step one is done by using the re
urren
e for Legendre polynomials, in theform Pj+1(y) = 2j + 1j + 1 P1(y)Pj(y)� jj + 1Pj�1(y)27



whi
h follows from (A.1). Multiplying by Pi(x), using (A.1) twi
e and equat-ing 
oeÆ
ients givesQi;j+1kl = 2j + 1j + 1 hQ0100Qijkl +Q0110Qijk�1;l +Q0101Qijk;l�1i� jj + 1Qi;j�1kl :We use this re
urren
e to evaluate Qi;j+1kl for i = 0; 1; 2; : : : ; p and j =1; 2; : : : ; p� i.To evaluate the �rst two 
olumns of the re
urren
e, for whi
h j = 0; 1,we use the 
orresponding re
urren
e on i, whi
h is derived by inter
hangingx and y and i and j:Qi+1;jkl = 2i+ 1i + 1 hQ1000Qijkl +Q1010Qijk�1;l +Q1001Qijk;l�1i� ii+ 1Qi�1;jklfor j = 0; 1 and i = 1; 2; : : : ; p�j. This leaves only the four sets of 
oeÆ
ientswith i; j = 0; 1 to be evaluated, and three are easy to 
ompute dire
tly fromthe de�nition:Q0000 = 1Q1000 = 12xh (z0 + �z0 � 2xm); Q1010 = �12xh ; Q1001 = �12xhQ0100 = 12�yh (z0 � �z0 � 2�ym); Q0110 = �12�yh ; Q0101 = 12�yhThe fourth set 
an be 
al
ulated most easily by multiplying:P1(x)P1(y) = 1xhyh (x� xm)(y � ym)= P1(x)P0(y)P0(x)P1(y)= (Q1000 +Q1010(z0 � z) +Q1001(�z0 � �z))(Q0100 +Q0110(z0 � z) +Q0101(�z0 � �z))implies Q1100 = Q1000Q0100Q1110 = Q1000Q0110 +Q1010Q0100Q1101 = Q1000Q0101 +Q1001Q0100Q1120 = Q1010Q0110Q1111 = Q1010Q0101 +Q1001Q0110Q1102 = Q1001Q0101:28



The re
urren
e pattern is shown in the following table:Q00 Q01 ! Q02 ! : : : Q0p&Q10 Q11 ! Q12 ! : : :# # &Q20 Q21 ! Q22... ... ...# #Qp�1;0 Qp�1;1#Qp0
(A.2)

Several approa
hes are possible to step two, using either 
omplex or realvariable te
hniques. The 
omplex approa
h is super�
ially simpler but en-
ounters diÆ
ulty when programming a 
onvenient bran
h of the 
omplexlogarithm. Hen
e we present a real-variable approa
h to the integralsS0l(C) = ZC 1z �zldxdy= ZC �zjzj2 �zldxdy= Z ba Z d
 x� �yx2 + y2 (x� �y)ldydx= Z d
 Z ba �12 log(x2 + y2)�x (x� �y)ldxdy� � Z ba Z d
 �12 log(x2 + y2)�y (x� �y)ldydxwhere subs
ripts x and y denote partial derivatives. When we integrate byparts, the double integrals 
an
el, and two one-dimensional integrals remain:S0l(C) = 12 Z d
 log(x2 + y2)(x� �y)ldy jba� �2 Z ba log(x2 + y2)(x� �y)ldx jd
 : (A.3)Integrating by parts again gives further 
an
ellation, eliminates the loga-rithms, and yieldsS0l(C) = �l + 1 hFl+1(x; y)� (��)l+1Fl+1(y;�x)i jx=bx=a jy=dy=
29



where Fl+1(x; y) = Z x0 xx2 + y2 (x� �y)l+1dx:Pulling out one fa
tor of x��y from the power and using that x2 = x2+y2�y2gives Fl+1(x; y) = Z x0 (x� �y)ldx� �yGl+1(x; y)where Gl+1(x; y) = Z x0 1x2 + y2 (x� �y)l+1dx= Fl(x; y)� �yGl(x; y):The se
ond line 
omes from applying the same tri
k to Gl+1. Thus we have apair of 
oupled re
urren
e relations for the F 's and the G's, whi
h 
an easilybe solved to yield(l + 1)S0l = (2x)l+1Xl � (�2�y)l+1Yl jx=bx=a jy=dy=
Xl = ��2 lXk=1 1k �x� �y2x �k � �4 log(x2 + y2) + tan�1 �yx�Yl = ��2 lXk=1 1k  x� �y�2�y !k � �4 log(x2 + y2)� tan�1 �yx� :Sin
e Xl and Yl satisfy trivial re
urren
e relations, this formula is easy toevaluate. Note that (2x)l+1Xl vanishes if x = 0 and (�2�y)l+1Yl vanishes ify = 0.Step three involves integrating polynomials over a re
tangle sin
e k > 0,so 
an be done several ways. Perhaps the simplest is to employ produ
tGaussian quadrature of suÆ
iently high order to be exa
t on polynomials ofthe degree involved. We present a slightly more eÆ
ient approa
h, based onthe Cau
hy integral formula and re
urren
e relations.The Cau
hy integral formula for a possibly non-analyti
 fun
tion reads�C(z)f(z) = 12�� Z�C f(�)� � z � ZC �f� �� 1� � z dA(�)where �C is the 
hara
teristi
 fun
tion of the set C and z is not on theboundary �C of C. Put f(z) = 1l + 1zk�zl+130



so that �f��z = zk�zl:For z = 0, we have f = 0 and thereforeSkl(C) = 12�(l + 1) Z�C �k�1��l+1d�Parametrize ea
h edge of C as a line segment�(t) = t�j+1 + (1� t)�jwhere �j are the verti
es of C (1 � j � 5, with �5 = �1 for 
onvenien
e).Then Skl(C) = 12�(l + 1) 4Xj=1(�j+1 � �j)Tkl(�j; �j+1)where Tkl(a; b) = Z 10 (tb + (1� t)a)k�1(t�b + (1� t)�a)l+1dtfor 0 � k + l � q and 
omplex numbers a and b.Tkl 
an be evaluated exa
tly by the binomial theorem or by Gaussianintegration sin
e k � 1. We present a re
urren
e relation based on integrationby parts. First, observe that when k = 1 the integral is trivial:T1l = 1(l + 2)(�b� �a)(�bl+2 � �al+2):For k � 2, we integrate by parts to obtainTkl = 1(l + 2)(�b� �a)(bk�1�bl+2 � ak�1�al+2)� (k � 1)(b� a)(l + 2)(�b� �a) Tk�1;l+1:Thus k 
an be redu
ed and l in
reased until the �rst exponent goes to 1,whereupon T1;k+l�1 is trivial. The re
urren
e 
an be solved expli
itly, butthe resulting formula is best evaluated by re
urren
e.B Natural interpolation and 
ontouringA 
ommon diÆ
ulty in vortex methods is that the vorti
ity is known only ats
attered data points, so some form of interpolation must be used to evaluate31



the vorti
ity at other points. One advantage of the approa
h of this paper isthe natural interpolation te
hnique provided by the tree stru
ture. Supposewe have vorti
es zj in a 
ell C and we want to know the vorti
ity at a pointz in C. We approximate !(z) by a weighted sum!(z) � Xzj2C 
j(z)!(zj);where the interpolation weights 
j(z) form the least 2-norm solution of theunderdetermined linear systemXzj2C 
j(z)Pk(xj)Pl(yj) = Pk(x)Pl(y); 0 � k + l � q � 1:This gives an qth order interpolation formula on ea
h 
ell, with reasonablysmall weights if there are enough interpolation points zj in C.We found this te
hnique useful in 
ontouring the vorti
ity produ
ed byour method. To 
ontour the vorti
ity, we �rst interpolated ! to a suÆ
iently�ne equidistant grid on the 
omputational domain, then found the level setsof the linear interpolant to the grid values. This produ
es 
ontinuous 
ontourlines. Figure 7 shows the points, the 
ells, and �ve 
ontour levels produ
edwhen this te
hnique is applied to the fun
tion!(x; y) = 
os(kx) 
os(ky) + � sin(kx) sin(ky); k = 11; � = 1=10:(The points and 
ells are omitted from the last pi
ture for 
larity.) Wegenerated N = 129, 515, 2051 and 8197 pseudorandom uniformly distributedpoints in [0; 1℄2, interpolated them to an equidistant grid with M = 10, 20,40 and 80 points per side with fourth-order a

ura
y, and 
ontoured theresulting values. With 8197 points on a 80 by 80 grid, for example, weobtained three-digit a

ura
y at ea
h grid point, and j!(z)j was less than0:5 � 10�2 at ea
h endpoint of the 2018 segments obtained. The 10 by 10grid, of 
ourse, 
annot resolve this fun
tion, but the 20 by 20 grid does well.
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Figure 7: Contour lines produ
ed by fourth-order s
attered data interpola-tion, for random points on [0; 1℄2. 33
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