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Abstra
tA new numeri
al method for solving geometri
 moving interfa
e prob-lems is presented. The method 
ombines a level set approa
h and a semi-Lagrangian time stepping s
heme whi
h is expli
it yet un
onditionally stable.The 
ombination de
ouples ea
h mesh point from the others and the timestep from the CFL stability 
ondition, permitting the 
onstru
tion of meth-ods whi
h are eÆ
ient, adaptive and modular.Analysis of a linear one-dimensional model problem suggests a surprising
onvergen
e 
riterion whi
h is supported by heuristi
 arguments and 
on-�rmed by an extensive 
olle
tion of two-dimensional numeri
al results. Thenew method 
omputes 
orre
t vis
osity solutions to problems involving ge-ometry, anisotropy, 
urvature and 
omplex topologi
al events.
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lusion 266 A
knowledgments 271 Introdu
tionWe present a new numeri
al method for moving interfa
e problems. Themethod merges and breaks interfa
es naturally and generally via the levelset approa
h, while de
oupling time step restri
tions from the Courant-Friedri
hs-Lewy (CFL) stability 
ondition by using an expli
it yet un
ondi-tionally stable semi-Lagrangian time stepping s
heme with velo
ity smooth-ing and frequent redistan
ing. The time stepping s
heme also de
ouples ea
hmesh point from the others, potentially simplifying both adaptive mesh re-�nement and parallel implementation.Se
tion 2 of this paper 
ontains standard ba
kground material: movinginterfa
e problems and examples, level set and semi-Lagrangian methods.Se
tion 3 presents our method and explains why it works. Se
tion 4 vali-dates it by solving an extensive 
olle
tion of numeri
al examples in
ludinggeometri
 motions with 
orners, anisotropy, 
urvature and 
omplex topology.Se
tion 5 draws 
on
lusions and dis
usses future extensions and appli
ations.2 Ba
kgroundThis se
tion summarizes standard ba
kground material on moving interfa
eproblems and numeri
al methods. Se
tion 2.1 
lassi�es moving interfa
eproblems 
ommonly found in appli
ations, by the degree of lo
ality of thevelo
ity as a fun
tional of the interfa
e. Se
tion 2.2 des
ribes how to 
onvertthese problems into level set equations on a �xed domain, eliminating themoving interfa
e. Se
tion 2.3 introdu
es the level set method for movinginterfa
es, Se
tion 2.4 relates moving interfa
es and CFL 
onditions for someimportant model problems, and Se
tion 2.5 reviews and analyzes the simplest2



semi-Lagrangian s
heme for hyperboli
 partial di�erential equations (PDEs).Se
tion 2.6 dis
usses the derivation of higher-order a

urate semi-Lagrangians
hemes.2.1 Moving interfa
e problemsA moving interfa
e �(t) is a 
olle
tion of noninterse
ting oriented 
losed
urves in R2 or surfa
es in R3 for ea
h time t, a set-valued fun
tion of time.Sin
e ea
h 
omponent of �(t) is 
losed, �(t) has an interior and an exterior.Assume �(t) is suÆ
iently smooth in spa
e and time. Then for ea
h time tand ea
h x 2 �(t) there isÆ An outward unit normal ve
tor N(x; t),Æ A signed 
urvature C(x; t), 
hosen positive for a 
ir
le or sphere, andÆ A normal velo
ity V (x; t), 
hosen positive where the interior of �(t) isgrowing.Given a parametrization of �(t), these quantities 
an be 
al
ulated by stan-dard geometri
 formulas found in [41℄.A moving interfa
e problem is a 
losed system of equations whi
h spe
-i�es the normal velo
ity V as a fun
tional of � and the other unknowns inthe problem. Su
h problems 
an be divided into three broad 
lasses involv-ing passive transport, geometry and/or PDEs or integral relations o� theinterfa
e. All o

ur frequently in appli
ations.2.1.1 Passive TransportPassive transport moves an interfa
e in some external 
ow, whi
h may begiven a priori or 
omputed on the 
y but does not depend on the interfa
eitself. Thus F (x; t) is a given velo
ity �eld on Rd and the normal velo
ity of�(t) is V (x; t) = N(x; t) � F (x; t) whi
h is independent of �(t). This type ofproblem o

urs when modeling 
ommon and important physi
al situationssu
h as rotation, shearing and stret
hing in an ambient 
ow, and is 
on
ep-tually the simplest to solve be
ause the motion of ea
h point on the interfa
eobeys an ordinary di�erential equation with known right-hand side.2.1.2 GeometryMore 
omplex problems allow the lo
al interfa
ial geometry to intera
t withthe motion, so the interfa
e satis�es a partial rather than ordinary di�erentialequation. The normal velo
ity is a given fun
tionV = V (x; t; N; C; : : :) (1)3



of the interfa
ial position, normal, 
urvature, and other lo
al geometri
 quan-tities.Example 1: The simplest geometri
 motion propagates �(t) along itsnormal ve
tor with 
onstant uniform velo
ity. Corners form and mergingo

urs if �(0) is not 
onvex, so �(t) does not remain smooth, yielding thesimplest example of a \vis
osity solution" to a Hamilton-Ja
obi equation[7, 13℄.Spe
ialized methods for motion with unit normal velo
ity 
an be builtfrom Huygens' prin
iple: �(t) is an envelope of the set of radius-jtj 
ir
les
entered on ea
h point of �(0). Consider for example the inverted \V" y =�jxj shown in Figure 1. If �(t) is given by y =  (x; t), Huygens' prin
iplegives  (x; t) = 8><>: x +p2t x < �t=p2pt2 � x2 jxj < t=p2�x +p2t x > t=p2 (2)for t � 0. As t � 0 de
reases, the inner envelope remains sharp:  (x; t) =�jx � p2tj for t < 0. Time-reversal symmetry is broken, as for sho
ks inhyperboli
 
onservation laws [17℄.Example 2: A 
ommon two-dimensional geometri
 problem has a 
urve�(t) evolving under a K-fold symmetri
 anisotropi
 normal velo
ityV (x; t) = R + � 
os(K� + �0) + (R0 + �0 
os(K 0� + �00))C; (3)where 
os � = N � e1 is the 
osine of the angle between the normal ve
tor andthe positive x-axis.Anisotropi
 velo
ity �elds grow or shrink interfa
es along their normalswith speed depending on lo
al orientation, easily produ
ing 
omplex mergingshapes and making these models popular in materials s
ien
e [40℄. With suf-�
ient anisotropy, su
h velo
ity �elds produ
e fa
eted interfa
es via the Wul�
onstru
tion [8, 21, 23, 43, 42℄. At the 
orners of fa
ets, the vis
osity solu-tion behaves di�erently from Example 1, be
ause the velo
ity is anisotropi
.Rather than rounding o�, the 
orner remains sharp even when the velo
ityis a smooth fun
tion of the normal dire
tion. See Se
tions 4.2.3 and 4.2.7 fornumeri
al examples.2.1.3 PDEIn moving interfa
e problems for PDEs, the interfa
ial velo
ity depends onadditional �elds satisfying algebrai
, ordinary di�erential, partial di�erentialor integral equations on or o� the interfa
e. These �elds 
an mediate long-distan
e nonlo
al intera
tions, so the evolution equation for the interfa
e isno longer a lo
al PDE. 4



Example 3: In volume di�usion [9, 20℄,V (x; t) = �u(x; t)�N (4)where u(x; t) solves the Lapla
e equation�u = 0 outside �(t) (5)and the boundary 
onditionu = C on �(t); (6)with boundary 
onditions at 1. Using the Diri
hlet-Neumann operator ��whi
h maps boundary values for the Lapla
e equation outside � to the normalderivative of the solution on �, Eqs. (4{6) be
ome a single nonlinear nonlo
alpseudodi�erential equation V (t) = ��(t)C(t): (7)Eq. (7) gives the velo
ity V , and a 
urve movement equation whi
h movesthe interfa
e with given velo
ity V 
ompletes the moving interfa
e problem.Several 
urve movement equations exist [34℄.Example 4: A model for 
rystal growth is treated in [2, 4, 5, 26, 28, 34℄.Here V is the jump a
ross the interfa
e of the normal derivative �u(x;t)�N , whereu satis�es the Stefan problemut = �u o� �(t) (8)u = ��
(N)C � �v(N)V on �(t) (9)with boundary 
onditions on outer boundaries. Here �
 and �v are givenfun
tions of the outward normal N , as in Example 2.Problems 
lose to engineering pra
ti
e often involve 
omplex systems ofPDEs and integral equations modeling physi
al e�e
ts su
h as heat 
ow,
onve
tion, elasti
ity, radiation, 
hemi
al and biologi
al rea
tions, and �eldssatisfying integrodi�erential 
onditions on the interfa
e itself. Su
h prob-lems 
an be extremely diÆ
ult to solve numeri
ally, even without movinginterfa
es.2.2 Level set equationsMoving interfa
e problems 
an be reformulated as \level set equations" on a�xed domain, using the zero set� = fx 2 Rd : '(x) = 0g (10)5



of a fun
tion ' : Rd!R. Given an interfa
e �, there are many fun
tions 'for whi
h � is the zero set: For example, the distan
e and the signed distan
eto �: '(x) = miny2� kx� yk; '(x) = �miny2� kx� yk; (11)where the plus sign is 
hosen for x in the interior of �. However, not everyzero set is admissible as an interfa
e. Zero sets may be 
at where ' is equalto zero on a region, and may 
ross at isolated points. These pathologies areex
luded if r' never vanishes on �. Then ' 
rosses zero 
leanly and we 
anre
over � from ' by 
ontouring. Thus the signed distan
e represents � morestably than the distan
e. Figure 2 shows a hexagon in the plane and the
orresponding signed distan
e fun
tion '.Many geometri
 properties of � have simple expressions in terms of ',be
ause ' 
ontains lo
al information whi
h allows impli
it di�erentiation of�. For example, the normal velo
ity, outward unit normal, and 
urvature aregiven by V = 't=kr'k; (12)N = r'=kr'k; (13)C = �r �N; (14)if ' is 
hosen to be positive inside the zero set [41℄. These formulas 
an beevaluated everywhere ' is known, as well as on �. At a point x away from�, they give the geometry of the level set passing through x.Thus if we have the interfa
e then we 
an 
ompute its velo
ity from '.Conversely, given an extension of the normal velo
ity V to a fun
tion of tand x 2 Rd, Eq. (12) 
an be viewed as a PDE |the \level set equation"|whi
h moves � by evolving ':'t � V kr'k = 0: (15)Alternatively, we 
an 
onstru
t a ve
tor velo
ity �eld F on Rd with F = V Non �, and solve the \linear level set equation"'t � F � r' = 0: (16)Eqs. (15) and (16) move every level set of ' with the extended velo
ity Vor F , and in parti
ular move the zero set with the 
orre
t velo
ity. Thisapproa
h to moving interfa
es embeds the topology in ' rather than �(t),allowing merging, breaking and other topologi
al 
hanges to be handled au-tomati
ally. We pay the pri
e of going up one dimension. Either V or V Nmust be extended to a fun
tion on the whole spa
e, but the extension 
anbe almost 
ompletely arbitrary away from �(t).The moving interfa
e problems from Se
tion 2.1 
an be put in level setform as follows. 6



2.2.1 Passive TransportFor passive transport, F is already de�ned on Rd and is a natural extensionof V N . Sin
e N 
an be extended by Eq. (13), a natural extension of V isN � F . The resulting level set equation is a hyperboli
 PDE, nonlinear if Vis extended: 't � V (x; t)kr'k = 0 (17)and linear if F is extended:'t � F (x; t) � r' = 0: (18)N is singular where r' vanishes or is singular. For example, in Figure 2,r' does not exist at the 
enter and the 
orners of ea
h hexagonal level set,where ' is not di�erentiable. Even if r' exists everywhere, it must vanish atmaximum points interior to �, so N is never globally smooth. This suggeststhat we should extend F rather than V , solve Eq. (16) instead of Eq. (15),and avoid using N o� �.2.2.2 GeometryWith geometri
 quantities extended naturally by Eqs. (12{14), the level setequation for Example 2 reads't� (R+ � 
os(K�+ �0))kr'k = (R0+ �0 
os(K 0�+ �00))r� (r'=kr'k)kr'k(19)where 
os � = 'x=kr'k. This is a mixed hyperboli
-paraboli
 PDE 
ontain-ing both �rst-order and se
ond-order spatial derivatives of ', and be
omingsingular where r' vanishes.2.2.3 PDEFor 
uid problems with moving interfa
es, the 
uid velo
ity provides a natu-ral extension of V N o� the interfa
e. But in many other PDE-type models,the normal velo
ity is built from quantities su
h as boundary values andjump 
onditions, whose natural habitat is the interfa
e. Then an extensionof V is not obvious. One 
ould set V = N � ru in Example 3 (volume di�u-sion), but ru is dis
ontinuous a
ross �(t). In Example 4 (
rystal growth), Vis de�ned as a jump a
ross �(t) and an extension of V is even less obvious.Thus various extensions have been developed: In [28℄, for example, our Eq.(9) was solved for V under the assumption �v(N) 6= 0 to getV = �1�v(N) (u+ �
(N)C) (20)7



where N and C are extended naturally and the jump 
ondition is built intothe solution of the heat equation via 
lassi
al potential theory. Generals
hemes whi
h extend any velo
ity �eld o� any interfa
e were presented in[1, 5, 38, 39℄ and applied to this 
rystal growth model in [5℄.2.3 The level set methodThe level set method moves �(t) from t = 0 by 
onstru
ting an initial levelset fun
tion '(x; 0) for �(0) and an extended velo
ity �eld V or F for t � 0,solving one of the level set equations Eq. (15) or Eq. (16) numeri
ally, then�nding �(t) from '(x; t) when required. The method was introdu
ed in [22℄,and an extensive re
ent survey is [27℄. It has undergone mu
h developmentand been applied to many moving interfa
e problems.The main advantage of the level set method over other numeri
al methodsfor moving interfa
es is its natural treatment of topologi
al 
hanges su
h asmerging and breaking. These 
hanges 
an be diÆ
ult to handle with methodsbased on parametrization, but solving the level set equation merges interfa
esnaturally and automati
ally as shown in Figure 3.There are some potential diÆ
ulties with the level set method. It 
an bemore expensive sin
e it goes up a dimension, parti
ularly if uniform meshesare used. Extending the velo
ity o� �(t) 
an be diÆ
ult. One must be
areful to obtain the 
orre
t \vis
osity solution" of Eq. (15) or Eq. (16), byusing an appropriate solver for the level set equation [27℄. The method is notsuÆ
iently modular; a new 
ode must be written for ea
h new problem to besolved, sin
e the velo
ity evaluation is intertwined with the moving interfa
e
ode by velo
ity extension and CFL 
onditions.We present a level set solver on a uniform mesh in Se
tion 3, whi
his shown experimentally to obtain the 
orre
t vis
osity solution for passivetransport and geometri
 problems where velo
ity extension is straightfor-ward. This solver is designed for easy adaptive mesh re�nement with largetime steps, yielding optimal eÆ
ien
y. An adaptive version is developed in[37℄. On this foundation, an eÆ
ient, general and robust velo
ity extensionis built in [38℄ and yields a 
ompletely modular level set method.2.4 CFL 
onditionsAlmost all expli
it s
hemes for PDEs su
h as the level set equation en
ountertime step restri
tions due to the famous Courant-Friedri
hs-Lewy (CFL) 
on-dition [17℄. This ne
essary 
ondition for 
onvergen
e requires that in thelimit as the time and spa
e mesh sizes go to zero, the domain of depen-den
e of the numeri
al solution at ea
h spa
etime point must in
lude thatof the exa
t solution. For expli
it s
hemes with bounded sten
ils for �rst-8



order hyperboli
 PDEs, the CFL 
ondition imposes a time step restri
tionof the dimensionally natural form jUkj � O(h), where k is the time step, his the spatial mesh size, and U is proportional to a 
hara
teristi
 velo
ity ofthe PDE. For higher-order PDEs these time step restri
tions often be
omek � O(h2) or O(h3) and make expli
it s
hemes prohibitively expensive. Theusual remedy|impli
it time-stepping s
hemes|is often unavailable for levelset equations be
ause the 
omplex and problem-dependent relation betweenV and �(t) frustrates most nonlinear equation solvers.In passive transport and unit normal velo
ity, the level set equation is�rst-order hyperboli
, so most expli
it s
hemes en
ounter a time step re-stri
tion k � O(h). This restri
tion is in
onvenient if a �ne or adaptivemesh is used. In the 
urvature-dependent geometri
 motion of Example 2,expli
it treatment of the se
ond-order paraboli
 term requires an asymptoti-
ally smaller time step k � O(h2). Volume di�usion (Example 3) involves thetheory of the \Diri
hlet-Neumann operator" � whi
h maps boundary valuesto normal derivatives. � is a �rst-order pseudodi�erential operator, and Cis a se
ond derivative of ', so V = �C resembles a third-order derivative of'. Therefore k � O(h3), and similarly in Example 4 (
rystal growth). This
ondition requires extremely small time steps. If higher-order PDEs su
has elasti
ity are involved, these small time steps 
an make most s
hemesprohibitively expensive.These time step restri
tions 
an be eliminated by allowing unboundedsten
ils. For example, we 
an build a trivial expli
it method for the heatequation whi
h is stable and 
onvergent with large time steps k = O(h),if we allow sten
il size to grow as the mesh is re�ned. Take the standardexpli
it �nite di�eren
e method on a sequen
e of meshes with mesh sizesh = 1=n and time step �t = h2=2, so the usual CFL 
ondition is satis�ed.De�ne a new �nite di�eren
e method with step size k = h = 2n�t = 1=nby taking 2n tiny steps of the standard method to pass from t to t+ k. Thenew method is stable and 
onvergent with k = h, hen
e satis�es the CFL
ondition.Our moving interfa
e method de
ouples time steps from CFL 
onditionsby using the expli
it un
onditionally stable time stepping s
heme reviewedin Se
tion 2.5. More general s
hemes of this \semi-Lagrangian" type arepresented in Se
tion 2.6. For �rst-order hyperboli
 problems, these s
hemessatisfy the CFL 
ondition with large time steps by shifting the sten
il. Forhigher-order level set equations, heuristi
 reasons for our methods to satisfyCFL 
onditions are dis
ussed in Se
tion 3.3.
9



2.5 The CIR s
hemeConsider the simplest linear hyperboli
 PDE't � F (x; t) � r' = 0: (21)Eq. (21) propagates ' values along the 
hara
teristi
 
urves s(t) de�ned by_x(t) = �F (s(t); t); s(0) = x0; (22)be
ause ddt'(s(t); t) = 't + _x � 'x = 't � F � r' = 0 (23)if ' solves Eq. (21). Thus we 
an �nd ' values at any time t by �nding the
hara
teristi
 
urve passing through (x; t) and following it ba
kwards to someprevious point (x0; t0) where the value of ' is known: then '(x; t) = '(x0; t0).This observation forms the basis of the \ba
kward 
hara
teristi
" or \CIR"s
heme due to Courant, Isaa
son and Rees [6℄, whi
h is the simplest semi-Lagrangian s
heme. Given ' at time tn, CIR approximates '(x; tn+1) at anypoint x at time tn+1 = tn + k by evaluating the previous velo
ity F (x; tn),approximating the ba
kward 
hara
teristi
 through x by a straight linex + (tn+1 � t)F (x; tn) � s(t) (24)and interpolating ' at time tn to the pointx+ k F (x; tn) � s(tn): (25)Then '(x; tn+1) is set equal to the interpolated value.For linear PDEs, the Lax-Ri
htmyer equivalen
e theorem [17℄ guaranteesthat CIR will 
onverge to the exa
t solution as k; h!0 if it is stable and
onsistent. For nonlinear PDEs, stability and 
onsisten
y are ne
essary butnot suÆ
ient.2.5.1 StabilityThe stability properties of the CIR s
heme are ex
ellent. Ea
h new value'(x; tn+1) is a single interpolated value of ' at time tn, so un
onditionalstability is guaranteed in any norm where the interpolation does not in
reasenorms. For example, CIR with linear interpolation is un
onditionally stablein the maximum norm. In general, semi-Lagrangian s
hemes satisfy the CFL
ondition by shifting the sten
il, rather than restri
ting the time step. Thusinformation propagates over long distan
es in one step.10



2.5.2 Consisten
yExpli
it un
onditionally stable s
hemes like CIR or the Dufort-Frankel s
heme[17℄ usually require some 
onsisten
y 
ondition, in pla
e of the time step re-stri
tion k � O(h) required by other expli
it s
hemes. The 
onsisten
y
ondition for CIR 
an be illustrated with the simplest one-dimensional linearhyperboli
 PDE 't � V 'x = 0; '(x; 0) = f(x); (26)whose solution is '(x; t) = f(x + V t). The CIR s
heme on a uniform meshx = jh, t = nk produ
es numeri
al approximations unj to '(jh; nk) by theformula un+1j = qunm+1 + (1� q)unm (27)where m = j � bV k=h
; q = (j �m)h� V kh ; (28)as in Figure 4. The s
heme is un
onditionally stable be
ause the proje
tedpoint s need not lie in the same 
omputational 
ell as x; the sten
il shifts tosatisfy the CFL 
ondition dis
ussed in Se
tion 2.4.To 
he
k 
onsisten
y, we plug the exa
t solution ' into the numeri
alformula and bound the trun
ation error �(x; t) de�ned by'(jh; (n+1)k) = q'((m+1)h; nk)+(1�q)'(mh; nk)+k�(jh; (n+1)k): (29)The s
heme is 
onsistent to �rst order if � = O(h) + O(k) on a �xed timeinterval as h; k!0. Taylor expansion gives� = O h2k !+O(k) (30)if the initial data f has two 
ontinuous derivatives. The �rst term 
omes fromthe O(h2) error in linear interpolation, repeated at O(1=k) time steps, whilethe se
ond term is due to approximating the 
hara
teristi
s by straight lineswith �rst-order a

urate slopes F (x; tn). Thus CIR is �rst-order a

urate ifthe following 
ondition is satis�ed:k � Ch (31)for some arbitrary 
onstant C. This 
onsisten
y 
ondition di�ers from theusual time step restri
tion jV kj � h in two important ways: the inequalityis reversed so h is bounded rather than k, and the 
onstant C is 
ompletelyindependent of V , and need only be �xed as k; h!0.A similar 
al
ulation shows that with higher-order a

urate interpolationthis lower bound be
omes even less restri
tive. For an interpolation method11



with error O(hq) per interpolation, a 
onsisten
y 
ondition k � O(hp) pro-du
es a semi-Lagrangian s
heme with formal error O(hq�p) + O(k). How-ever, stability be
omes an issue sin
e higher-order interpolation may allowthe maximum norm of the solution to in
rease.2.5.3 Nonlinear hyperboli
 problemsTo apply the CIR s
heme to nonlinear hyperboli
 PDEs of the form't � F (x; t; ') � r' = 0; (32)Courant, Isaa
son and Rees use a standard approa
h: Freeze ' at time tn inthe argument list of F , then apply the linear CIR s
heme to move forwardone step from tn to tn+1. The s
heme remains un
onditionally stable, andif the solution remains smooth, Taylor expansion shows that 
onsisten
y isuna�e
ted. However, solutions to a general nonlinear hyperboli
 PDE do notremain smooth. Instead, they develop sho
k dis
ontinuities and degenerateto weak solutions. Uniqueness then fails and an entropy 
ondition is requiredto sele
t the 
orre
t weak solution.When sho
ks o

ur, both theory and numeri
s be
ome more diÆ
ult. Ifthe PDE is a 
onservation law and the numeri
al s
heme is in 
onservationform, then the Lax-Wendro� theorem [17℄ guarantees that any limit of thes
heme is a weak solution. Eq. (32) is not in general a 
onservation law, andCIR is not in 
onservation form, so the Lax-Wendro� theorem does not apply.In fa
t, CIR moves sho
ks at the wrong speed even in simple 
onservationlaws [17℄ and thus 
annot be 
onvergent.Thus the CIR s
heme |while expli
it and un
onditionally stable| hasnever been popular for solving nonlinear 
onservation laws. It has beenused mainly for linear problems, where stability plus 
onsisten
y guarantee
onvergen
e. In Se
tion 3.3, we explain the spe
ial features of nonlinear levelset equations whi
h permit the 
onvergen
e of methods based on the CIRs
heme.2.6 Semi-Lagrangian s
hemesSemi-Lagrangian s
hemes whi
h preserve the un
onditional stability of CIRbut enjoy higher-order a

ura
y have been widely used for modeling linearadve
tion in atmospheri
 s
ien
e [3, 24, 31, 33℄. Their un
onditional stabilityis parti
ularly useful on the sphere [18, 32℄, where it eliminates the stringenttime step restri
tion en
ountered by Eulerian s
hemes on small mesh 
ellsnear the poles. In moving interfa
e problems, semi-Lagrangian s
hemes per-mit lo
al mesh re�nement with large time steps and over
ome the ineÆ
ien
yof level set methods on a uniform mesh. Semi-Lagrangian s
hemes for spe
iallevel set equations have been 
onstru
ted in [11℄.12



An e�e
tive viewpoint for the derivation of higher-order a

urate semi-Lagrangian s
hemes is presented by Smolarkiewi
z and Pudykiewi
z in [31℄,and involves three steps: spa
etime integration, interpolation or adve
tionand dis
retization.2.6.1 Spa
etime integrationConsider the linear hyperboli
 PDE't � F � r' = 0: (33)Suppose we know ' on a regular grid at time s and we seek the values '(x; t)at some time t > s. The fundamental theorem of 
al
ulus and Eq. (33) give'(x; t) = '(y; s) + ZC r' � (dx+ Fdt) (34)where C is any path in spa
etime 
onne
ting (y; s) to (x; t).Several well-known 
lasses of s
hemes for Eq. (33) are distinguished bytheir 
hoi
es of C. Eulerian s
hemes take x = y and C a straight line segmentparallel to the t-axis as in Figure 5(a). Pure Lagrangian s
hemes take C tobe the Lagrangian traje
tory T de�ned by_x(�) = �F (x(�); �) (35)starting at a grid point y, as in Figure 5(b). Sin
e dx + Fdt = 0 on T ,Lagrangian s
hemes propagate ' values un
hanged along T , assuring un
on-ditional stability: '(x; t) = '(x(t); t) = '(y; s): (36)The main drawba
k of Lagrangian s
hemes is that a regular mesh rapidlydistorts, losing dis
retization a

ura
y. This mesh distortion has been along-standing problem in 2-D vortex methods, solved in [35℄.Semi-Lagrangian s
hemes 
ombine the regular mesh of an Eulerian s
hemewith the un
onditional stability of a Lagrangian s
heme. They build valuesof ' at regular mesh points x at time t by running a Lagrangian traje
toryT ba
kwards from (x; t) to some point (y; s), then a simple path L from thenearest grid point z at time s to y, as in Figure 5(
). Sin
e dt = 0 on L anddx+ Fdt = 0 on T , we have'(x; t) = '(z; s) + ZLr' � dx = '(y; s): (37)Thus semi-Lagrangian s
hemes need only transport the ' evaluation from xto y, either by interpolation or adve
tion.13



2.6.2 Interpolation or adve
tionMany semi-Lagrangian s
hemes 
an be derived by interpolating '(y; s) fromknown grid values, as in the CIR s
heme of Se
tion 2.5. Linear interpola-tion gives un
onditional stability with �rst-order a

ura
y, while higher-ordera

urate polynomial interpolation 
an be unstable. Shape-preserving inter-polation methods have been 
ompared in [25℄, and some of these methodsyield stable s
hemes for adve
tion.Stability issues are eliminated in [31℄ by re-examining the integral expres-sion '(y; s) = '(z; s) + ZLr' � dx: (38)This integral transports the evaluation point of ' from z to y, and 
antherefore be viewed as linear adve
tion with 
onstant velo
ity parallel toy� z. The advantage of this viewpoint is that monotone Eulerian adve
tions
hemes generate stable semi-Lagrangian s
hemes: there is no CFL time steprestri
tion sin
e y and z are less than half a mesh size apart. Alternatively,L 
an be built from line segments parallel to 
oordinate axes, giving natu-rally split semi-Lagrangian s
hemes from one-dimensional Eulerian adve
tions
hemes. Viewing interpolation as adve
tion 
an also be reversed, yieldingshape-preserving interpolation from Eulerian adve
tion s
hemes [30℄.2.6.3 Dis
retizationSpe
i�
 semi-Lagrangian s
hemes usually approximate traje
tories by a se
ond-order a

urate ordinary di�erential equation solver su
h as the impli
it mid-point rule y = x+ (t� s)F �12(x + y); 12(t+ s)� ; (39)with F values interpolated |or adve
ted| from the grid points. Eq. (39)is nonlinear, but �xed point iteration is proved 
onvergent in [12, 24℄ if theweak non-interse
tion 
ondition(t� s)kDFk < 1 (40)is satis�ed. Semi-Lagrangian s
hemes are intended for 
omputing smoothsolutions without sho
ks, but it is shown in [12℄ that |even for Lips
hitzsolutions| the a

ura
y of these s
hemes is limited only by traje
tory smooth-ness, not by solution smoothness.Given se
ond-order a

urate traje
tories, a se
ond-order semi-Lagrangians
heme 
an be built on third-order interpolation methods or Eulerian adve
-tion s
hemes [29℄. Spurious os
illations are 
ommon with high-order poly-nomial interpolation, making shape-preserving interpolation and monotone14



adve
tion preferable. In this paper, we implement �rst-order CIR time step-ping with arbitrary-order ENO interpolation [15℄ to provide spatial a

ura
ywithout spurious os
illations. We plan to implement se
ond-order traje
tory
al
ulation in future work, to redu
e the dissipation evident in a few of ournumeri
al experiments.3 A semi-Lagrangian method for moving in-terfa
es3.1 Overview of the methodWe use semi-Lagrangian time stepping s
hemes to solve the level set equation't � F � r' = 0: (41)Here F is a velo
ity �eld on Rd whi
h extends V N o� �(t), and may dependon anything: ', N , C, other derivatives of ', nonlo
al terms, jump 
ondi-tions, history terms, and so forth. The 
ombination of level sets and semi-Lagrangian time stepping s
hemes yields a family of methods parametrizedby several options. After an overview of these methods, we dis
uss ea
hoption in detail and explain how it 
ontributes to 
onvergen
e.3.1.1 AlgorithmGiven the level set fun
tion '(x; tn) for every point x in a uniform grid attime tn, our methods 
ompute '(x; tn+1 = t+ k) at ea
h grid point x by theCIR s
heme:Æ Evaluate the extended velo
ity F (x; tn) at x.Æ Optionally postpro
ess F with trun
ation and smoothing.Æ Move x ba
kwards with velo
ity �F (x; tn) to get the points = x+ k F (x; tn): (42)Æ Interpolate or adve
t '(x; tn) to the point s to get '(x; tn+1) = '(s; tn).Æ Redistan
e ' if desired, by repla
ing ' by the signed distan
e to itszero set.
15



3.1.2 FeaturesMethods of this family have several unique features:Æ Ea
h new mesh value is a 
ompletely independent 
omputation. Thisallows easy parallel implementation and |more importantly| simpli-�es 
onstru
tion of adaptive meshes whi
h 
on
entrate 
omputationale�ort near the interfa
e. Thus the 
ost of going up a dimension iseliminated.Æ Adaptive mesh re�nement does not globally restri
t the time step be-
ause the time step is de
oupled from the CFL stability 
ondition bythe un
onditional stability of CIR.Æ Adaptive mesh re�nement 
riteria are easy to formulate be
ause we are
omputing an approximate distan
e to the interfa
e, whi
h naturallydetermines re�nement. No derivative estimates are ne
essary.These methods are implemented on a tree mesh in [37℄, and 
ombined withfast tree-based redistan
ing and extension te
hniques in [38℄ to yield a gen-eral, eÆ
ient and modular method for moving interfa
es.3.2 OptionsThis family of methods 
an be parametrized by 
hoosing the following op-tions:Æ The ' interpolation or adve
tion te
hnique whi
h obtains '(s; tn) ato�-grid points s.Æ The velo
ity evaluation te
hnique whi
h builds F (x; tn). This may re-quire di�erentiation and interpolation in the geometri
 
ase, or solutionof a PDE or integral equation in the general 
ase. A general extensionte
hnique may be used, or a problem-dependent extension may be built.Æ Postpro
essing of F and ' for stability and a

ura
y: for some prob-lems su
h as 
urvature 
ows, the optional postpro
essing 
onsistingof velo
ity trun
ation and smoothing and redistan
ing at every stepappears to be mandatory for 
onvergen
e.Æ Boundary 
onditions required when the proje
ted point s falls outsidethe domain where ' is known.
16



3.2.1 Interpolation of 'Ea
h evaluation of '(x; tn+1) requires interpolation or adve
tion to obtain 'values o� the grid. There are in�nitely many interpolation te
hniques, butour 
hoi
e is restri
ted by two requirements. First, the level set fun
tion' is only Lips
hitz 
ontinuous in general sin
e fa
eting may o

ur. Thushigh-order polynomial interpolation requiring smooth ' should be avoided.Se
ond, stability of the semi-Lagrangian approa
h in any given norm is guar-anteed only for interpolation te
hniques whi
h do not in
rease the norm toomu
h. For example, linear interpolation, shape-preserving interpolation [25℄and monotone adve
tion [31℄ guarantee un
onditional max-norm stability.Given these two requirements, essentially non-os
illatory (ENO) interpo-lation [15℄ provides suÆ
ient stability and arbitrary-order a

ura
y. ENOdoes not guarantee un
onditional stability as linear interpolation would, butgives ex
ellent results in pra
ti
e. Thus we use ENO interpolation and dif-ferentiation throughout this paper.In one dimension, ENO is designed to redu
e the variation of the in-terpolant by sliding the usual polynomial interpolation sten
il to minimizedi�eren
es. In two dimensions, one 
oordinate dire
tion is 
hosen �rst andthe sten
il slides in that dire
tion. Ea
h sten
il value is 
omputed by one-dimensional ENO in the other dire
tion. See Figure 6 for an example. This
hoi
e breaks x{y symmetry, giving a useful error indi
ator: ina

urate 
om-putations be
ome unsymmetri
.3.2.2 Velo
ity evaluationVelo
ity evaluation may require various problem-dependent 
omputationsinvolving ', derivatives of ', and possibly other data. For extending thevelo
ity in PDE problems, we plan to use the general velo
ity extension of[38℄. It redistan
es eÆ
iently at every step and requires the velo
ity only onthe interfa
e, de
oupling the level set method from the velo
ity 
omputationon �(t) and permitting the modular solution of moving interfa
e problems forPDEs. For the passive transport and geometri
 
ows 
omputed in Se
tion 4,we use the natural velo
ity extensions of Se
tion 2.2, trun
ated and smoothedaway from the interfa
e for numeri
al 
onvenien
e. The following additionalpro
edures are required for geometri
 
ows.Di�erentiation of ' We 
ompute derivatives of ' by optionally smoothing' on
e, then di�erentiating the ENO interpolant to '. Smoothing is helpfulwhen the interfa
e is fa
eted or highly 
omplex, be
ause ' is Lips
hitz 
on-tinuous with 
orners at the fa
ets (as in Figure 2 above) and unsmoothedENO di�erentiation 
an be ina

urate at 
orners.17



Trun
ation The 
urvature and normal have singularities when r' = 0, sowe trun
ate geometri
 velo
ity �elds away from �(t). We s
ale the velo
ityve
tor F away from �(t) so that its maximum norm over the set fj'j > 2hgis equal to its maximum norm over the set fj'j � 2hg. Thus large F valuesnear singularities 
annot 
orrupt the solution.Velo
ity smoothing Di�erentiating the smoothed ENO interpolant to 'produ
es a

urate normal ve
tors but noisy 
urvature, be
ause ' is onlyLips
hitz 
ontinuous; hen
e we smooth 
urvature-dependent velo
ities. Ea
hsmoothing pass repla
es ea
h velo
ity value by the arithmeti
 mean of the3d nearest values. This 
ommits O(h2) error in ea
h step, so the total errordue to smoothing at any �xed time is O(h2=k) = O(h) if the 
onsisten
y
ondition k � O(h) is satis�ed. Thus this smoothing te
hnique mat
heswell with the �rst-order CIR s
heme. Higher-order smoothing 
an be usedwith a higher-order time stepping s
heme. Figure 7 shows smoothing of ananisotropi
 velo
ity �eld for moving a fa
eted interfa
e, with and without 'and velo
ity smoothing.3.2.3 Redistan
ingThe level set equation for moving interfa
es |unlike a general PDE| isrelevant only near the zero set of the solution. As a 
onsequen
e, we 
anre-initialize or \redistan
e" the solution at any time, by repla
ing it withthe exa
t signed distan
e fun
tion to its zero set. Redistan
ing is expensiveif done naively, but several fast s
hemes are available [1, 5, 36, 39℄. Af-ter pie
ewise-linear 
ontouring of ', for example, the Voronoi diagram ofthe resulting polygonal interfa
e 
an be built in theoreti
ally optimal time[44℄, and yields almost instantaneous redistan
ing by standard optimal sear
hte
hniques [16℄. A simpli�ed Voronoi diagram [19℄ 
an yield the same resultwith 
onsiderably lower 
on
eptual 
omplexity; however, implementationsare not yet available.Redistan
ing 
an be viewed as a form of �ltering whi
h eliminates manynumeri
al issues while preserving the interfa
e. For example, boundary 
on-ditions far from the interfa
e be
ome mu
h less important be
ause their e�e
tis dis
arded after redistan
ing. Redistan
ing also simpli�es geometri
 velo
-ities: when ' is a signed distan
e fun
tion, kr'k = 1 near �(t), so N andC simplify to r' and �'.3.2.4 Boundary 
onditionsSemi-Lagrangian s
hemes require numeri
al boundary 
onditions to spe
ifyvalues for '(s; tn) when s lies outside the domain D 
overed by the grid.There are two simple boundary 
onditions: extension and proje
tion. In18



extension, we extend ' as a 
onstant or linear fun
tion along lines normal tothe boundary �D and apply our standard interpolation s
heme to interpolatethe extended values to s. In proje
tion, we arrest s as it leaves the domainand use one-sided interpolation to the point where s 
rosses �D. Figure 8shows proje
tion in a
tion: if the point s from Eq. (42) falls outside thedomain, then the value of ' is interpolated to s0 and '(x; tn + k) = '(s0; tn).Our method uses proje
tion be
ause it is simple, e�e
tive and it 
ombineswell with ENO s
hemes whi
h adapt automati
ally to one-sided interpola-tion. The 
ombination of proje
tion with trun
ation, smoothing and redis-tan
ing proved highly e�e
tive in our numeri
al examples. Further resear
hinto boundary 
onditions might be useful in solving paraboli
 problems like
urvature 
ow where information enters the domain at high speed.3.3 Convergen
eSemi-Lagrangian time-stepping s
hemes are ideal for solving level set equa-tions, be
ause they promise optimal eÆ
ien
y via easy adaptive mesh re�ne-ment and unrestri
ted time steps. To ful�ll this promise, they must 
onvergeto the 
orre
t solution near the interfa
e. The following heuristi
s |and theexperiments of Se
tion 4| suggest that these s
hemes should 
onverge.3.3.1 Absen
e of sho
ksSemi-Lagrangian s
hemes 
onverge for Lips
hitz 
ontinuous solutions of ad-ve
tion equations [12℄, but diverge when sho
k dis
ontinuities are present[17℄. This poses no problem for level set equations, whi
h |like adve
tionequations in atmospheri
 s
ien
e| have no sho
ks. Indeed, the solution 'must remain Lips
hitz 
ontinuous at all times, or we 
annot extra
t the zeroset �(t). Lips
hitz 
ontinuity 
an be rigorously proven for passive transportand some geometri
 problems [10℄, and guaranteed in general by redistan
ing' at every step.Given that ' remains Lips
hitz 
ontinuous, it is easy to see why semi-Lagrangian s
hemes should work: At a sho
k, ' would be dis
ontinuous, soa tiny error in velo
ity would make the traje
tory look the wrong way and
ommit an O(1) error in ', followed by F ; hen
e sho
ks would move at thewrong speed. A Lips
hitz 
ontinuous ' has \kinks" or 
orners at worst ratherthan dis
ontinuities, so a small velo
ity error 
auses a small solution error.3.3.2 The CFL 
onditionThe CFL 
ondition requires that a 
onvergent numeri
al s
heme must prop-agate information about solution values at approximately the right speed,and usually restri
ts the time step. Our goal in applying semi-Lagrangian19



s
hemes to moving interfa
e problems is to satisfy the CFL 
ondition with-out restri
ting the time step. For interfa
es undergoing passive transport,we have linear adve
tion where semi-Lagrangian s
hemes 
onverge [12℄, sothe CFL 
ondition is satis�ed. For geometri
 problems involving 
urvature,the level set equation be
omes paraboli
 and information propagates alongthe interfa
e with in�nite speed. Even so, our methods 
an satisfy the CFL
ondition as k = O(h)!0 for the following heuristi
 reasons.Nonlo
al velo
ity 
omputation The domain of dependen
e of the CIRsolution '(x; tn+1) obviously in
ludes the single interpolation point s = x +kF (x; tn) and its sten
il, but the point s in turn depends on the ' valuesused to 
ompute the extended velo
ity F (x; tn). Thus the CFL 
ondition
an be satis�ed in prin
iple by 
omputing F nonlo
ally with arbitrarily largetime steps. For PDE-type moving interfa
e problems F is almost always aglobal fun
tional of ', so the CFL 
ondition is satis�ed.From a theoreti
al point of view, if the solution is 
ontinuous and theproblem has a maximum prin
iple, ea
h new solution value is exa
tly equalto some old solution value: de�ne a velo
ity �eld F to point to that old value.This highly nonlo
al velo
ity satis�es the CFL 
ondition with any time step.Velo
ity smoothing A spe
i�
 nonlo
al te
hnique whi
h satis�es the CFL
ondition is to postpro
ess the velo
ity �eld by smoothing or averaging itover a suÆ
iently large sten
il. A

ura
y 
an be maintained by in
reas-ing sten
il size only logarithmi
ally as h!0. In pra
ti
e, a few passes ofsmoothing produ
es 
onvergent solutions even though 
urvature 
ow velo
-ities give paraboli
 level set equations, for whi
h expli
it s
hemes usuallyrequire k = O(h2).Redistan
ing Repla
ing ' by the signed distan
e to its zero set �(t) alsoimplements long-distan
e information transfer and helps satisfy the CFL 
on-dition. While redistan
ing propagates information primarily normal to theinterfa
e, its in
uen
e is enhan
ed in regions of high 
urvature su
h as 
or-ners where normal ve
tors 
ross near the interfa
e: these are also the regionswhere propagation speeds are highest. Frequent redistan
ing also removesmany of the other in
onvenient numeri
al artifa
ts of the level set method,su
h as boundary 
onditions and treatment of singularities.Velo
ity extension For general moving interfa
e problems, the velo
ity Fis known only on �(t) and must be extended to Rd. Typi
ally F is extendedas a 
onstant normal to �(t) [1, 5, 38, 39℄, propagating information alongthe same paths as redistan
ing and satisfying the CFL 
ondition in the sameway. 20



Modularity Sin
e a major design goal of our method is modularity |themoving interfa
e 
ode should have minimal information about the velo
ity-interfa
e relationship| these postpro
essing te
hniques should maintain mod-ularity while satisfying the CFL 
ondition. Nonlo
al velo
ity 
omputationand smoothing inhibit modularity, while the 
ombination of redistan
ing andvelo
ity extension respe
ts it.4 Numeri
al resultsWe study the a

ura
y of our semi-Lagrangian level set method on severalinterfa
es moving under passive transport and geometri
 motion with 
orners,anisotropy, nontrivial topology and 
urvature. Some PDE-type exampleswith a general velo
ity extension [38℄ will be treated in future work.Unless otherwise noted, all the examples were 
omputed with the follow-ing numeri
al parameters.Æ Third-order ENO was used for both the ' interpolation and the velo
ity
omputation (in geometri
 moving interfa
e problems where V requiresderivatives of ').Æ Three runs were made with 40, 80 and 160 time steps on a 402, 802and 1602 mesh. Most plots superimpose the three runs to demonstrate
onvergen
e to graphi
al a

ura
y.Æ For 
urvature-dependent problems, the velo
ity was trun
ated and smoothedon
e per step, and ' was redistan
ed at every step to ensure the CFL
ondition was satis�ed.The method was implemented for two-dimensional level set equations inStandard C, 
ompiled with the SunSoft C 
ompiler using the -fast 
ag, andrun on one CPU of a 2-CPU 200MHz Sun Ultra{2 under Solaris 2.6.4.1 Passive transportPassive transport problems form 
onvenient test 
ases for level set methods,be
ause 
omplex exa
t solutions 
an easily be evaluated. Thus we 
an mea-sure the error and rate of 
onvergen
e. We 
arry out 
onvergen
e studiesfor three passive transport problems and verify the a

ura
y, robustness and
onservation properties of the CIR s
heme with ENO interpolation of degrees1, 2 and 3.
21



4.1.1 Bubbles in a shear 
owWe begin our study of passive transport by measuring the a

ura
y of themethod on the 
olle
tion of 
ir
ular bubbles shown in Figure 9, moving witha divergen
e-free linear shearing velo
ityF (x; y) = 12 �x� 3y + 1;�y � 12� : (43)We used 20; 40; 80 and 160 time steps on 0 � t � 1 and 402; 802; 1602 and3202 grids on [�6; 6℄� [�6; 6℄. ENO interpolation of degrees 1, 2 and 3 wasused to interpolate '. Table 6 reports the maximum of the exa
t distan
efun
tion on the 
omputed 
ontour at time t = 1. First-order a

ura
y is
learly evident along diagonals, where h � O(k). This agrees with the one-dimensional model theory of Se
tion 2. The error de
reases dramati
allywhen we 
hange from ENO degree 1 to degree 2, but degree 3 makes nofurther improvement.4.1.2 Grid e�e
ts on trianglesA 
ommon problem in moving interfa
es is sensitive dependen
e on numeri
alartifa
ts su
h as grid orientation. We 
he
k for grid e�e
ts in a sharplyfa
eted interfa
e by revolving, shrinking and expanding a triangle with alinear velo
ity �eld. In all 
ases, the interfa
e moves with the appropriatespeed independently of its orientation relative to the grid. Figure 10 plots theresults with both se
ond and third-order degree ENO on the domain [�2; 2℄2,and shows that grid e�e
ts are minimal. The dissipation exhibited in Figure10(a) 
ould be 
onsiderably redu
ed by se
ond-order traje
tory 
omputation.4.1.3 Mass 
onservation in a shear 
owWe 
on
lude our study of passive transport by measuring mass 
onservationin a 
olle
tion of bubbles moving in the divergen
e-free shearing 
ow givenby F (x; y) = max(1� (1� x2 � y2)4+; 0)8(x2 + y2) (�y; x): (44)Figure 11 shows the extreme distortion produ
ed by this 
ow, 
omputedwith 160 time steps on 0 � t � 100 and a 1602 mesh on the domain [�6; 6℄2.Despite this distortion, mass is well 
onserved; the �nal area inside the 
om-puted interfa
e is 12.4669, 
lose to the exa
t value of 4� = 12:5664.In the exa
t solution interfa
es 
annot tou
h, be
ause of standard unique-ness theorems for ordinary di�erential equations. Thus merging of 
omputa-tional interfa
es 
an happen even when it is impossible in theory, and mustbe allowed for in any robust moving interfa
e method. Automati
 handling22



of unexpe
ted topologi
al 
hanges is one of the strengths of the level setapproa
h.4.2 GeometryWe validate our semi-Lagrangian moving interfa
e method by 
omputing
onverged solutions to a variety of geometri
 moving interfa
e problems in-
luding vis
osity solutions to 
orners moving with unit normal velo
ity, thefa
eted Wul� limit for anisotropi
 normal velo
ity �elds, 
omplex topolog-i
al 
hanges under anisotropi
 
urvature-dependent 
ows, and non
onvexshapes shrinking to round points under 
ow by 
urvature. Moving inter-fa
e problems for PDEs require a general velo
ity extension but display littleadditional 
omplexity, and will be solved in future.4.2.1 Unit normal velo
ityWe verify �rst-order a

ura
y on a unit 
ir
le 
entered at (1=2�; 1=2�), ex-panding with unit normal velo
ity F = N , extended naturally via Eq. (13)with singularities trun
ated;F = N = r'max(10�8; kr'k) : (45)Table 6 reports the maximum of the exa
t distan
e fun
tion on the 
omputed
ontour at time t = 1, with 20; 40; 80 and 160 time steps on 0 � t � 1and 202, 402, 802 and 1602 grids on [�3; 3℄2. ENO interpolation of degrees1, 2 and 3 was used both in the ' interpolation and in the evaluation ofN . Considerably better than �rst-order a

ura
y is evident along diagonals,where h � O(k), be
ause the exa
t interfa
e is a linear fun
tion of t.4.2.2 Vis
osity solutions with 
ornersOne of the most important issues in level set equations is the 
orre
t 
om-putation of \vis
osity solutions" for fa
eted interfa
es in geometri
 and PDEproblems [27℄. A key ingredient in this 
omputation is a 
orner moving in orout with unit normal velo
ity. Inward motion should keep 
orners sharp (the\sho
k" 
ase), while outward motion should produ
e rounded 
orners dueto Huygens' prin
iple (the \rarefa
tion" 
ase), as dis
ussed in Se
tion 2.1.2.Figure 12 shows a triangle moving with positive and negative unit normalvelo
ity, both aligned with the mesh and at an angle to 
he
k for grid e�e
ts,and demonstrates that our semi-Lagrangian method 
omputes the 
orre
tvis
osity solution in ea
h 
ase.This agrees with theory: any reasonable 
omputed normal has unit length,so our method propagates information at unit speed. An in
orre
t solution23



typi
ally preserves a sharp 
orner moving outward, rather than rounding ito� as pres
ribed by Huygens' Prin
iple: Figure 13 illustrates the di�eren
e.CIR produ
es the 
orre
t solution be
ause zero ' values delineating �(1)near the 
orner must be lo
ated on a unit 
ir
le 
entered somewhere on �(0),rather than p2 from �(0), as they are in the in
orre
t solution.4.2.3 Anisotropi
 normal velo
ity and the Wul� limitAnother key issue for level set methods is anisotropi
 motion along the nor-mal. Most numeri
al methods for level set equations are 
onne
ted to thetheory of Hamilton-Ja
obi equations't +H(r') = 0; (46)whi
h en
ounters diÆ
ulties when the Hamiltonian H is non
onvex. Foranisotropi
 normal velo
itiesV = R + � 
os(k�); 
os � = 'x=kr'k; (47)the Hamiltonian is non
onvex ifR + �(1� k2) < 0 < R� j�j; (48)
ausing some Hamilton-Ja
obi methods to break down.In Figure 14, we evolve an initially 
ir
ular interfa
e under several anisotropi
normal velo
ities, produ
ing non
onvex Hamiltonians. The interfa
e 
on-verges rapidly to the \Wul� shape" [23, 42, 43℄ 
orresponding to ea
h givenanisotropy, as predi
ted by rigorous theory [21℄. The fa
eted Wul� shape is anatural limit, sin
e portions of the interfa
e with normal ve
tors not alignedalong minima of the velo
ity will grow faster, 
ausing fa
ets to develop. InFigure 15, we begin from a highly non
onvex initial interfa
e, produ
ing asevere test of the method. The asymptoti
 Wul� shape is still 
omputed a
-
urately. The small grid-dependen
e whi
h remains 
ould likely be removedwith a se
ond-order a

urate traje
tory 
omputation.These 
omputations were smoothed and their 
onvergen
e improved byapplying one pass of smoothing to ' before ENO di�erentiation, one pass toF after di�erentiation, and redistan
ing ' at every step. This emphasizes anessential reason why the CIR s
heme works for level set equations: We arefree to modify ' and F away from �(t) to suit numeri
al 
onvenien
e|or tosatisfy the CFL 
ondition.4.2.4 Merging under anisotropyStarting from a 
olle
tion of randomly pla
ed, sized and oriented trefoilshapes, we move the interfa
e along its normal with a threefold anisotropi
24



speed V = 2+ 
os(3�+0:3), where � is the angle between the normal ve
torand the positive x-axis. This motion involves 
onsiderable topologi
al 
om-plexity, whi
h is 
orre
tly 
omputed by the level set approa
h. Figure 16shows that even this highly non
onvex initial interfa
e is also approa
hingthe asymptoti
 triangular Wul� shape as t!1.4.2.5 Cir
les under 
urvatureA 
ir
le shrinking with normal velo
ity equal to its 
urvature has exa
t radiusR(t) = qR(0)2 � 2t, so with R(0) = 2 a 
ir
le should 
ollapse to a point intime 0 � t � 2. A smaller 
ir
le with R(0) = 1 vanishes in time t = 0:5.Figure 17 shows 
onvergen
e to graphi
al a

ura
y, 
omputed with 20, 40,80, 160 time steps on 202, 402, 802, 1602 grids and plotted every 0.2 timeunits.A 
onvenient measure of 
onvergen
e is the extin
tion time|the �rst timewhen the interfa
e 
ompletely vanishes. For the four runs shown, the extin
-tion time is 1.1, 1.5, 1.73 and 1.85, displaying slow but smoothly monotone�rst-order 
onvergen
e to the 
orre
t value 2. The extin
tion time is diÆ
ultto resolve be
ause it depends sensitively on the movement of the interfa
e asit vanishes. Even with smoothing, our 
omputed velo
ity always moves theinterfa
e faster than the exa
t velo
ity.For this paraboli
 problem, velo
ity smoothing and trun
ation, ' smooth-ing and frequent redistan
ing all 
ontribute to 
onvergen
e of the CIR s
hemeas k!0 with k = O(h). As dis
ussed in Se
tion 3.3.2, they all play a role insatisfying the paraboli
 CFL 
ondition with these unusually large time steps.We trun
ated the velo
ity away from the interfa
e at ea
h step, smoothed thetrun
ated velo
ity on
e per step on the 202 mesh, twi
e per step on the 402mesh, and so forth. The resulting logarithmi
 in
rease in sten
il width as themesh size goes to zero satis�es the CFL 
ondition. We smoothed ' on
e be-fore ENO di�erentiation, to 
ompute derivatives of nonsmooth ' values. Wealso redistan
ed ' from the interfa
e at the end of every step, a highly non-lo
al information transfer whi
h also helps satisfy the CFL 
ondition. Thesesmoothing and redistan
ing options were 
hosen after some experimentationand 
onstitute the minimum postpro
essing required to a
hieve 
onvergen
e.4.2.6 Non
onvex interfa
es under 
urvatureWe veri�ed that randomly pla
ed, sized and oriented non
onvex trefoil shapes
ollapse under 
urvature 
ow to round points, as predi
ted by a geometri
theorem [14℄. Figure 18 shows results for 0 � t � 1=2 on [�4; 4℄2, with onevelo
ity smoothing pass, one ' smoothing pass and one redistan
ing per step.Experiments showed that this rather small amount of smoothing suÆ
ed for
onvergen
e to graphi
al a

ura
y. 25



4.2.7 Non
onvex interfa
es merging under anisotropy plus 
urva-tureFinally, we demonstrate topologi
al 
omplexity in the vis
osity limit, with a
urvature-smoothed velo
ityV = 2 + 
os(3� + 0:3) + �C: (49)We illustrate the limit �!0 
omputationally with � = 0:1 and 0.01, 
arryingout a 
onvergen
e study for ea
h value of � separately. Figure 19 shows theresults, whi
h 
onverge rapidly to the results shown in Figure 16. We usedone velo
ity smoothing pass, one ' smoothing pass and one redistan
ing perstep.4.3 Convergen
eThese numeri
al experiments have 
onsistently demonstrated that our semi-Lagrangian methods 
onverge with appropriate problem-dependent trun
a-tion, smoothing and redistan
ing options. Our methods 
onverge without op-tions for passive transport and 
onstant normal velo
ity. When anisotropy or
urvature is present, redistan
ing plus one to four passes of velo
ity smooth-ing must be applied at ea
h step to ensure 
onvergen
e. These 
on
lusionsagree with the heuristi
s of Se
tion 3.3, and show that CFL timestep restri
-tions 
an be eliminated|even for 
urvature-dependent paraboli
 problems!5 Con
lusionWe have des
ribed and validated new numeri
al methods for moving inter-fa
es, based on semi-Lagrangian time stepping s
hemes for level set equations.We presented heuristi
 arguments and experimental eviden
e showing thesemethods work well for diÆ
ult moving interfa
e problems involving merging,fa
eting, transport, and anisotropi
 
urvature-dependent geometry.These methods has unique 
apabilities� to move interfa
es with appropriate time steps un
onstrained by nu-meri
al stability issues,� to de
ouple ea
h mesh point from the others, allowing easy adaptivemesh re�nement, and� potentially to de
ouple the velo
ity 
omputation from the moving in-terfa
e, allowing 
onvenient modular solution of a vast spe
trum ofmoving interfa
e problems. 26



Our ultimate goal is a \bla
k-box" method for moving interfa
es, whi
h 
ana

ept the interfa
e and its velo
ity at time t and return the evolved interfa
eone time step later. Su
h a method 
an simplify the solution of movinginterfa
e problems, be
ause the moving interfa
e 
ode need not 
hange whenthe physi
al problem o� the interfa
e is modi�ed.Planned future resear
h on these methods in
ludes� further analysis of CFL 
onditions for paraboli
 problems with in�nitepropagation speed,� adaptive modular methods [38℄,� se
ond-order a

urate time stepping,� CAD geometry input and 
ontouring with NURBS, and� appli
ations to industrial 
rystal growth problems, where the movinginterfa
e is 
oupled to 
omplex materials s
ien
e.6 A
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t = 0
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Figure 1: Corners moving outward with unit velo
ity round o� into 
ir
ularar
s, while 
orners moving inward remain sharp by Huygens' prin
iple.
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a

bFigure 2: The 
orresponden
e between (a) a hexagonal interfa
e and (b) thesigned distan
e ' to the interfa
e, plotted over a 202 grid.
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Figure 3: (a) Two hexagons moving with 
onstant normal velo
ity merge;the 
orresponding level set fun
tion is shown at (b) initial and (
) �nal times.
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t
s=(m+q)hmh xFigure 4: One-dimensional semi-Lagrangian CIR s
heme: move x ba
kwardwith velo
ity V , then interpolate ' at time t to point s.
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etime integration paths C for (a) Eulerian, (b) Lagrangianand (
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�

Figure 6: A possible sten
il for third-order ENO interpolation to the solidpoint s: Open dots indi
ate mesh points in the sten
il, 
rosses �
titiouspoints for interpolation in the x variable, and the 
urve is avoided by theENO sten
il be
ause a
ross it di�eren
es of the interpolated fun
tion arelarge.
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Figure 7: The x-
omponent Fx of the triangular velo
ity �eld F = (1 +
os(3�+0:3)=2)N where � = 'x=kr'k is the angle between the normal ve
torand the x-axis and ' is the hexagonal signed distan
e fun
tion of Figure 2.Here Fx is 
omputed with degree-1 ENO interpolation and di�erentiation,and plotted (a) unsmoothed on a 202 mesh, (b) after one smoothing pass ona 202 mesh, and (
) after one smoothing pass on a 402 mesh.37
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Figure 8: Boundary 
onditions implemented by proje
tion.
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t = 0

t = 1=2

t = 1Figure 9: A 
olle
tion of bubbles moving with linear shearing velo
ity.
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a d

b e


 fFigure 10: Tests of grid e�e
ts in sharp 
orners with linear velo
ity �eld. (a)A rotating triangle at a half period and a full period, 
omputed with degree-2ENO. (b) A triangle shrinking with V (x; y) = �52 (x; y) from t = 0 to t = 1.(
) A triangle expanding with V (x; y) = 2(x; y) from t = 0 to t = 1. Plots(d) through (f) show the same 
al
ulation with degree-3 ENO.40



t = 0

t = 50

t = 100Figure 11: A 
olle
tion of 
ir
ular bubbles under a divergen
e-free shearingvelo
ity.
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Figure 12: Vis
osity solutions for triangles moving with positive or negativeunit normal velo
ity. (a) An expanding triangle at zero angle to the mesh,with round 
orners. (b) An expanding triangle at angle 0.2 radians to themesh, with round 
orners. (
) A shrinking triangle at angle 0.2 radians tothe mesh, with sharp 
orners. 42



WRONG RIGHTFigure 13: Right and wrong propagation of 
orners under unit normal velo
-ity.
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V = 2 + 
os(3� + 0:3)

V = 2 + 
os(4� + 0:4)

V = 2 + 
os(6� + 0:6)Figure 14: Wul� shapes growing from 
ir
ular initial interfa
es (with radius1=2 and 
enter at (1=2�; 1=2�)) under the velo
ity fun
tions shown belowea
h plot. Here 0 � t � 1 and the domain is [�3; 3℄2.44



V = 2 + 
os(3� + 0:3)

V = 2 + 
os(4� + 0:4)

V = 2 + 
os(6� + 0:6)Figure 15: Wul� shapes developing from non
onvex initial interfa
es (givenby q(2�x� 1)2 + (2�y � 1)2 = 2�(0:8 + 0:4 
os(5�)) where tan � = (2�y �1)=(2�x � 1)) under the velo
ity fun
tions shown below ea
h plot. Here0 � t � 1 and the domain is [�3; 3℄2.45
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Figure 16: A 
olle
tion of randomly lo
ated, sized and oriented trefoils grow-ing and merging under anisotropi
 normal velo
ity V = 2 + 
os(3� + 0:3).Here our method used third-order ENO with (a) 40 time steps on a 402 mesh,(b) 80 steps on an 802 mesh, and (
) 160 steps on an 1602 mesh to a
hieve
onvergen
e to graphi
al a

ura
y. 46
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 dFigure 17: Convergen
e of two 
ir
les 
ollapsing under 
urvature 
ow V = C,
omputed from t = 0 to the extin
tion times t = 1=2 and t = 2 with third-order ENO on (a) 20 time steps on 202 grid 
overing [�4; 4℄2 with 1 velo
itysmoothing pass per step, (b) 40 time steps on 402 grid 
overing [�4; 4℄2 with2 passes per step, (
) 80 steps on 802 grid with 3 passes, (d) 160 steps on1602 grid with 4 passes.
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Figure 18: Convergen
e of a 
olle
tion of trefoils to round points under 
ur-vature 
ow V = C, 
omputed from t = 0 to t = 1=2 with third-order ENOon (a) 40 time steps on 402 grid 
overing [�4; 4℄2, (b) 80 steps on 802 grid,(
) 160 steps on 1602 grid. 48



� = 0:1 � = 0:01Figure 19: Non
onvex shapes merging under 
urvature-dependentanisotropi
 
ow V = 2 + 
os(3� + 0:3) + �C. Convergen
e to the vis
os-ity solution as � ! 0 is demonstrated with � = 0:1 in the left 
olumn and� = 0:01 in the right 
olumn; 
f. Figure 16 for the limit 
ase � = 0.49



ENO degree 1Grid NT = 20 40 80 160402 0.342 0.551 0.756 0.55802 0.0428 0.15 0.235 0.3531602 0.00628 0.00868 0.0677 0.2313202 0.019 0.00351 0.00467 0.0294ENO degree 2Grid NT = 20 40 80 160402 0.0938 0.13 0.102 0.0911802 0.0126 0.0389 0.104 0.1451602 0.022 0.00967 0.00183 0.02723202 0.0238 0.0116 0.00536 0.00163ENO degree 3Grid NT = 20 40 80 160402 0.00708 0.122 0.188 0.193802 0.018 0.00562 0.0431 0.05191602 0.0226 0.0103 0.00408 0.001893202 0.0239 0.0117 0.00555 0.00249Table 1: Maximum error at t = 1 in the interfa
e shown in Figure 9, movingwith divergen
e-free linear shearing velo
ity F (x; y) = 12(x� 3y+1;�y� 12),
omputed with NT time steps of the CIR s
heme with ENO interpolation ofdegrees 1, 2 and 3. The domain is [�6; 6℄2.
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ENO degree 1Grid NT = 20 40 80 160202 0.0589 0.0634 0.0657 0.0668402 0.0159 0.0179 0.019 0.0197802 0.00557 0.00647 0.00696 0.007221602 0.00119 0.00128 0.00137 0.00142ENO degree 2Grid NT = 20 40 80 160202 0.0077 0.00801 0.00814 0.0082402 0.0014 0.00146 0.00148 0.00148802 0.000456 0.000481 0.000488 0.0004891602 0.0000768 0.000078 0.0000792 0.0000795ENO degree 3Grid NT = 20 40 80 160202 0.00185 0.00194 0.00198 0.00199402 0.000658 0.000669 0.000672 0.000674802 0.000346 0.000349 0.00035 0.0003511602 0.0000724 0.0000725 0.0000726 0.0000726Table 2: Maximum of exa
t distan
e fun
tion at t = 1 on a 
ir
le of ra-dius R(t) = 1 + t and 
enter (1=2�; 1=2�), moving with 
onstant normalvelo
ity V = 1, 
omputed with NT time steps of the CIR s
heme with ENOinterpolation of degrees 1, 2 and 3.
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