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Abstract

A new numerical method for solving geometric moving interface prob-
lems is presented. The method combines a level set approach and a semi-
Lagrangian time stepping scheme which is explicit yet unconditionally stable.
The combination decouples each mesh point from the others and the time
step from the CFL stability condition, permitting the construction of meth-
ods which are efficient, adaptive and modular.

Analysis of a linear one-dimensional model problem suggests a surprising
convergence criterion which is supported by heuristic arguments and con-
firmed by an extensive collection of two-dimensional numerical results. The
new method computes correct viscosity solutions to problems involving ge-
ometry, anisotropy, curvature and complex topological events.
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1 Introduction

We present a new numerical method for moving interface problems. The
method merges and breaks interfaces naturally and generally via the level
set approach, while decoupling time step restrictions from the Courant-
Friedrichs-Lewy (CFL) stability condition by using an explicit yet uncondi-
tionally stable semi-Lagrangian time stepping scheme with velocity smooth-
ing and frequent redistancing. The time stepping scheme also decouples each
mesh point from the others, potentially simplifying both adaptive mesh re-
finement and parallel implementation.

Section 2 of this paper contains standard background material: moving
interface problems and examples, level set and semi-Lagrangian methods.
Section 3 presents our method and explains why it works. Section 4 vali-
dates it by solving an extensive collection of numerical examples including
geometric motions with corners, anisotropy, curvature and complex topology.
Section 5 draws conclusions and discusses future extensions and applications.

2 Background

This section summarizes standard background material on moving interface
problems and numerical methods. Section 2.1 classifies moving interface
problems commonly found in applications, by the degree of locality of the
velocity as a functional of the interface. Section 2.2 describes how to convert
these problems into level set equations on a fixed domain, eliminating the
moving interface. Section 2.3 introduces the level set method for moving
interfaces, Section 2.4 relates moving interfaces and CFL conditions for some
important model problems, and Section 2.5 reviews and analyzes the simplest



semi-Lagrangian scheme for hyperbolic partial differential equations (PDEs).
Section 2.6 discusses the derivation of higher-order accurate semi-Lagrangian
schemes.

2.1 Moving interface problems

A moving interface T'(¢) is a collection of nonintersecting oriented closed
curves in R? or surfaces in R? for each time ¢, a set-valued function of time.
Since each component of I'(¢) is closed, I'(f) has an interior and an exterior.
Assume T'(¢) is sufficiently smooth in space and time. Then for each time ¢
and each = € I'(¢) there is

o An outward unit normal vector N (z,1),
o A signed curvature C'(z,t), chosen positive for a circle or sphere, and

o A normal velocity V (z,t), chosen positive where the interior of I'(¢) is
growing.

Given a parametrization of I'(¢), these quantities can be calculated by stan-
dard geometric formulas found in [41].

A moving interface problem is a closed system of equations which spec-
ifies the normal velocity V' as a functional of I" and the other unknowns in
the problem. Such problems can be divided into three broad classes involv-
ing passive transport, geometry and/or PDEs or integral relations off the
interface. All occur frequently in applications.

2.1.1 Passive Transport

Passive transport moves an interface in some external flow, which may be
given a priori or computed on the fly but does not depend on the interface
itself. Thus F(x,t) is a given velocity field on R? and the normal velocity of
['(t) is V(z,t) = N(a,t) - F(z,t) which is independent of I'(¢). This type of
problem occurs when modeling common and important physical situations
such as rotation, shearing and stretching in an ambient flow, and is concep-
tually the simplest to solve because the motion of each point on the interface
obeys an ordinary differential equation with known right-hand side.

2.1.2 Geometry

More complex problems allow the local interfacial geometry to interact with
the motion, so the interface satisfies a partial rather than ordinary differential
equation. The normal velocity is a given function

V=V(tNC..) (1)
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of the interfacial position, normal, curvature, and other local geometric quan-
tities.

Example 1: The simplest geometric motion propagates I'(¢) along its
normal vector with constant uniform velocity. Corners form and merging
occurs if T'(0) is not convex, so I'(t) does not remain smooth, yielding the
simplest example of a “viscosity solution” to a Hamilton-Jacobi equation
[7, 13].

Specialized methods for motion with unit normal velocity can be built
from Huygens’ principle: I'(¢) is an envelope of the set of radius-|¢| circles
centered on each point of I'(0). Consider for example the inverted “V” y =
—|x| shown in Figure 1. If T'(¢) is given by y = ¢(x,t), Huygens’ principle

o THV2U < —t/V2
Y(x,t) =< VI2—a2 |z <t/V2 (2)
—r+ V2t x> t/\V2

for t > 0. As ¢t < 0 decreases, the inner envelope remains sharp: (z,t) =
—|x — V/2t| for t < 0. Time-reversal symmetry is broken, as for shocks in
hyperbolic conservation laws [17].

Example 2: A common two-dimensional geometric problem has a curve
['(t) evolving under a K-fold symmetric anisotropic normal velocity

V(x,t) = R+ ecos(K0 + 6p) + (R + € cos(K'0 + 6))C, (3)

where cos) = N - eq is the cosine of the angle between the normal vector and
the positive r-axis.

Anisotropic velocity fields grow or shrink interfaces along their normals
with speed depending on local orientation, easily producing complex merging
shapes and making these models popular in materials science [40]. With suf-
ficient anisotropy, such velocity fields produce faceted interfaces via the Wulff
construction [8, 21, 23, 43, 42]. At the corners of facets, the viscosity solu-
tion behaves differently from Example 1, because the velocity is anisotropic.
Rather than rounding off, the corner remains sharp even when the velocity
is a smooth function of the normal direction. See Sections 4.2.3 and 4.2.7 for
numerical examples.

2.1.3 PDE

In moving interface problems for PDEs, the interfacial velocity depends on
additional fields satisfying algebraic, ordinary differential, partial differential
or integral equations on or off the interface. These fields can mediate long-
distance nonlocal interactions, so the evolution equation for the interface is
no longer a local PDE.



Example 3: In volume diffusion [9, 20],

Ju(x,t)

Viat) =220 ()

where u(x,t) solves the Laplace equation
Au=0 outside I'(t) (5)
and the boundary condition
u==_C on I'(t), (6)

with boundary conditions at co. Using the Dirichlet-Neumann operator Ap
which maps boundary values for the Laplace equation outside I" to the normal
derivative of the solution on I', Egs. (4-6) become a single nonlinear nonlocal
pseudodifferential equation

V(t) = ArC (D). (7)

Eq. (7) gives the velocity V', and a curve movement equation which moves
the interface with given velocity V' completes the moving interface problem.
Several curve movement equations exist [34].

Example 4: A model for crystal growth is treated in [2, 4, 5, 26, 28, 34].

Here V is the jump across the interface of the normal derivative 813%’”, where
u satisfies the Stefan problem
u = Au off T'(t) (8)
u = —€6(N)C —e,(N)V on I'(¢) (9)

with boundary conditions on outer boundaries. Here €. and €, are given
functions of the outward normal N, as in Example 2.

Problems close to engineering practice often involve complex systems of
PDEs and integral equations modeling physical effects such as heat flow,
convection, elasticity, radiation, chemical and biological reactions, and fields
satisfying integrodifferential conditions on the interface itself. Such prob-
lems can be extremely difficult to solve numerically, even without moving
interfaces.

2.2 Level set equations

Moving interface problems can be reformulated as “level set equations” on a
fixed domain, using the zero set

I'={reR": p(x)=0} (10)
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of a function ¢ : R“—R. Given an interface I', there are many functions ¢
for which I' is the zero set: For example, the distance and the signed distance
to I':

p(w) = min [l —yll, ple) = £ min o —yll, (11)

where the plus sign is chosen for x in the interior of I'. However, not every
zero set is admissible as an interface. Zero sets may be flat where ¢ is equal
to zero on a region, and may cross at isolated points. These pathologies are
excluded if V¢ never vanishes on I'. Then ¢ crosses zero cleanly and we can
recover I' from ¢ by contouring. Thus the signed distance represents I' more
stably than the distance. Figure 2 shows a hexagon in the plane and the
corresponding signed distance function .

Many geometric properties of [' have simple expressions in terms of ¢,
because ¢ contains local information which allows implicit differentiation of
['. For example, the normal velocity, outward unit normal, and curvature are
given by

Vv =a/IIVel, (12)
N = V/|[Vel, (13)
C=-V-N, (14)

if ¢ is chosen to be positive inside the zero set [41]. These formulas can be
evaluated everywhere ¢ is known, as well as on I". At a point x away from
[, they give the geometry of the level set passing through .

Thus if we have the interface then we can compute its velocity from .
Conversely, given an extension of the normal velocity V' to a function of ¢
and € R?, Eq. (12) can be viewed as a PDE —the “level set equation”—
which moves I' by evolving ¢:

pr = VI[Vell = 0. (15)

Alternatively, we can construct a vector velocity field F on R? with ' = VN
on I', and solve the “linear level set equation”

or—F-Vp=0. (16)

Eqgs. (15) and (16) move every level set of ¢ with the extended velocity V/
or F, and in particular move the zero set with the correct velocity. This
approach to moving interfaces embeds the topology in ¢ rather than I'(t),
allowing merging, breaking and other topological changes to be handled au-
tomatically. We pay the price of going up one dimension. Either V or VN
must be extended to a function on the whole space, but the extension can
be almost completely arbitrary away from T'(t).

The moving interface problems from Section 2.1 can be put in level set
form as follows.



2.2.1 Passive Transport

For passive transport, F is already defined on R? and is a natural extension
of VN. Since N can be extended by Eq. (13), a natural extension of V is
N - F. The resulting level set equation is a hyperbolic PDE, nonlinear if V'
is extended:

pr— V(1) |Vl =0 (17)

and linear if F' is extended:
oy — F(x,t) - Vo = 0. (18)

N is singular where V¢ vanishes or is singular. For example, in Figure 2,
Vi does not exist at the center and the corners of each hexagonal level set,
where ¢ is not differentiable. Even if V exists everywhere, it must vanish at
maximum points interior to I', so N is never globally smooth. This suggests
that we should extend F' rather than V', solve Eq. (16) instead of Eq. (15),
and avoid using N off I'.

2.2.2 Geometry

With geometric quantities extended naturally by Eqs. (12-14), the level set
equation for Example 2 reads

pr— (R+ecos(KO+060))|[Veoll = (R +€ cos(K'0+6,))V - (Vo / [Vl DIVl

(19)
where cos ) = ¢, /||Vl|. This is a mixed hyperbolic-parabolic PDE contain-
ing both first-order and second-order spatial derivatives of ¢, and becoming
singular where V¢ vanishes.

2.2.3 PDE

For fluid problems with moving interfaces, the fluid velocity provides a natu-
ral extension of VNV off the interface. But in many other PDE-type models,
the normal velocity is built from quantities such as boundary values and
jump conditions, whose natural habitat is the interface. Then an extension
of V' is not obvious. One could set V= N - Vu in Example 3 (volume diffu-
sion), but Vu is discontinuous across I'(¢). In Example 4 (crystal growth), V'
is defined as a jump across I'(t) and an extension of V' is even less obvious.
Thus various extensions have been developed: In [28], for example, our Eq.
(9) was solved for V' under the assumption €,(N) # 0 to get

(u+ e.(N)C) (20)



where NV and C are extended naturally and the jump condition is built into
the solution of the heat equation via classical potential theory. General
schemes which extend any velocity field off any interface were presented in
[1, 5, 38, 39] and applied to this crystal growth model in [5].

2.3 The level set method

The level set method moves I'(¢) from ¢t = 0 by constructing an initial level
set function ¢(x,0) for I'(0) and an extended velocity field V or F for t > 0,
solving one of the level set equations Eq. (15) or Eq. (16) numerically, then
finding T'(¢) from ¢(x,t) when required. The method was introduced in [22],
and an extensive recent survey is [27]. It has undergone much development
and been applied to many moving interface problems.

The main advantage of the level set method over other numerical methods
for moving interfaces is its natural treatment of topological changes such as
merging and breaking. These changes can be difficult to handle with methods
based on parametrization, but solving the level set equation merges interfaces
naturally and automatically as shown in Figure 3.

There are some potential difficulties with the level set method. It can be
more expensive since it goes up a dimension, particularly if uniform meshes
are used. Extending the velocity off T'(t) can be difficult. One must be
careful to obtain the correct “viscosity solution” of Eq. (15) or Eq. (16), by
using an appropriate solver for the level set equation [27]. The method is not
sufficiently modular; a new code must be written for each new problem to be
solved, since the velocity evaluation is intertwined with the moving interface
code by velocity extension and CFL conditions.

We present a level set solver on a uniform mesh in Section 3, which
is shown experimentally to obtain the correct viscosity solution for passive
transport and geometric problems where velocity extension is straightfor-
ward. This solver is designed for easy adaptive mesh refinement with large
time steps, yielding optimal efficiency. An adaptive version is developed in
[37]. On this foundation, an efficient, general and robust velocity extension
is built in [38] and yields a completely modular level set method.

2.4 CFL conditions

Almost all explicit schemes for PDEs such as the level set equation encounter
time step restrictions due to the famous Courant-Friedrichs-Lewy (CFL) con-
dition [17]. This necessary condition for convergence requires that in the
limit as the time and space mesh sizes go to zero, the domain of depen-
dence of the numerical solution at each spacetime point must include that
of the exact solution. For explicit schemes with bounded stencils for first-



order hyperbolic PDEs, the CFL condition imposes a time step restriction
of the dimensionally natural form |Uk| < O(h), where k is the time step, h
is the spatial mesh size, and U is proportional to a characteristic velocity of
the PDE. For higher-order PDEs these time step restrictions often become
kE < O(h?*) or O(h?) and make explicit schemes prohibitively expensive. The
usual remedy—implicit time-stepping schemes—is often unavailable for level
set equations because the complex and problem-dependent relation between
V and I['(¢) frustrates most nonlinear equation solvers.

In passive transport and unit normal velocity, the level set equation is
first-order hyperbolic, so most explicit schemes encounter a time step re-
striction & < O(h). This restriction is inconvenient if a fine or adaptive
mesh is used. In the curvature-dependent geometric motion of Example 2,
explicit treatment of the second-order parabolic term requires an asymptoti-
cally smaller time step k& < O(h?). Volume diffusion (Example 3) involves the
theory of the “Dirichlet-Neumann operator” A which maps boundary values
to normal derivatives. A is a first-order pseudodifferential operator, and C'
is a second derivative of p, so V= AC resembles a third-order derivative of
¢. Therefore k < O(h?), and similarly in Example 4 (crystal growth). This
condition requires extremely small time steps. If higher-order PDEs such
as elasticity are involved, these small time steps can make most schemes
prohibitively expensive.

These time step restrictions can be eliminated by allowing unbounded
stencils. For example, we can build a trivial explicit method for the heat
equation which is stable and convergent with large time steps k = O(h),
if we allow stencil size to grow as the mesh is refined. Take the standard
explicit finite difference method on a sequence of meshes with mesh sizes
h = 1/n and time step At = h?/2, so the usual CFL condition is satisfied.
Define a new finite difference method with step size k = h = 2nAt = 1/n
by taking 2n tiny steps of the standard method to pass from ¢ to t + k. The
new method is stable and convergent with & = h, hence satisfies the CFL
condition.

Our moving interface method decouples time steps from CFL conditions
by using the explicit unconditionally stable time stepping scheme reviewed
in Section 2.5. More general schemes of this “semi-Lagrangian” type are
presented in Section 2.6. For first-order hyperbolic problems, these schemes
satisfy the CFL condition with large time steps by shifting the stencil. For
higher-order level set equations, heuristic reasons for our methods to satisfy
CFL conditions are discussed in Section 3.3.



2.5 The CIR scheme
Consider the simplest linear hyperbolic PDE

o — F(x,t) -V =0. (21)
Eq. (21) propagates ¢ values along the characteristic curves s(t) defined by
(t) = —F(s(t),t), s(0) = xy, (22)

because

—o(s(t), ) =i+ &= = F-Vo =0 (23)
if p solves Eq. (21). Thus we can find ¢ values at any time ¢ by finding the
characteristic curve passing through (z, t) and following it backwards to some
previous point (zg, tg) where the value of ¢ is known: then ¢(x,t) = ¢(x, to).
This observation forms the basis of the “backward characteristic” or “CIR”
scheme due to Courant, Isaacson and Rees [6], which is the simplest semi-
Lagrangian scheme. Given ¢ at time ¢,, CIR approximates ¢(x,t,,1) at any
point x at time t,; = t, + k by evaluating the previous velocity F(z,t,),
approximating the backward characteristic through = by a straight line

x+ (tpyr — ) F(x,t,) ~ s(t) (24)
and interpolating ¢ at time £, to the point
r+k F(xt,) =~ s(t,). (25)

Then ¢(x,t,41) is set equal to the interpolated value.

For linear PDEs, the Lax-Richtmyer equivalence theorem [17] guarantees
that CIR will converge to the exact solution as k,h—0 if it is stable and
consistent. For nonlinear PDEs, stability and consistency are necessary but
not sufficient.

2.5.1 Stability

The stability properties of the CIR scheme are excellent. Each new value
o(x,t,y1) is a single interpolated value of ¢ at time t,, so unconditional
stability is guaranteed in any norm where the interpolation does not increase
norms. For example, CIR with linear interpolation is unconditionally stable
in the maximum norm. In general, semi-Lagrangian schemes satisfy the CFL
condition by shifting the stencil, rather than restricting the time step. Thus
information propagates over long distances in one step.
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2.5.2 Consistency

Explicit unconditionally stable schemes like CIR or the Dufort-Frankel scheme
[17] usually require some consistency condition, in place of the time step re-
striction £ < O(h) required by other explicit schemes. The consistency
condition for CIR can be illustrated with the simplest one-dimensional linear
hyperbolic PDE

pr =V, =0,  ¢(,0) = f(r), (26)
whose solution is ¢(x,t) = f(z + Vt). The CIR scheme on a uniform mesh
x = jh, t = nk produces numerical approximations u} to ©(jh,nk) by the
formula

uith = qup o+ (1= q)uy, (27)
where T h— VE
. J—m)n —
m=j— V], q=L (25)

as in Figure 4. The scheme is unconditionally stable because the projected
point s need not lie in the same computational cell as z; the stencil shifts to
satisfy the CFL condition discussed in Section 2.4.

To check consistency, we plug the exact solution ¢ into the numerical
formula and bound the truncation error 7(z,t) defined by

©(jh, (n+1)k) = qp((m+1)h,nk)+(1—q)e(mh,nk)+kr(jh, (n+1)k). (29)

The scheme is consistent to first order if 7 = O(h) + O(k) on a fixed time
interval as h, k—0. Taylor expansion gives

T=0 (%) + O(k) (30)

if the initial data f has two continuous derivatives. The first term comes from
the O(h?) error in linear interpolation, repeated at O(1/k) time steps, while
the second term is due to approximating the characteristics by straight lines
with first-order accurate slopes F(z,t,). Thus CIR is first-order accurate if
the following condition is satisfied:

k> Ch (31)

for some arbitrary constant C'. This consistency condition differs from the
usual time step restriction |Vk| < h in two important ways: the inequality
is reversed so h is bounded rather than &, and the constant C' is completely
independent of V', and need only be fixed as k, h—0.

A similar calculation shows that with higher-order accurate interpolation
this lower bound becomes even less restrictive. For an interpolation method
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with error O(h?) per interpolation, a consistency condition & > O(h®) pro-
duces a semi-Lagrangian scheme with formal error O(h??) + O(k). How-
ever, stability becomes an issue since higher-order interpolation may allow
the maximum norm of the solution to increase.

2.5.3 Nonlinear hyperbolic problems
To apply the CIR scheme to nonlinear hyperbolic PDEs of the form
pr — F(z,t,0) - Vo =0, (32)

Courant, Isaacson and Rees use a standard approach: Freeze ¢ at time ¢, in
the argument list of F', then apply the linear CIR scheme to move forward
one step from ¢, to t,,11. The scheme remains unconditionally stable, and
if the solution remains smooth, Taylor expansion shows that consistency is
unaffected. However, solutions to a general nonlinear hyperbolic PDE do not
remain smooth. Instead, they develop shock discontinuities and degenerate
to weak solutions. Uniqueness then fails and an entropy condition is required
to select the correct weak solution.

When shocks occur, both theory and numerics become more difficult. If
the PDE is a conservation law and the numerical scheme is in conservation
form, then the Lax-Wendroff theorem [17] guarantees that any limit of the
scheme is a weak solution. Eq. (32) is not in general a conservation law, and
CIR is not in conservation form, so the Lax-Wendroff theorem does not apply.
In fact, CIR moves shocks at the wrong speed even in simple conservation
laws [17] and thus cannot be convergent.

Thus the CIR scheme —while explicit and unconditionally stable— has
never been popular for solving nonlinear conservation laws. It has been
used mainly for linear problems, where stability plus consistency guarantee
convergence. In Section 3.3, we explain the special features of nonlinear level
set equations which permit the convergence of methods based on the CIR
scheme.

2.6 Semi-Lagrangian schemes

Semi-Lagrangian schemes which preserve the unconditional stability of CIR
but enjoy higher-order accuracy have been widely used for modeling linear
advection in atmospheric science [3, 24, 31, 33]. Their unconditional stability
is particularly useful on the sphere [18, 32], where it eliminates the stringent
time step restriction encountered by Eulerian schemes on small mesh cells
near the poles. In moving interface problems, semi-Lagrangian schemes per-
mit local mesh refinement with large time steps and overcome the inefficiency
of level set methods on a uniform mesh. Semi-Lagrangian schemes for special
level set equations have been constructed in [11].
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An effective viewpoint for the derivation of higher-order accurate semi-
Lagrangian schemes is presented by Smolarkiewicz and Pudykiewicz in [31],
and involves three steps: spacetime integration, interpolation or advection
and discretization.

2.6.1 Spacetime integration

Consider the linear hyperbolic PDE
or—F -V =0. (33)

Suppose we know ¢ on a regular grid at time s and we seek the values p(z, t)
at some time ¢ > s. The fundamental theorem of calculus and Eq. (33) give

o, 1) = o(y, s) + /C V- (dr + Fdt) (34)

where C'is any path in spacetime connecting (y, s) to (z,1).

Several well-known classes of schemes for Eq. (33) are distinguished by
their choices of C'. Eulerian schemes take = y and C' a straight line segment
parallel to the t-axis as in Figure 5(a). Pure Lagrangian schemes take C' to
be the Lagrangian trajectory 7" defined by

(o) = —F(x(0),0) (35)

starting at a grid point y, as in Figure 5(b). Since dx + Fdt = 0 on T,
Lagrangian schemes propagate ¢ values unchanged along 7', assuring uncon-
ditional stability:

pla,t) = o(a(t), 1) = (y, ). (36)

The main drawback of Lagrangian schemes is that a regular mesh rapidly
distorts, losing discretization accuracy. This mesh distortion has been a
long-standing problem in 2-D vortex methods, solved in [35].

Semi-Lagrangian schemes combine the regular mesh of an Eulerian scheme
with the unconditional stability of a Lagrangian scheme. They build values
of ¢ at regular mesh points x at time ¢ by running a Lagrangian trajectory
T backwards from (x,t) to some point (y, s), then a simple path L from the
nearest grid point z at time s to y, as in Figure 5(c). Since dt = 0 on L and
dr + Fdt =0 on T, we have

pat) = ol(5) + [ Vio-do = ply, ). (37)

Thus semi-Lagrangian schemes need only transport the ¢ evaluation from x
to y, either by interpolation or advection.
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2.6.2 Interpolation or advection

Many semi-Lagrangian schemes can be derived by interpolating ¢(y, s) from
known grid values, as in the CIR scheme of Section 2.5. Linear interpola-
tion gives unconditional stability with first-order accuracy, while higher-order
accurate polynomial interpolation can be unstable. Shape-preserving inter-
polation methods have been compared in [25], and some of these methods
yield stable schemes for advection.

Stability issues are eliminated in [31] by re-examining the integral expres-
sion

o(y,s) = p(z,s) + /L V- dr. (38)

This integral transports the evaluation point of ¢ from z to y, and can
therefore be viewed as [linear advection with constant velocity parallel to
y — z. The advantage of this viewpoint is that monotone Eulerian advection
schemes generate stable semi-Lagrangian schemes: there is no CFL time step
restriction since y and z are less than half a mesh size apart. Alternatively,
L can be built from line segments parallel to coordinate axes, giving natu-
rally split semi-Lagrangian schemes from one-dimensional Eulerian advection
schemes. Viewing interpolation as advection can also be reversed, yielding
shape-preserving interpolation from Eulerian advection schemes [30].

2.6.3 Discretization

Specific semi-Lagrangian schemes usually approximate trajectories by a second-
order accurate ordinary differential equation solver such as the implicit mid-
point rule

y:m+(t—s)F(%(m+y),%(t+s)>, (39)

with F' values interpolated —or advected— from the grid points. Eq. (39)
is nonlinear, but fixed point iteration is proved convergent in [12, 24] if the
weak non-intersection condition

(t—s)||DF| <1 (40)

is satisfied. Semi-Lagrangian schemes are intended for computing smooth
solutions without shocks, but it is shown in [12] that —even for Lipschitz
solutions— the accuracy of these schemes is limited only by trajectory smooth-
ness, not by solution smoothness.

Given second-order accurate trajectories, a second-order semi-Lagrangian
scheme can be built on third-order interpolation methods or Eulerian advec-
tion schemes [29]. Spurious oscillations are common with high-order poly-
nomial interpolation, making shape-preserving interpolation and monotone
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advection preferable. In this paper, we implement first-order CIR time step-
ping with arbitrary-order ENO interpolation [15] to provide spatial accuracy
without spurious oscillations. We plan to implement second-order trajectory
calculation in future work, to reduce the dissipation evident in a few of our
numerical experiments.

3 A semi-Lagrangian method for moving in-
terfaces

3.1 Overview of the method

We use semi-Lagrangian time stepping schemes to solve the level set equation

Here F is a velocity field on R? which extends VIV off I'(¢), and may depend
on anything: ¢, N, C, other derivatives of , nonlocal terms, jump condi-
tions, history terms, and so forth. The combination of level sets and semi-
Lagrangian time stepping schemes yields a family of methods parametrized
by several options. After an overview of these methods, we discuss each
option in detail and explain how it contributes to convergence.

3.1.1 Algorithm

Given the level set function (x,t,) for every point = in a uniform grid at
time t,, our methods compute ¢(x,t,,1 =t + k) at each grid point x by the
CIR scheme:

o Evaluate the extended velocity F(z,t,) at .

(e]

Optionally postprocess F' with truncation and smoothing.

e}

Move 2 backwards with velocity —F(z,t,) to get the point

s=x+k F(x,t,). (42)

(e]

Interpolate or advect ¢(x,t,) to the point s to get p(z,t,11) = @(s,t,).

o

Redistance ¢ if desired, by replacing ¢ by the signed distance to its
zero set.
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3.1.2

Features

Methods of this family have several unique features:

@)

Each new mesh value is a completely independent computation. This
allows easy parallel implementation and —more importantly— simpli-
fies construction of adaptive meshes which concentrate computational
effort near the interface. Thus the cost of going up a dimension is
eliminated.

Adaptive mesh refinement does not globally restrict the time step be-
cause the time step is decoupled from the CFL stability condition by
the unconditional stability of CIR.

Adaptive mesh refinement criteria are easy to formulate because we are
computing an approximate distance to the interface, which naturally
determines refinement. No derivative estimates are necessary.

These methods are implemented on a tree mesh in [37], and combined with
fast tree-based redistancing and extension techniques in [38] to yield a gen-
eral, efficient and modular method for moving interfaces.

3.2

Options

This family of methods can be parametrized by choosing the following op-

tions:

o

The ¢ interpolation or advection technique which obtains ¢(s,t,) at
off-grid points s.

The velocity evaluation technique which builds F(z,t,). This may re-
quire differentiation and interpolation in the geometric case, or solution
of a PDE or integral equation in the general case. A general extension
technique may be used, or a problem-dependent extension may be built.

Postprocessing of F' and ¢ for stability and accuracy: for some prob-
lems such as curvature flows, the optional postprocessing consisting
of velocity truncation and smoothing and redistancing at every step
appears to be mandatory for convergence.

Boundary conditions required when the projected point s falls outside
the domain where ¢ is known.
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3.2.1 Interpolation of ¢

Each evaluation of ¢(z,t,,1) requires interpolation or advection to obtain ¢
values off the grid. There are infinitely many interpolation techniques, but
our choice is restricted by two requirements. First, the level set function
@ is only Lipschitz continuous in general since faceting may occur. Thus
high-order polynomial interpolation requiring smooth ¢ should be avoided.
Second, stability of the semi-Lagrangian approach in any given norm is guar-
anteed only for interpolation techniques which do not increase the norm too
much. For example, linear interpolation, shape-preserving interpolation [25]
and monotone advection [31] guarantee unconditional max-norm stability.

Given these two requirements, essentially non-oscillatory (ENO) interpo-
lation [15] provides sufficient stability and arbitrary-order accuracy. ENO
does not guarantee unconditional stability as linear interpolation would, but
gives excellent results in practice. Thus we use ENO interpolation and dif-
ferentiation throughout this paper.

In one dimension, ENO is designed to reduce the variation of the in-
terpolant by sliding the usual polynomial interpolation stencil to minimize
differences. In two dimensions, one coordinate direction is chosen first and
the stencil slides in that direction. Each stencil value is computed by one-
dimensional ENO in the other direction. See Figure 6 for an example. This
choice breaks z—y symmetry, giving a useful error indicator: inaccurate com-
putations become unsymmetric.

3.2.2 Velocity evaluation

Velocity evaluation may require various problem-dependent computations
involving ¢, derivatives of , and possibly other data. For extending the
velocity in PDE problems, we plan to use the general velocity extension of
[38]. It redistances efficiently at every step and requires the velocity only on
the interface, decoupling the level set method from the velocity computation
on I'(t) and permitting the modular solution of moving interface problems for
PDEs. For the passive transport and geometric flows computed in Section 4,
we use the natural velocity extensions of Section 2.2, truncated and smoothed
away from the interface for numerical convenience. The following additional
procedures are required for geometric flows.

Differentiation of ¢ We compute derivatives of ¢ by optionally smoothing
¢ once, then differentiating the ENO interpolant to ¢. Smoothing is helpful
when the interface is faceted or highly complex, because ¢ is Lipschitz con-
tinuous with corners at the facets (as in Figure 2 above) and unsmoothed
ENO differentiation can be inaccurate at corners.
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Truncation The curvature and normal have singularities when Vi = 0, so
we truncate geometric velocity fields away from T'(t). We scale the velocity
vector F' away from I['(¢) so that its maximum norm over the set {|p| > 2h}
is equal to its maximum norm over the set {|¢| < 2h}. Thus large F' values
near singularities cannot corrupt the solution.

Velocity smoothing Differentiating the smoothed ENO interpolant to ¢
produces accurate normal vectors but noisy curvature, because ¢ is only
Lipschitz continuous; hence we smooth curvature-dependent velocities. Each
smoothing pass replaces each velocity value by the arithmetic mean of the
3% nearest values. This commits O(h?) error in each step, so the total error
due to smoothing at any fixed time is O(h?/k) = O(h) if the consistency
condition k& > O(h) is satisfied. Thus this smoothing technique matches
well with the first-order CIR scheme. Higher-order smoothing can be used
with a higher-order time stepping scheme. Figure 7 shows smoothing of an
anisotropic velocity field for moving a faceted interface, with and without ¢
and velocity smoothing.

3.2.3 Redistancing

The level set equation for moving interfaces —unlike a general PDE— is
relevant only near the zero set of the solution. As a consequence, we can
re-initialize or “redistance” the solution at any time, by replacing it with
the exact signed distance function to its zero set. Redistancing is expensive
if done naively, but several fast schemes are available [1, 5, 36, 39]. Af-
ter piecewise-linear contouring of ¢, for example, the Voronoi diagram of
the resulting polygonal interface can be built in theoretically optimal time
[44], and yields almost instantaneous redistancing by standard optimal search
techniques [16]. A simplified Voronoi diagram [19] can yield the same result
with considerably lower conceptual complexity; however, implementations
are not yet available.

Redistancing can be viewed as a form of filtering which eliminates many
numerical issues while preserving the interface. For example, boundary con-
ditions far from the interface become much less important because their effect
is discarded after redistancing. Redistancing also simplifies geometric veloc-
ities: when ¢ is a signed distance function, ||Vl = 1 near I'(¢), so N and
C simplify to Vi and Ap.

3.2.4 Boundary conditions

Semi-Lagrangian schemes require numerical boundary conditions to specify
values for ¢(s,t,) when s lies outside the domain D covered by the grid.
There are two simple boundary conditions: extension and projection. In
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extension, we extend ¢ as a constant or linear function along lines normal to
the boundary 0D and apply our standard interpolation scheme to interpolate
the extended values to s. In projection, we arrest s as it leaves the domain
and use one-sided interpolation to the point where s crosses 0D. Figure 8
shows projection in action: if the point s from Eq. (42) falls outside the
domain, then the value of ¢ is interpolated to s" and p(x,t, + k) = p(s', t,).
Our method uses projection because it is simple, effective and it combines
well with ENO schemes which adapt automatically to one-sided interpola-
tion. The combination of projection with truncation, smoothing and redis-
tancing proved highly effective in our numerical examples. Further research
into boundary conditions might be useful in solving parabolic problems like
curvature flow where information enters the domain at high speed.

3.3 Convergence

Semi-Lagrangian time-stepping schemes are ideal for solving level set equa-
tions, because they promise optimal efficiency via easy adaptive mesh refine-
ment and unrestricted time steps. To fulfill this promise, they must converge
to the correct solution near the interface. The following heuristics —and the
experiments of Section 4— suggest that these schemes should converge.

3.3.1 Absence of shocks

Semi-Lagrangian schemes converge for Lipschitz continuous solutions of ad-
vection equations [12], but diverge when shock discontinuities are present
[17]. This poses no problem for level set equations, which —like advection
equations in atmospheric science— have no shocks. Indeed, the solution ¢
must remain Lipschitz continuous at all times, or we cannot extract the zero
set T'(¢). Lipschitz continuity can be rigorously proven for passive transport
and some geometric problems [10], and guaranteed in general by redistancing
@ at every step.

Given that ¢ remains Lipschitz continuous, it is easy to see why semi-
Lagrangian schemes should work: At a shock, ¢ would be discontinuous, so
a tiny error in velocity would make the trajectory look the wrong way and
commit an O(1) error in ¢, followed by F'; hence shocks would move at the
wrong speed. A Lipschitz continuous ¢ has “kinks” or corners at worst rather
than discontinuities, so a small velocity error causes a small solution error.

3.3.2 The CFL condition

The CFL condition requires that a convergent numerical scheme must prop-
agate information about solution values at approximately the right speed,
and usually restricts the time step. Our goal in applying semi-Lagrangian
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schemes to moving interface problems is to satisfy the CFL condition with-
out restricting the time step. For interfaces undergoing passive transport,
we have linear advection where semi-Lagrangian schemes converge [12], so
the CFL condition is satisfied. For geometric problems involving curvature,
the level set equation becomes parabolic and information propagates along
the interface with infinite speed. Even so, our methods can satisfy the CFL
condition as k = O(h)—0 for the following heuristic reasons.

Nonlocal velocity computation The domain of dependence of the CIR
solution ¢(z,t,41) obviously includes the single interpolation point s = x +
kF(x,t,) and its stencil, but the point s in turn depends on the ¢ values
used to compute the extended velocity F'(x,t,). Thus the CFL condition
can be satisfied in principle by computing F' nonlocally with arbitrarily large
time steps. For PDE-type moving interface problems F' is almost always a
global functional of ¢, so the CFL condition is satisfied.

From a theoretical point of view, if the solution is continuous and the
problem has a maximum principle, each new solution value is exactly equal
to some old solution value: define a velocity field F' to point to that old value.
This highly nonlocal velocity satisfies the CFL condition with any time step.

Velocity smoothing A specific nonlocal technique which satisfies the CFL
condition is to postprocess the velocity field by smoothing or averaging it
over a sufficiently large stencil. Accuracy can be maintained by increas-
ing stencil size only logarithmically as h—0. In practice, a few passes of
smoothing produces convergent solutions even though curvature flow veloc-
ities give parabolic level set equations, for which explicit schemes usually
require k = O(h?).

Redistancing Replacing ¢ by the signed distance to its zero set I'(t) also
implements long-distance information transfer and helps satisfy the CFL con-
dition. While redistancing propagates information primarily normal to the
interface, its influence is enhanced in regions of high curvature such as cor-
ners where normal vectors cross near the interface: these are also the regions
where propagation speeds are highest. Frequent redistancing also removes
many of the other inconvenient numerical artifacts of the level set method,
such as boundary conditions and treatment of singularities.

Velocity extension For general moving interface problems, the velocity F'
is known only on I'(t) and must be extended to RY. Typically F is extended
as a constant normal to I'(t) [1, 5, 38, 39], propagating information along
the same paths as redistancing and satisfying the CFL condition in the same
way.

20



Modularity Since a major design goal of our method is modularity —the
moving interface code should have minimal information about the velocity-
interface relationship— these postprocessing techniques should maintain mod-
ularity while satisfying the CFL condition. Nonlocal velocity computation
and smoothing inhibit modularity, while the combination of redistancing and
velocity extension respects it.

4 Numerical results

We study the accuracy of our semi-Lagrangian level set method on several
interfaces moving under passive transport and geometric motion with corners,
anisotropy, nontrivial topology and curvature. Some PDE-type examples
with a general velocity extension [38] will be treated in future work.

Unless otherwise noted, all the examples were computed with the follow-
ing numerical parameters.

o Third-order ENO was used for both the ¢ interpolation and the velocity
computation (in geometric moving interface problems where V' requires
derivatives of ).

o Three runs were made with 40, 80 and 160 time steps on a 402, 802
and 1602 mesh. Most plots superimpose the three runs to demonstrate
convergence to graphical accuracy.

o For curvature-dependent problems, the velocity was truncated and smoothed
once per step, and ¢ was redistanced at every step to ensure the CFL
condition was satisfied.

The method was implemented for two-dimensional level set equations in
Standard C, compiled with the SunSoft C compiler using the -fast flag, and
run on one CPU of a 2-CPU 200MHz Sun Ultra-2 under Solaris 2.6.

4.1 Passive transport

Passive transport problems form convenient test cases for level set methods,
because complex exact solutions can easily be evaluated. Thus we can mea-
sure the error and rate of convergence. We carry out convergence studies
for three passive transport problems and verify the accuracy, robustness and
conservation properties of the CIR scheme with ENO interpolation of degrees
1, 2 and 3.
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4.1.1 Bubbles in a shear flow

We begin our study of passive transport by measuring the accuracy of the
method on the collection of circular bubbles shown in Figure 9, moving with
a divergence-free linear shearing velocity

F(x,y)z%(m—SyﬂLl,—y—%). (43)
We used 20, 40,80 and 160 time steps on 0 < ¢ < 1 and 402,802, 160% and
3202 grids on [—6, 6] x [—6,6]. ENO interpolation of degrees 1, 2 and 3 was
used to interpolate ¢. Table 6 reports the maximum of the exact distance
function on the computed contour at time ¢ = 1. First-order accuracy is
clearly evident along diagonals, where h < O(k). This agrees with the one-
dimensional model theory of Section 2. The error decreases dramatically
when we change from ENO degree 1 to degree 2, but degree 3 makes no
further improvement.

4.1.2 Grid effects on triangles

A common problem in moving interfaces is sensitive dependence on numerical
artifacts such as grid orientation. We check for grid effects in a sharply
faceted interface by revolving, shrinking and expanding a triangle with a
linear velocity field. In all cases, the interface moves with the appropriate
speed independently of its orientation relative to the grid. Figure 10 plots the
results with both second and third-order degree ENO on the domain [—2, 2]?,
and shows that grid effects are minimal. The dissipation exhibited in Figure
10(a) could be considerably reduced by second-order trajectory computation.

4.1.3 Mass conservation in a shear flow

We conclude our study of passive transport by measuring mass conservation

in a collection of bubbles moving in the divergence-free shearing flow given

by

max (1 — (1 — 2% — y*)4,0)
8(x2 + y?)

Figure 11 shows the extreme distortion produced by this flow, computed

with 160 time steps on 0 < ¢ < 100 and a 160? mesh on the domain [—6, 6.

Despite this distortion, mass is well conserved; the final area inside the com-

puted interface is 12.4669, close to the exact value of 47 = 12.5664.

In the exact solution interfaces cannot touch, because of standard unique-
ness theorems for ordinary differential equations. Thus merging of computa-
tional interfaces can happen even when it is impossible in theory, and must
be allowed for in any robust moving interface method. Automatic handling

F(x,y) =

(=y, ). (44)
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of unexpected topological changes is one of the strengths of the level set
approach.

4.2 Geometry

We validate our semi-Lagrangian moving interface method by computing
converged solutions to a variety of geometric moving interface problems in-
cluding viscosity solutions to corners moving with unit normal velocity, the
faceted Wulff limit for anisotropic normal velocity fields, complex topolog-
ical changes under anisotropic curvature-dependent flows, and nonconvex
shapes shrinking to round points under flow by curvature. Moving inter-
face problems for PDEs require a general velocity extension but display little
additional complexity, and will be solved in future.

4.2.1 Unit normal velocity

We verify first-order accuracy on a unit circle centered at (1/27,1/27), ex-
panding with unit normal velocity F' = N, extended naturally via Eq. (13)
with singularities truncated;

Vo

F=N= . 45
max (105, [V o) (45)

Table 6 reports the maximum of the exact distance function on the computed
contour at time t = 1, with 20,40,80 and 160 time steps on 0 < t < 1
and 20%, 402, 80? and 160? grids on [—3,3]*>. ENO interpolation of degrees
1, 2 and 3 was used both in the ¢ interpolation and in the evaluation of
N. Considerably better than first-order accuracy is evident along diagonals,
where h < O(k), because the exact interface is a linear function of ¢.

4.2.2 Viscosity solutions with corners

One of the most important issues in level set equations is the correct com-
putation of “viscosity solutions” for faceted interfaces in geometric and PDE
problems [27]. A key ingredient in this computation is a corner moving in or
out with unit normal velocity. Inward motion should keep corners sharp (the
“shock” case), while outward motion should produce rounded corners due
to Huygens’ principle (the “rarefaction” case), as discussed in Section 2.1.2.
Figure 12 shows a triangle moving with positive and negative unit normal
velocity, both aligned with the mesh and at an angle to check for grid effects,
and demonstrates that our semi-Lagrangian method computes the correct
viscosity solution in each case.

This agrees with theory: any reasonable computed normal has unit length,
so our method propagates information at unit speed. An incorrect solution
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typically preserves a sharp corner moving outward, rather than rounding it
off as prescribed by Huygens’ Principle: Figure 13 illustrates the difference.
CIR produces the correct solution because zero ¢ values delineating I'(1)
near the corner must be located on a unit circle centered somewhere on I'(0),
rather than /2 from I'(0), as they are in the incorrect solution.

4.2.3 Anisotropic normal velocity and the Wulff limit

Another key issue for level set methods is anisotropic motion along the nor-
mal. Most numerical methods for level set equations are connected to the
theory of Hamilton-Jacobi equations

o+ H(Vy) =0, (46)

which encounters difficulties when the Hamiltonian H is nonconvex. For
anisotropic normal velocities

V = R+ ecos(kb), cost = ¢, /||Voll, (47)
the Hamiltonian is nonconvex if
R+e(l1—k*) <0< R—|e, (48)

causing some Hamilton-Jacobi methods to break down.

In Figure 14, we evolve an initially circular interface under several anisotropic
normal velocities, producing nonconvex Hamiltonians. The interface con-
verges rapidly to the “Wulff shape” [23, 42, 43] corresponding to each given
anisotropy, as predicted by rigorous theory [21]. The faceted Wulff shape is a
natural limit, since portions of the interface with normal vectors not aligned
along minima of the velocity will grow faster, causing facets to develop. In
Figure 15, we begin from a highly nonconvex initial interface, producing a
severe test of the method. The asymptotic Wulff shape is still computed ac-
curately. The small grid-dependence which remains could likely be removed
with a second-order accurate trajectory computation.

These computations were smoothed and their convergence improved by
applying one pass of smoothing to ¢ before ENO differentiation, one pass to
F after differentiation, and redistancing ¢ at every step. This emphasizes an
essential reason why the CIR scheme works for level set equations: We are
free to modify ¢ and F' away from I'(¢) to suit numerical convenience—or to
satisfy the CFL condition.

4.2.4 Merging under anisotropy

Starting from a collection of randomly placed, sized and oriented trefoil
shapes, we move the interface along its normal with a threefold anisotropic
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speed V' = 2+ cos(36 4+ 0.3), where 6 is the angle between the normal vector
and the positive x-axis. This motion involves considerable topological com-
plexity, which is correctly computed by the level set approach. Figure 16
shows that even this highly nonconvex initial interface is also approaching
the asymptotic triangular Wulff shape as t—oc.

4.2.5 Circles under curvature

A circle shrinking with normal velocity equal to its curvature has exact radius
R(t) = /R(0)? — 2t, so with R(0) = 2 a circle should collapse to a point in
time 0 < ¢ < 2. A smaller circle with R(0) = 1 vanishes in time ¢t = 0.5.
Figure 17 shows convergence to graphical accuracy, computed with 20, 40,
80, 160 time steps on 202, 402, 802, 1602 grids and plotted every 0.2 time
units.

A convenient measure of convergence is the extinction time—the first time
when the interface completely vanishes. For the four runs shown, the extinc-
tion time is 1.1, 1.5, 1.73 and 1.85, displaying slow but smoothly monotone
first-order convergence to the correct value 2. The extinction time is difficult
to resolve because it depends sensitively on the movement of the interface as
it vanishes. Even with smoothing, our computed velocity always moves the
interface faster than the exact velocity.

For this parabolic problem, velocity smoothing and truncation, ¢ smooth-
ing and frequent redistancing all contribute to convergence of the CIR scheme
as k—0 with £ = O(h). As discussed in Section 3.3.2, they all play a role in
satisfying the parabolic CFL condition with these unusually large time steps.
We truncated the velocity away from the interface at each step, smoothed the
truncated velocity once per step on the 202 mesh, twice per step on the 402
mesh, and so forth. The resulting logarithmic increase in stencil width as the
mesh size goes to zero satisfies the CFL condition. We smoothed ¢ once be-
fore ENO differentiation, to compute derivatives of nonsmooth ¢ values. We
also redistanced ¢ from the interface at the end of every step, a highly non-
local information transfer which also helps satisfy the CFL condition. These
smoothing and redistancing options were chosen after some experimentation
and constitute the minimum postprocessing required to achieve convergence.

4.2.6 Nonconvex interfaces under curvature

We verified that randomly placed, sized and oriented nonconvex trefoil shapes
collapse under curvature flow to round points, as predicted by a geometric
theorem [14]. Figure 18 shows results for 0 < ¢ < 1/2 on [—4,4]?, with one
velocity smoothing pass, one ¢ smoothing pass and one redistancing per step.
Experiments showed that this rather small amount of smoothing sufficed for
convergence to graphical accuracy.
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4.2.7 Nonconvex interfaces merging under anisotropy plus curva-
ture

Finally, we demonstrate topological complexity in the viscosity limit, with a
curvature-smoothed velocity

V =2+ cos(30 + 0.3) + eC. (49)

We illustrate the limit e—0 computationally with e = 0.1 and 0.01, carrying
out a convergence study for each value of € separately. Figure 19 shows the
results, which converge rapidly to the results shown in Figure 16. We used
one velocity smoothing pass, one ¢ smoothing pass and one redistancing per
step.

4.3 Convergence

These numerical experiments have consistently demonstrated that our semi-
Lagrangian methods converge with appropriate problem-dependent trunca-
tion, smoothing and redistancing options. Our methods converge without op-
tions for passive transport and constant normal velocity. When anisotropy or
curvature is present, redistancing plus one to four passes of velocity smooth-
ing must be applied at each step to ensure convergence. These conclusions
agree with the heuristics of Section 3.3, and show that CFL timestep restric-
tions can be eliminated—even for curvature-dependent parabolic problems!

5 Conclusion

We have described and validated new numerical methods for moving inter-
faces, based on semi-Lagrangian time stepping schemes for level set equations.
We presented heuristic arguments and experimental evidence showing these
methods work well for difficult moving interface problems involving merging,
faceting, transport, and anisotropic curvature-dependent geometry.

These methods has unique capabilities

e to move interfaces with appropriate time steps unconstrained by nu-
merical stability issues,

e to decouple each mesh point from the others, allowing easy adaptive
mesh refinement, and

e potentially to decouple the velocity computation from the moving in-
terface, allowing convenient modular solution of a vast spectrum of
moving interface problems.
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Our ultimate goal is a “black-box” method for moving interfaces, which can
accept the interface and its velocity at time ¢ and return the evolved interface
one time step later. Such a method can simplify the solution of moving
interface problems, because the moving interface code need not change when
the physical problem off the interface is modified.

Planned future research on these methods includes

e further analysis of CFL conditions for parabolic problems with infinite
propagation speed,

e adaptive modular methods [38],
e second-order accurate time stepping,
e CAD geometry input and contouring with NURBS, and

e applications to industrial crystal growth problems, where the moving
interface is coupled to complex materials science.
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Figure 1: Corners moving outward with unit velocity round off into circular
arcs, while corners moving inward remain sharp by Huygens’ principle.
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= Hexagonal Interface

a

] Hexagonal Signed Distance Function

Figure 2: The correspondence between (a) a hexagonal interface and (b) the
signed distance ¢ to the interface, plotted over a 207 grid.
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Figure 3:

a) Two hexagons moving with constant normal velocity merge;
the corresponding level set function is shown at (b) initial and (c) final times.
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Figure 4: One-dimensional semi-Lagrangian CIR scheme: move z backward
with velocity V', then interpolate ¢ at time ¢ to point s.

34



Figure 5: Spacetime integration paths C' for (a) Eulerian, (b) Lagrangian
and (c¢) semi-Lagrangian schemes.
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Figure 6: A possible stencil for third-order ENO interpolation to the solid
point s: Open dots indicate mesh points in the stencil, crosses fictitious
points for interpolation in the x variable, and the curve is avoided by the
ENO stencil because across it differences of the interpolated function are
large.
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= Triangular X-Velocity

s

==

)““‘
S
e

Figure 7: The z-component F, of the triangular velocity field F' = (1 +
cos(30+0.3)/2) N where 0 = ¢,/||V ]| is the angle between the normal vector
and the x-axis and ¢ is the hexagonal signed distance function of Figure 2.
Here F, is computed with degree-1 ENO interpolation and differentiation,
and plotted (a) unsmoothed on a 20* mesh, (b) after one smoothing pass on
a 202 mesh, and (c) after one smoothyng pass on a 40? mesh.



Figure 8: Boundary conditions implemented by projection.
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al Shearing Circles ——— Zero Sets

t=20

(=) Shearing Circles ——— Zero Sets

/
C

t=1/2

mal Shearing Circles ——— Zero Sets

Figure 9: A collection of bubbles moving with linear shearing velocity.
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= Evolving Triangle ——— Zero Sets i = Evolving Triangle ——— Zero Sets

(=) Evolving Triangle ——— Zero Sets | (=) Evolving Triangle ——— Zero Sets

b e

] Evolving Triangle ——- Zero Sets ] = Evolving Triangle ——— Zero Sets

Figure 10: Tests of grid effects in sharp corners with linear velocity field. (a)
A rotating triangle at a half period and a full period, computed with degree-2
ENO. (b) A triangle shrinking with V(z,y) = Z(z,y) from t =0 to t = 1.
(c) A triangle expanding with V(z,y) = 2(z,y) from ¢t = 0 to t = 1. Plots
(d) through (f) show the same calculation with degree-3 ENO.
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al Shearing Bubbles ——— Zero Sets

t=20

| Shearing Bubbles ——— Zero Sets

=

t =50

mal Shearing Bubbles ——— Zero Sets

@

t =100

Figure 11: A collection of circular bubbles under a divergence-free shearing
velocity.
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(=1 Viscosity Solutions ——— Zero Sets

(=) Viscosity Solutions ——— Zero Sets

(= Viscosity Solutions ——— Zero Sets

Figure 12: Viscosity solutions for triangles moving with positive or negative
unit normal velocity. (a) An expanding triangle at zero angle to the mesh,
with round corners. (b) An expanding triangle at angle 0.2 radians to the
mesh, with round corners. (c¢) A shrinking triangle at angle 0.2 radians to
the mesh, with sharp corners.
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Figure 13: Right and wrong propagation of corners under unit normal veloc-
ity.
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al Circle to Wulff Shape ——- Zero Sets

V =2+ cos(30 + 0.3)

(=) Circle to Wulff Shape ——— Zero Sets

V =2+ cos(40 + 0.4)

mal Circle to Wulff Shape ——- Zero Sets

V' =2+ cos(60 + 0.6)

Figure 14: Wulff shapes growing from circular initial interfaces (with radius
1/2 and center at (1/27,1/27)) under the velocity functions shown below
each plot. Here 0 < ¢ < 1 and the domain is [—3, 3]%.
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al Snowflake to Wulff Shape ——— Zero Sets

V =2+ cos(30 + 0.3)

(=) Snowflake to Wulff Shape ——— Zero Sets

V =2+ cos(40 + 0.4)

mal Snowflake to Wulff Shape ——— Zero Sets

V' =2+ cos(60 + 0.6)

Figure 15: Wulff shapes developing from nonconvex initial interfaces (given
by \/(27m" — 124+ (2ry — 1)? = 27(0.8 + 0.4 cos(5)) where tané = (2my —
1)/(2rz — 1)) under the velocity functions shown below each plot. Here
0 <t <1 and the domain is [—3, 3]%.
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=] Trefoils under Threefold Anisotropy ——— Zero Sets |

(=

Figure 16: A collection of randomly located, sized and oriented trefoils grow-
ing and merging under anisotropic normal velocity V' = 2 + cos(36 + 0.3).
Here our method used third-order ENO with (a) 40 time steps on a 40% mesh,
(b) 80 steps on an 80% mesh, and (¢) 160 steps on an 160> mesh to achieve
convergence to graphical accuracy.
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| Circles under Curvature ——— Zero Sets

©

| Circles under Curvature ——— Zero Sets

©

o

b

= Circles under Curvature ——— Zero Sets

©

= Circles under Curvature ——— Zero Sets

Figure 17: Convergence of two circles collapsing under curvature low V' = C,
computed from ¢t = 0 to the extinction times ¢ = 1/2 and ¢ = 2 with third-
order ENO on (a) 20 time steps on 207 grid covering [—4, 4]* with 1 velocity
smoothing pass per step, (b) 40 time steps on 402 grid covering [—4, 4]*> with
2 passes per step, (c) 80 steps on 80% grid with 3 passes, (d) 160 steps on

160? grid with 4 passes.
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mal Trefoils under Curvature ——— Zero Sets

a

mal Trefoils under Curvature ——— Zero Sets

Figure 18: Convergence of a collection of trefoils to round points under cur-
vature flow V' = C, computed from ¢ = 0 to t = 1/2 with third-order ENO
on (a) 40 time steps on 40? grid covering [—4,4]?, (b) 80 steps on 80 grid,
(¢) 160 steps on 160? grid.
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€

Nonconvex shapes merging under curvature-dependent

Figure 19:

) + eC. Convergence to the viscos-

= 2+ cos(30 + 0.3

ity solution as € — 0 is demonstrated with e

anisotropic flow V

= 0.1 in the left column and

€ = 0.01 in the right column; cf. Figure 16 for the limit case ¢ = 0.
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ENO degree 1

Grid | Nr =20 40 80 160
40? 0.342 0.551 0.756 0.55
807 | 0.0428 0.15 0.235 0.353
160% | 0.00628 0.00868 0.0677  0.231
3202 | 0.019  0.00351 0.00467 0.0294

ENO degree 2

Grid | Ny =20 40 80 160
407 | 0.0938 0.13 0.102  0.0911
802 | 0.0126  0.0389  0.104 0.145
160% | 0.022  0.00967 0.00183 0.0272
3202 | 0.0238  0.0116 0.00536 0.00163

ENO degree 3

Grid | Npr =20 40 80 160
40% | 0.00708  0.122 0.188 0.193
8072 0.018  0.00562 0.0431  0.0519
1602 | 0.0226  0.0103  0.00408 0.00189
3202 | 0.0239  0.0117 0.00555 0.00249

Table 1: Maximum error at ¢ = 1 in the interface shown in Figure 9, moving
with divergence-free linear shearing velocity F(x,y) = %(:c —3y+1,—y— %),
computed with Ny time steps of the CIR scheme with ENO interpolation of

degrees 1, 2 and 3. The domain is [—6, 6]%.
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ENO degree 1

Grid | Np =20 40 80 160
207 0.0589 0.0634 0.0657 0.0668
402 0.0159 0.0179 0.019 0.0197

8072 0.00557 0.00647 0.00696 0.00722
160% | 0.00119 0.00128 0.00137 0.00142

ENO degree 2

Grid | Ny =20 40 80 160
207 0.0077 0.00801 0.00814 0.0082
40? 0.0014 0.00146 0.00148 0.00148
802 | 0.000456  0.000481  0.000488  0.000489
160% | 0.0000768  0.000078  0.0000792 0.0000795

ENO degree 3

Grid | Ny =20 40 80 160
207 0.00185 0.00194 0.00198 0.00199
40% | 0.000658  0.000669  0.000672  0.000674
802 | 0.000346  0.000349  0.00035  0.000351
160% | 0.0000724 0.0000725 0.0000726 0.0000726

Table 2: Maximum of exact distance function at ¢ = 1 on a circle of ra-
dius R(t) = 1 4+t and center (1/2m,1/27), moving with constant normal
velocity V' = 1, computed with Nz time steps of the CIR scheme with ENO
interpolation of degrees 1, 2 and 3.
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