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tionMoving interfa
e problems o

ur frequently in appli
ations, involve 
omplextopology, merging, fa
eting and 
urvature, and 
hallenge standard numer-i
al methods. We present eÆ
ient adaptive numeri
al methods for solvingthese problems. Our methods merge and break interfa
es automati
ally viaa level set approa
h with frequent redistan
ing. Quadtree meshes resolve theinterfa
e with almost optimal eÆ
ien
y: we move an N -element interfa
e inO(N logN) work per step. Semi-Lagrangian time stepping s
hemes allowlarge time steps with un
onditional stability. Fast redistan
ing algorithmsmaintain a robust numeri
al approximation with minimal 
omputational ef-fort.Se
tion 2 of this paper de�nes moving interfa
e problems and reviewsthe level set approa
h. Se
tion 3 dis
usses semi-Lagrangian time steppings
hemes and summarizes their appli
ation to level set equations on a uniformmesh. Se
tion 4 presents the properties of quadtree meshes that we use, andSe
tion 5 develops our tree methods for moving interfa
es. Se
tion 6 validatesthese methods with numeri
al examples in
luding geometri
 motions whi
hmerge fa
eted interfa
es under anisotropi
 
urvature-dependent velo
ities.Se
tion 7 draws 
on
lusions and dis
usses future extensions and appli
ations.2 Moving interfa
es and level setsThis se
tion presents standard ba
kground material on moving interfa
eproblems and the level set approa
h. Se
tion 2.1 de�nes these problemsand des
ribes examples su
h as passive transport, unit normal velo
ity andanisotropi
 
urvature-dependent 
ow. Se
tion 2.2 
onverts general movinginterfa
e problems into level set equations on a �xed domain and reviewstheir solution by the level set approa
h.2.1 Moving interfa
esA general moving interfa
e is the boundary �(t) = �
(t) of a set 
(t) � Rddepending on time t. If 
 is suÆ
iently smooth, then �(t) has an outwardunit normalN and a normal velo
ity V at ea
h point, whi
h 
an be 
al
ulatedfrom standard geometri
 formulas found in [23℄. A moving interfa
e problem3



is a 
losed system of equations whi
h spe
i�es V as a fun
tional of �, possiblyin a highly indire
t and nonlo
al way. Some representative solutions of thefollowing spe
i�
 moving interfa
e problems are shown in Figure 1.Passive transport An interfa
e is transported in an ambient 
ow whi
his independent of �. Thus a velo
ity �eld F (x; t) is given on Rd and �(t)moves with normal velo
ity V = N � F .Unit normal velo
ity The simplest geometri
 
ow moves �(t) along itsnormal with velo
ity V = 1. Non
onvex interfa
es produ
e 
omplex mergingand 
ornering patterns under this 
ow.Anisotropi
 
urvature-dependent velo
ity A more general geometri
motion has normal velo
ityV (x; t) = R + � 
os(K� + �0) + (R0 + �0 
os(K 0� + �00))C; (1)where 
os � = N � e1 is the 
osine of the angle between the normal ve
tor andthe positive x-axis. These velo
ity �elds produ
e fa
eted interfa
es mergingin 
omplex anisotropi
 patterns and are often used as simpli�ed models inmaterials s
ien
e [22℄.Crystal growth Many industrial problems involve moving interfa
es be-tween di�erent phases of a material. The interfa
e between a growing solid
rystalline material and its liquid or gaseous phase, for example, has beenmodeled by a Stefan-type problemut = �u o� �(t) (2)u = ��C on �(t) (3)where the temperature �eld u is unknown and the interfa
e � moves withnormal velo
ity V equal to the jump in the normal derivative of u. See [5℄for physi
al ba
kground and [13, 17, 11℄ for samples of the many numeri
almethods developed for this problem.2.2 The level set approa
hThe main diÆ
ulty in moving interfa
es is the 
orre
t handling of merging,breaking and other topologi
al 
hanges. We 
an over
ome this diÆ
ulty byreformulating moving interfa
e problems as \level set equations" on a �xeddomain, using the zero set�(t) = fx 2 Rd : '(x; t) = 0g (4)4



of an arbitrary fun
tion ' : Rd�R!R, su
h as the signed distan
e to �(t):'(x; t) = � miny2�(t) kx� yk: (5)(For example, Figure 2 shows a hexagon in the plane and the 
orrespondingsigned distan
e fun
tion '.) We 
hoose ' > 0 in 
(t), so the outward unitnormal ve
tor and normal velo
ity are given by [23℄N = r'=kr'k; (6)V = 't=kr'k: (7)Given an extension of the ve
tor normal velo
ity V N to a fun
tion F (x; t) onRd, Eq. (7) implies a partial di�erential equation |the \level set equation"|whi
h moves � by evolving ':'t � F � r' = 't � (F �N)kr'k = 0: (8)Eq. (8) moves every level set of ' with the extended velo
ity F , and in par-ti
ular moves the zero set �(t) with the 
orre
t velo
ity V N . This approa
hto moving interfa
es embeds the topology in ' rather than �(t) and automat-i
ally handles merging, breaking and other topologi
al 
hanges. The movinginterfa
e problems of Se
tion 2.1 
an be reformulated as the following levelset equations.Passive transport For passive transport, F is already de�ned on Rd andis a natural extension of V N . The level set equation be
omes a linear hyper-boli
 partial di�erential equation (PDE)'t � F (x; t) � r' = 0: (9)Unit normal velo
ity With N extended by Eq. (7), motion with unitnormal velo
ity be
omes a nonlinear hyperboli
 PDE't � kr'k = 0: (10)Curvature-dependent velo
ity The velo
ity de�ned by Eq. (1) yields't� (R+ � 
os(K�+�0))kr'k = (R0+ �0 
os(K 0�+�00))r� (r'=kr'k)kr'k:(11)Here 
os � = 'x=kr'k and we have used the 
urvature formula C = �r �Nfrom [23℄. Eq. (11) is a mixed hyperboli
-paraboli
 PDE whi
h is singularwhere r' vanishes. 5



The level set approa
h moves �(t) via the level set equation (8). An initiallevel set fun
tion '(x; 0) and an extended velo
ity �eld F are built, the levelset equation (8) is solved numeri
ally, and the solution '(x; t) is 
ontouredwhen �(t) is required. The approa
h was introdu
ed in [9℄, and an extensivere
ent survey is [12℄. Its main advantage is the natural treatment of dynami
topology shown in Figure 3.There are some potential diÆ
ulties with the level set approa
h. It 
an bemore expensive sin
e it goes up a dimension, parti
ularly if uniform meshesare used. Extending the velo
ity o� �(t) 
an be diÆ
ult. One must be 
arefulto obtain the 
orre
t \vis
osity solution" of Eq. (8), by using an appropriatesolver for the level set equation [12℄. The approa
h is not naturally modular:a new 
ode must be written for ea
h new problem to be solved, sin
e thevelo
ity evaluation is intertwined with the moving interfa
e 
ode by velo
ityextension.Our methods 
ombine a level set approa
h with an adaptive quadtreemesh, and are shown experimentally to obtain the 
orre
t vis
osity solutionfor passive transport and geometri
 problems where velo
ity extension isstraightforward. The adaptivity of our methods eliminates the added 
ost ofgoing up a dimension. A general velo
ity extension is developed and used tobuild general modular methods in [20℄.3 Semi-Lagrangian level set methodsThe semi-Lagrangian level set methods introdu
ed in [19℄ solve level set equa-tions on a uniform mesh with semi-Lagrangian time stepping s
hemes. Thelevel set equations handle the dynami
 topology of the moving interfa
e, whilesemi-Lagrangian s
hemes allow large time steps k = O(h) even for paraboli
problems like 
urvature 
ows. These methods are robust and a

urate, butthe uniform mesh spends too mu
h e�ort far from the interfa
e. We imple-ment semi-Lagrangian level set methods on a quadtree mesh to 
on
entrate
omputational e�ort near the interfa
e, attaining a

ura
y 
omparable to auniform mesh method at far less 
ost. In this se
tion, we review the simplestsemi-Lagrangian time stepping s
heme, dis
uss its 
onvergen
e theory, andsummarize the methods of [19℄.3.1 The CIR s
hemeThe linear hyperboli
 PDE't � F (x; t) � r' = 0 (12)propagates ' values along the 
hara
teristi
 
urves s(t) de�ned by_s(t) = �F (s(t); t): (13)6



Thus we 
an �nd ' values at any time t by �nding the 
hara
teristi
 
urvepassing through (x; t) and following it ba
kwards to some previous point(x0; t0) where the value of ' is known: then '(x; t) = '(x0; t0). This ob-servation forms the basis of the \ba
kward 
hara
teristi
" or \CIR" s
hemedue to Courant, Isaa
son and Rees [2℄, whi
h is the simplest semi-Lagrangians
heme. Given ' at time tn, CIR approximates '(x; tn+1) at any point x attime tn+1 = tn + k by evaluating the velo
ity F (x; tn), approximating theba
kward 
hara
teristi
 through x by a straight linex + (tn+1 � t)F (x; tn) � s(t) (14)and interpolating ' linearly at time tn to the pointx+ k F (x; tn) � s(tn): (15)Then '(x; tn+1) is set equal to the interpolated value.General semi-Lagrangian time stepping s
hemes are built along similarlines with higher-order a

urate time stepping and interpolation, and arewidely used in atmospheri
 s
ien
e [15, 14℄.3.2 Convergen
eFor linear PDEs, the Lax-Ri
htmyer equivalen
e theorem [6℄ guarantees thatCIR will 
onverge to the exa
t solution as k; h!0 if it is stable and 
onsistent.Stability is un
onditionally guaranteed sin
e ea
h new value '(x; tn+1) is asingle linearly-interpolated value of ' at time tn.Consisten
y, however, is 
onditional. The trun
ation error of CIR is� = O h2k !+O(k); (16)due to the O(h2) error in linear interpolation over O(1=k) steps plus theO(k) due to freezing F and approximating the 
hara
teristi
s by straightlines. Thus CIR is 
onsistent to O(k) if a 
ondition like k � O(h) is satis-�ed, 
ontrary to the usual hyperboli
 
ondition k � Ch. This 
ondition isextremely 
onvenient, be
ause k = O(h) balan
es time and spa
e resolutionin this �rst-order a

urate s
heme.CIR 
onverges for Lips
hitz solutions of nonlinear PDEs but moves sho
ksolutions of 
onservation laws at the wrong speed be
ause CIR is not in
onservation form. Thus semi-Lagrangian s
hemes su
h as CIR have beenapplied mainly to problems in atmospheri
 s
ien
e where sho
ks are absent.Sin
e level set equations have no sho
ks, CIR is a natural s
heme for movinginterfa
es. 7



3.3 Semi-Lagrangian level set methodsThe semi-Lagrangian CIR s
heme was applied to level set equations in [19℄,yielding semi-Lagrangian level set methods on a uniform mesh. Convergen
ewas heuristi
ally dis
ussed and experimentally veri�ed for many moving in-terfa
e problems involving passive transport, geometry, dynami
 topology,fa
eting and 
urvature. Convergen
e of these methods is straightforward forpassive transport and �rst-order geometry where the level set equation ishyperboli
. For paraboli
 problems su
h as 
urvature 
ows, the main issue isthe Courant{Friedri
hs{Lewy (CFL) 
ondition whi
h restri
ts the timestepof most expli
it methods by k � O(h2) to ensure information propagates
orre
tly. Semi-Lagrangian level set methods are un
onditionally stable and
an satisfy the CFL 
ondition by nonlo
al velo
ity evaluation, permitting
onvergen
e with large time steps k = O(h) even for paraboli
 problems.While their 
onvergen
e theory is still in progress, the 
ombination of exper-imental eviden
e with the following heuristi
s indi
ates that these methods
an 
onverge 
orre
tly.The domain of dependen
e of the CIR solution '(x; tn+1) obviously in-
ludes the single interpolation point s = x + kF (x; tn) and its sten
il, butthe point s in turn depends on the ' values used to 
ompute the extendedvelo
ity F (x; tn). Thus the CFL 
ondition 
an be satis�ed in prin
iple by
omputing F nonlo
ally with arbitrarily large time steps. A spe
i�
 nonlo-
al te
hnique whi
h satis�es the CFL 
ondition is to postpro
ess the velo
ity�eld by smoothing or averaging it over a suÆ
iently large sten
il. A

ura
y
an be maintained by in
reasing sten
il size only logarithmi
ally as h!0.In pra
ti
e, a few passes of smoothing produ
es 
onvergent solutions eventhough 
urvature 
ow velo
ities give paraboli
 level set equations, for whi
hexpli
it s
hemes usually require k = O(h2).Redistan
ing and velo
ity extension te
hniques also implement long-distan
einformation transfer and help satisfy the CFL 
ondition. While these te
h-niques propagate information primarily normal to the interfa
e, their in
u-en
e is enhan
ed in regions of high 
urvature be
ause normal ve
tors 
rossnear the interfa
e.4 Quadtree meshesMoving interfa
es by solving the level set equation di�ers from solving gen-eral PDEs be
ause we need to resolve the solution ' only near its zero set.Quadtree meshes 
oarsen rapidly away from �(t) to resolve the interfa
e withoptimal eÆ
ien
y and eliminate the 
ost of going up a dimension. In thisse
tion, we review standard properties of quadtree meshes. We de�ne, buildand triangulate quadtree meshes in Se
tion 4.1, then spe
ialize in Se
tion 4.28



to develop some useful properties of quadtree meshes built to resolve a giveninterfa
e �.4.1 Quadtree meshes4.1.1 De�nitionA quadtree mesh 
overing the 
ube [0; 1℄d in Rd is 
omposed of square 
ellsorganized into levels, with ea
h 
ell on level l + 1 
ontained in some level-l
ell. A quadtree mesh built to resolve a given fun
tion ' on [0; 1℄d stores thefollowing information:� The root 
ell C0 = [0; 1℄d, whi
h o

upies level l = 0.� A maximum depth L � 0.� A 
ell list of 
ells, grouped by level.� A vertex list of 
ell verti
es (
orners), without repetitions.� A vertex value list of ' values at 
ell verti
es.� Other appli
ation-dependent data.Ea
h 
ell C in the 
ell list 
ontains:� Its level l and 
orner vertex (i1; : : : ; id): the 
ell 
overs the box 2�l[i1; i1+1℄� � � � � [id; id + 1℄.� The indi
es in the vertex list of the 2d 
ell verti
es.� The index in the 
ell list of its parent (if there is one).� The indi
es in the 
ell list of its 
hildren (if there are any).� Other appli
ation-dependent data.An example is shown in Figure 4 and Table 1. Given an L-level quadtree,many operations related to sear
hing and sorting 
an be done eÆ
iently.Finding the tree 
ell where a point x lies, for example, requires O(L) 
he
ksof bits in the binary representation of x.
9



4.1.2 Building the quadtreeTo build a quadtree, start with a root 
ell at level l = 0. Test whether it needssplitting into 2d 
hildren on level l + 1. The splitting 
riterion distinguishesone quadtree from another, and must be spe
i�ed to suit the appli
ation.If a 
ell needs splitting, some bookkeeping must be done |
reating newverti
es, adjusting familial pointers and so forth| and the values of ' atnew verti
es must be found. Then the 
hildren are tested, split if ne
essaryand the pro
ess repeats re
ursively. The build terminates when no 
ell abovelevel L requires splitting.4.2 PropertiesThis paper uses three di�erent quadtrees, ea
h built to resolve some interfa
e� with some version of the following splitting 
riterion:Split any 
ell whose edge length ex
eeds its minimum distan
e to �: (17)Variants of this 
riterion determine the quadtree mesh at ea
h time step,initialize the level set fun
tion ' and redistan
e ' at ea
h step. This splitting
riterion is one ingredient in the fast redistan
ing algorithm of [18℄, whi
h weuse in Se
tion 5. The other ingredient is an eÆ
ient guaranteed-
orre
t sear
hstrategy whi
h uses a quadtree mesh to �nd nearest points on �. In�nitequadtrees built with Criterion (17) are known as Whitney de
ompositionsand used to solve extension problems in harmoni
 analysis [16℄.If ' is the signed distan
e to �, then the values of ' stored at 
ell verti
esmake this 
riterion extremely simple to implement. Figure 5 shows the 
ells ina quadtree for a simple interfa
e. In general, Criterion (17) builds quadtreeswith several useful properties:� Adja
ent 
ells di�er in size by no more than a fa
tor of 2, produ
ing asmooth mesh and simplifying pro
edures su
h as neighbor �nding andtriangulation of the verti
es.� A 
ell's size is proportional to its distan
e to �.� If ' is the signed distan
e to � at verti
es and we extend ' into ea
h
ell by d-linear interpolation, then |be
ause 
ells vary in size| ' willbe dis
ontinuous; see Figure 6. However, the jumps in ' de
rease insize in 
ells 
lose to the interfa
e be
ause of the triangle inequality.Thus the interpolated ' is 
lose to 
ontinuous near �.� Cells 
oarsen very rapidly away from the interfa
e: if there are N
hildless 
ells tou
hing �, then the entire tree 
ontains only O(N) 
ells.Hen
e � is resolved a

urately at minimal 
ost.10



5 Tree methods for moving interfa
esWe develop tree methods whi
h move interfa
es by 
ombining the followingideas:Æ Topologi
al 
hanges require the solution of the level set equation onlylo
ally near the interfa
e, not globally in spa
e.Æ The interfa
e 
an be a

urately resolved at optimal 
ost by a quadtreemesh.Æ Semi-Lagrangian time stepping s
hemes su
h as CIR de
ouple timesteps from CFL 
onditions, permitting time steps determined by reso-lution requirements rather than numeri
al stability.Æ Semi-Lagrangian s
hemes de
ouple mesh points into independent 
om-putations, permitting adaptive re�nement without iteration.Æ With frequent redistan
ing, the solution ' of the level set equation is
lose to a signed distan
e fun
tion at all times, giving a natural splitting
riterion for building a quadtree mesh and making error estimationunne
essary.The 
ombination of these ideas yields a family of adaptive methods. Wesummarize this family, identify the options whi
h parametrize it, and dis
ussthem in detail below.In Se
tion 5.1, we initialize the solution ' of the level set equation: givenan initial interfa
e � = �(0), we build a quadtree Q0 and an approximatesigned distan
e fun
tion '0 on Q0 whi
h resolves � to spe
i�ed a

ura
y � inalmost optimal time and spa
e.After initializing, we evolve the interfa
e one step at a time. Optionally 'may be redistan
ed before the time step, as dis
ussed in Se
tion 5.2. Given aquadtree Qn resolving the zero set �n of 'n � '(tn) and an extended velo
ityFn equal to the ve
tor normal velo
ity V N on �n, we build a quadtree Qn+1to resolve the zero set �n+1 of the CIR approximation'n+1(x) = 'n( x+ kFn(x) ): (18)Computing 'n+1 involves four pro
edures: extension, resolution, interpola-tion and appli
ation of boundary 
onditions.Extension Extend the ve
tor normal velo
ity V N o� the interfa
e to aglobal fun
tion Fn(x) on the mesh Qn. This extension problem 
an be solvedin general or tailored to a spe
i�
 moving interfa
e problem. We dis
usssome spe
i�
 te
hniques for passive transport and geometry in Se
tion 5.3:11



lo
al and global extensions, smoothing, trun
ation, interpolation and di�er-entiation on uniform and adaptive meshes. A general extension te
hnique isdeveloped in [20℄.Resolution Apply the splitting 
riterion of Se
tion 5.4: form a quadtreeQn+1 resolving the zero set �n+1 of the CIR approximation 'n+1 from Eq.(18) to spe
i�ed a

ura
y �.Interpolation At o�-mesh points s = x+ kFn(x), our interpolation strat-egy determines stability as well as a

ura
y, and is detailed in Se
tion 5.5.Boundary 
onditions Numeri
al boundary 
onditions are straightforwardand dis
ussed in Se
tion 5.6.5.1 InitializationA moving interfa
e 
omputation begins with the initial interfa
e �0 = �(0),while the level set equation requires an initial level set fun
tion '0 = '(0)with zero set �0. The signed distan
e fun
tionD(x) = �miny2� kx� yk (19)is prohibitively expensive to 
ompute dire
tly: If� = [Ni=1[
i; 
i+1℄is a polygonal 
urve in R2, then evaluatingD(x) = � Nmini=1 miny2[
i;
i+1℄ kx� yk
osts O(N) work per evaluation. We initialize '0 eÆ
iently by building aquadtree Q0 with Criterion (17), setting '0 = D at the verti
es of Q0 andon 
ells tou
hing �0, and interpolating '0 linearly on 
ells not tou
hing �.As noted in Se
tion 4.2, this splitting 
riterion produ
es a mesh whi
h
oarsens so rapidly away from � that if there are N 
ells tou
hing �, then theentire mesh 
ontains only O(N) 
ells. Thus if � has N elements, then dire
tevaluation of all the quadtree vertex values 
osts only O(N2) work, mu
hless than the O(Nd+1) for evaluating ' on a uniform mesh in d dimensions.Faster O(N logN) redistan
ing algorithms are dis
ussed in Se
tion 5.2.
12



5.2 Redistan
ingMoving interfa
es by solving the level set equation di�ers from solving ageneral PDE, be
ause we 
an ignore all values of ' far from the zero set. Inparti
ular, we 
an repla
e the solution at any time by an approximate signeddistan
e with the same zero set.Frequent redistan
ing improves numeri
al a

ura
y. Figure 7 plots ' fora 
ir
le growing with unit normal velo
ity V = 1, 
omputed by the methodof [19℄. The solution ' satis�es a maximum prin
iple, so maxima 
an neverin
rease. However, this also leads to 
attening of the level set fun
tion: r'may be
ome small near the interfa
e, 
ausing level sets to broaden into re-gions or be
ome diÆ
ult to 
ontour. Redistan
ing 
ures 
attening 
ompletelyand reestablishes 
lean interse
tion between the ' surfa
e and any horizon-tal plane. Also, redistan
ing eliminates numeri
al e�e
ts due to arti�
ialboundaries.Redistan
ing is equivalent to initialization on
e � is found, and many
ontouring te
hniques whi
h �nd � are available. The simplest te
hniquesplits ea
h 
ell into two triangles, �nds the exa
t zero segment of the linearinterpolant to ' on ea
h triangle, then joins the segments to form the inter-fa
e. The 
hoi
e of 
ell splitting dire
tion makes this 
ontouring te
hniqueanisotropi
 and helps indi
ate errors: underresolved 
omputations 
an signalerror by displaying a dire
tional bias.A fast algorithm whi
h 
omputes an approximate signed distan
e '0 atthe quadtree verti
es in O(N logN) work was developed in [18℄. It usesan eÆ
ient sear
h strategy to 
ompute the minimum distan
e from all ver-ti
es of the quadtree to �, and runs fast enough to redistan
e at every timestep. Other fast redistan
ing algorithms apply the eikonal equation [21℄ andheapsort te
hniques [1℄, primarily on a uniform mesh. A polygonal interfa
emade of N line segments has a \Voronoi diagram" whi
h 
an be 
omputedin O(N logN) time [26℄ and solves the redistan
ing problem exa
tly. How-ever, the 
onstant in O(N logN) is large and the algorithm is 
omplex toprogram. A simpler stru
ture 
alled the 
ompa
t Voronoi diagram may leadto faster redistan
ing algorithms [7℄, though at present no implementation isavailable.5.3 ExtensionLevel set methods require a globally de�ned velo
ity F whi
h extends V Nsmoothly o� the interfa
e �(t). Many ad ho
 velo
ity extensions for spe-
i�
 problems are des
ribed in [12℄, while general extension te
hniques aredeveloped in [1, 20, 21℄.Our tree methods also require velo
ity extension. The test problemssolved in Se
tion 6 have natural velo
ity extensions: for passive transport F13



is given, while geometri
 velo
ities su
h asF = (R + � 
os(K� + �0))N + (R0 + �0 
os(K 0� + �00))CN; (20)
an be evaluated by the natural geometri
 formulas N = r'=kr'k andC = �r �N . For more general problems, we plan to in
orporate the generalextension of [20℄.Naturally extended geometri
 velo
ities produ
e two numeri
al diÆ
ul-ties. First, the exa
t solution ' is not di�erentiable when fa
ets or 
ornersdevelop, r' vanishes at extrema so N and C are not de�ned there, and re-distan
ing on a quadtree introdu
es dis
ontinuities as well. Our approximatesigned distan
e fun
tion is dis
ontinuous when 
ells 
hange size, though thejumps de
rease steadily in size as we approa
h �.The se
ond diÆ
ulty is the CFL 
ondition, whi
h requires small timesteps k = O(h2) in almost all expli
it s
hemes for paraboli
 level set equationssu
h as 
urvature 
ow. The CIR s
heme on a uniform mesh 
onverges with amu
h more eÆ
ient time step k = O(h) provided that the CFL 
ondition issatis�ed by smoothing the velo
ity and redistan
ing ' frequently [19℄. Hen
e
onvergen
e for 
urvature-dependent velo
ities will require smoothing andfrequent redistan
ing.We have developed both 
ell-based and grid-based s
hemes for evalu-ating geometri
 velo
ities. Cell-based s
hemes are fast and work well forproblems with �rst-order ' derivatives, while grid-based s
hemes are slower,more general, and work well for 
urvature-dependent velo
ities. We des
ribethese approa
hes below.5.3.1 Cell-based velo
ity evaluationThe 
ell-based approa
h 
omputes geometri
 velo
ities Fn(x) lo
ally at ea
hnew tree vertex x in Qn+1. Suppose x lies in a 
ell C of the old quadtreeQn. Then we 
an form the bilinear interpolant B to the vertex values of 'and approximate r' by rB on C. Se
ond derivatives 
an be 
omputed byiterating the interpolation, or by using the biquadrati
 interpolant Q to thenine ' values at verti
es of C and its siblings. Q raises the order of a

ura
yby one but doubles the 
ell size and introdu
es a stability issue: for linear
onstant-
oeÆ
ient problems in one spa
e dimension, CIR is unstable withquadrati
 interpolation.We 
an vary this te
hnique by 
omputing the velo
ity at all verti
es ofthe old quadtree Qn and interpolating it to the new tree verti
es. Smoothingte
hniques 
an then be applied be
ause the velo
ity is 
omputed on thewhole quadtree rather than pie
emeal and permit more e�e
tive solution ofparaboli
 problems. 14



5.3.2 Grid-based velo
ity evaluationWe 
an evaluate geometri
 velo
ities with an auxiliary grid by the followingpro
edure: build a uniform 2L � 2L grid mat
hing the smallest 
ell in thequadtree. Interpolate ' to the uniform grid by the 
ell-based bilinear inter-polation of Se
tion 5.5.1, whi
h is exa
t at verti
es shared by the quadtreeand the uniform grid. Apply the standard grid-based te
hniques of smooth-ing and di�erentiating ', trun
ating and smoothing F on the grid, as inthe geometri
 velo
ity evaluation of [19℄. Finally, restri
t F to the quadtreeverti
es, whi
h form a subset of the uniform grid. This approa
h is powerfuland general, but 
ostly be
ause of the uniform grid. However, the 
ost 
anbe redu
ed by masking o� unneeded areas.5.4 ResolutionAt ea
h step, our methods build a quadtree mesh to resolve the CIR approx-imation 'n+1(x) = 'n( x + kFn(x) ) (21)to the level set fun
tion '(x; tn+1). The quadtree is built re
ursively fromthe root 
ell C0 by the following splitting 
riterion:Split every 
ell where j'n+1j is larger than the edge length: (22)Thus we apply the splitting 
riterion (17) as if 'n+1 were a distan
e fun
tion.Redistan
ing at every step keeps'n+1(x) = 'n + kF � r'n + o(k) = 'n +O(k) (23)within O(k) of the signed distan
e fun
tion 'n. Thus in the limit k =O(h)!0 Criterion (22) redu
es to (17), yielding the properties noted in Se
-tion 4.2.5.5 InterpolationThe CIR s
heme requires interpolated ' values at the proje
ted points s =x + kFn(x). Many general interpolation te
hniques are available, but our
hoi
e is restri
ted by the irregularity of the quadtree Qn and by two re-quirements. First, the level set fun
tion ' is only Lips
hitz 
ontinuous ingeneral sin
e fa
eting may o

ur. Thus high-order methods whi
h requiresmooth data should be avoided. Se
ond, stability of the semi-Lagrangianapproa
h in any given norm is guaranteed only for interpolation s
hemeswhi
h do not in
rease the norm too mu
h. For example, linear interpolationwas used in [19℄ to guarantee un
onditional max-norm stability. Similarly,15



shape-preserving interpolation [10℄ was used in [24℄ and monotone adve
tionin [14℄.Given these two requirements and a quadtree mesh, two obvious 
lassesof interpolation te
hniques are available: 
ell-based and triangulation-based.Both be
ome lo
ally exa
t by setting ' equal to D near �(t).5.5.1 Cell interpolationHere we use the square 
ells of the quadtree to interpolate from vertex valuesof '. Bilinear interpolation to a point (x; y) = (x0 + �h; y0 + �h) in a 
ell Cevaluates (1� �)(1� �)'00 + �(1� �)'10 + (1� �)�'01 + ��'11; (24)where the vertex values for C are given by 'ij = '(x0+ ih; y0+ jh). Bilinearinterpolation preserves the maximum prin
iple of the CIR s
heme and yieldslo
al se
ond-order a

ura
y, with global �rst-order errorO(k+h) afterO(1=k)time steps.Biquadrati
 
ell interpolation requires nine ' values while a 
ell C hasonly four verti
es. Hen
e given x in a 
hildless 
ell, we 
an as
end one levelto interpolate from the nine verti
es of C and its siblings. This gains an orderof a

ura
y but doubles the mesh size and sa
ri�
es the maximum prin
iple.5.5.2 Triangle interpolationWe 
an also interpolate by triangulating the verti
es of the quadtree andbuilding the 
ontinuous pie
ewise-linear interpolant to ' at the verti
es. Asin [3℄, we 
an add one Steiner vertex at the 
enter of ea
h 
ell and 
onne
tthe verti
es to form a high-quality triangulation in only O(N) work. The
enter values of ' may be evaluated exa
tly or interpolated from verti
es.5.5.3 Exa
t interpolationA third alternative uses the quadtree to evaluate the signed distan
e to �nexa
tly and eliminates interpolation entirely, and is dis
ussed in [20℄.5.6 Boundary 
onditionsThe CIR s
heme requires numeri
al boundary 
onditions to spe
ify valuesfor '(s; tn) when s lies outside the domain D 
overed by the grid.There are two simple boundary 
onditions: extension and proje
tion. Inextension, we extend ' as a 
onstant or linear fun
tion along lines normal tothe boundary �D then apply our standard interpolation s
heme to interpolatethe extended values to s. In proje
tion, we arrest s as it leaves the domain16



and use one-sided interpolation to the point where s 
rosses �D. Our treemethods use proje
tion be
ause it is simple and e�e
tive.6 Numeri
al resultsWe validate our tree methods by 
omputing a variety of interfa
es movingunder passive transport and geometri
 motions, with 
orners, anisotropy,nontrivial topology and 
urvature. (Some PDE-type examples with a generalvelo
ity extension will be treated in future work [20℄.) Our methods wereimplemented in Standard C, 
ompiled with the SunSoft C 
ompiler and the-fast optimization 
ag, and run on one CPU of a 2{CPU 200MHz SunUltra{2 under Solaris 2.6.6.1 Passive transportPassive transport problems where �(t) moves with a globally de�ned velo
-ity F (x; t) 
onstitute 
onvenient test 
ases for moving interfa
e methods,be
ause 
omplex exa
t solutions 
an easily be evaluated. Thus we 
an mea-sure the error and rate of 
onvergen
e. We 
arry out 
onvergen
e studiesfor three passive transport problems and verify the a

ura
y, robustness and
onservation properties of tree methods.6.1.1 Bubbles in a shear 
owWe measure the a

ura
y of our methods on a 
olle
tion of 
ir
ular bubbles(Figure 8) moving with a divergen
e-free linear shearing velo
ityF (x; y) = 12(x� 3y + 1;�y � 12): (25)We use 10; 20; : : : ; 320 time steps on 0 � t � 1 on a quadtree with 5 through9 levels on [�5; 5℄ � [�5; 5℄. Table 2 reports the maximum of the exa
t dis-tan
e fun
tion on the 
omputed 
ontour at time t = 1. First-order a

ura
yis 
learly evident along diagonals, where h = O(k). This agrees with the
onsisten
y 
ondition of Se
tion 3.2. The error de
reases 
onsiderably whenwe 
hange from bilinear to biquadrati
 
ell interpolation, indi
ating that theerror is largely due to spatial dis
retization.6.1.2 Grid e�e
ts on trianglesA 
ommon diÆ
ulty in moving interfa
es is sensitive dependen
e on numer-i
al artifa
ts su
h as grid orientation. We 
he
k for grid e�e
ts in passivetransport of a sharply fa
eted interfa
e by revolving, shrinking and expand-ing a triangle with a linear velo
ity �eld. In all 
ases, ea
h fa
et moves with17



the appropriate speed independently of its orientation relative to the grid.Figure 9 plots the results with both bilinear and biquadrati
 
ell interpola-tion on the domain [�2; 2℄2, and shows that grid e�e
ts are minimal. Ea
hplot demonstrates 
onvergen
e by superimposing three runs with 40, 80 and160 time steps on a quadtree with 5, 6 and 7 levels.6.1.3 Mass 
onservation in a shear 
owWe 
on
lude our study of passive transport by measuring mass 
onservationin a 
olle
tion of bubbles moving in the divergen
e-free shearing 
ow givenby F (x; y) = max(1� (1� x2 � y2)4+; 0)8(x2 + y2) (�y; x): (26)Figure 10 shows the extreme distortion produ
ed by this 
ow, 
omputedwith 160 time steps on 0 � t � 100 and bilinear interpolation on a 9-levelquadtree on the domain [�6; 6℄2. This mesh resolves �(t) as a

urately asa 512 � 512 uniform mesh, at far less 
ost. Despite this distortion, mass iswell 
onserved; the �nal area inside the 
omputed interfa
e is 12.7701, 
loseto the exa
t value of 4� = 12:5664.6.2 GeometryWe validate our methods by 
omputing 
onverged solutions to a variety ofgeometri
 moving interfa
e problems in
luding vis
osity solutions to 
ornersmoving with unit normal velo
ity, the fa
eted Wul� limit for anisotropi
 nor-mal velo
ity �elds, 
omplex topologi
al 
hanges under anisotropi
 
urvature-dependent 
ows, and non
onvex shapes shrinking to round points under 
owby 
urvature. These are among the most important tests of general movinginterfa
e methods.6.2.1 Unit normal velo
ityWe verify �rst-order a

ura
y on a unit 
ir
le 
entered at (1=2�; 1=2�) withunit normal velo
ity, extended naturally via Eq. (6) with singularities trun-
ated; F = N = r'max(10�8; kr'k) : (27)Table 3 reports the maximum of the exa
t distan
e fun
tion on the 
om-puted 
ontour at time t = 1, with 10; 20; : : : ; 160 time steps on 0 � t � 1and quadtrees with 5 through 9 levels on [�3; 3℄2. Bilinear and biquadrati
interpolation are used for ' interpolation and the 
ell-based evaluation of N .High a

ura
y is evident along diagonals, where h = O(k), be
ause the exa
tinterfa
e is a linear fun
tion of t. 18



6.2.2 Vis
osity solutions with 
ornersCorre
t 
omputation of \vis
osity solutions" for fa
eted interfa
es in geomet-ri
 problems depends on moving a 
orner in or out with unit normal velo
ity[12℄. Inward motion should keep 
orners sharp (the \sho
k" 
ase), while out-ward motion should produ
e rounded 
orners due to Huygens' prin
iple (the\rarefa
tion" 
ase). Figure 11 shows a triangle moving with positive andnegative unit normal velo
ity, both aligned with the mesh and at an angleto 
he
k for grid e�e
ts, and demonstrates that tree methods 
ompute the
orre
t vis
osity solution in ea
h 
ase.Figure 12 shows a 
omplex interfa
e growing and merging with unit nor-mal velo
ity, and exhibits the simpli
ity of the level set approa
h to topolog-i
al 
omplexity. The manifold 
orners and 
hanges of topology are 
omputedautomati
ally and easily. In parti
ular, outward-moving inward-pointing 
or-ners remain 
orre
tly sharp, as the vis
osity solution theory requires. The�nal area en
losed by the 
omputed interfa
e is 72.77, 73.15, and 73.29 onthe three runs shown, indi
ating smooth monotone 
onvergen
e. The initialand �nal quadtrees are shown to demonstrate the extreme 
on
entration of
omputational e�ort near the moving interfa
e. An 8-level mesh resolves theinterfa
e as a

urately as a 256� 256 uniform mesh at far less 
ost.6.2.3 Anisotropi
 normal velo
ity and the Wul� limitAnisotropi
 motion along the normal 
onne
ts moving interfa
es to the theoryof Hamilton-Ja
obi equations't +H(r') = 0 (28)whi
h en
ounters diÆ
ulties when the Hamiltonian H is non
onvex. Foranisotropi
 normal velo
itiesV = R + � 
os(k�); 
os � = 'x=kr'k; (29)the Hamiltonian is non
onvex ifR + �(1� k2) < 0 < R� j�j; (30)
ausing some Hamilton-Ja
obi methods to break down.In Figure 13, we evolve an initially 
ir
ular interfa
e under several anisotropi
normal velo
ities produ
ing non
onvex Hamiltonians, with 
onstants 
hosento keep R+ �(1� k2) = �4. The interfa
e 
onverges rapidly to the 
orre
tlytilted \Wul� shape" [25℄ 
orresponding to ea
h given anisotropy, as predi
tedby rigorous theory [8℄. In Figure 14, we begin with a highly non
onvex ini-tial interfa
e to test our methods even more severely. The asymptoti
 Wul�shape is still 
omputed a

urately. 19



6.2.4 Merging under anisotropyStarting from a 
olle
tion of randomly pla
ed, sized and oriented trefoilshapes, we move the interfa
e along its normal with a threefold anisotropi
speed V = 2+ 
os(3�+0:3), where � is the angle between the normal ve
torand the positive x-axis. Figure 15 shows the me
hanism whi
h transformsthis highly non
onvex initial interfa
e into the asymptoti
 triangular Wul�shape as t!1.6.2.5 Cir
les shrinking under 
urvatureA 
lassi
 geometri
 problem shrinks a plane 
urve with velo
ity equal to its
urvature, and forms a useful test 
ase for 
urvature-dependent velo
ity. A
ir
le shrinking with V = C has exa
t radius R(t) = qR(0)2 � 2t, so withR(0) = p5 a 
ir
le should shrink to radius 1 at time t = 2. A smaller
ir
le with R(0) = 1 vanishes 
ompletely in time t = 1=2. Figure 16 shows
onvergen
e to graphi
al a

ura
y, 
omputed with 20, 40, 80, 160 time stepson quadtrees with 5 through 8 levels and plotted every 0.2 or 0.1 time units.The �nal 
omputed area of the large 
ir
le is 2.518, 2.849, 3.007 and 3.088,showing a smooth �rst-order 
onvergen
e to the exa
t area �.For this paraboli
 problem, we use grid-based velo
ity evaluation withredistan
ing every step to satisfy the CFL 
ondition and obtain 
onvergen
ewith large time steps k = O(h). We apply L� 4 passes of 
osine smoothingon the L-level mesh 
omputation.6.2.6 Non
onvex interfa
es under 
urvatureA geometri
 theorem [4℄ predi
ts that any smooth embedded plane 
urveshould 
ollapse to a round point and vanish in �nite time under 
urvature
ow V = C. We verify that tree methods behave 
orre
tly for a 
olle
tionof randomly pla
ed, sized and oriented non
onvex trefoil shapes, with the
onverged 
al
ulation shown in Figure 17.6.2.7 Merging under anisotropy plus 
urvatureFinally, we validate our methods by 
omputing the vis
osity limit for a 
om-plex interfa
e evolving through merging, �ll-in and fa
eting. Beginning as inFigure 15, we move �(t) with a 
urvature-smoothed velo
ityV = 2 + 
os(3� + 0:3) + �C: (31)We illustrate the vis
osity limit �!0 
omputationally with � = 1, 0.1 and0.01. For ea
h value of �, we 
arry out a numeri
al 
onvergen
e study withgrid-based velo
ity evaluation, redistan
ing and smoothing at ea
h step. Fig-ure 18 shows rapid 
onvergen
e to the results 
omputed in Figure 15.20



7 Con
lusionWe have des
ribed and validated new adaptive numeri
al methods for movinginterfa
es, whi
h 
ombine the level set equation, the semi-Lagrangian CIRtime stepping s
heme, and quadtree meshes. Our tree methods resolve andmove 
omplex interfa
es at optimal 
ost with time steps un
onstrained bynumeri
al stability. They form key 
omponents of \bla
k-box" methods formoving interfa
es, whi
h a

ept the interfa
e and its velo
ity at time t andreturn the evolved interfa
e one time step later. Su
h methods simplify thesolution of moving interfa
e problems, be
ause the moving interfa
e numeri
sare independent of the physi
al problem driving the interfa
ial motion.Numeri
al results show that tree methods 
onverge to 
orre
t vis
os-ity solutions even for diÆ
ult moving interfa
e problems involving merging,fa
eting, transport, and anisotropi
 
urvature-dependent geometry. Largetime steps 
an be taken even for paraboli
 problems, with the aid of frequentredistan
ing and velo
ity smoothing.Planned future developments in
lude� further investigation of CFL 
onditions for paraboli
 problems,� higher-order a

urate time stepping,� 
ompletely modular moving interfa
e methods [20℄, and� appli
ations to industrial 
rystal growth problems, where the movinginterfa
e is 
oupled to 
omplex materials s
ien
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a b 
Figure 1: Sample moving interfa
e problems: (a) initially 
ir
ular bubblesafter passive transport in a shearing 
ow, (b) merging of 
omplex interfa
eswith unit normal velo
ity, and (
) 
rystalline fa
ets developing under thethreefold anisotropi
 
urvature-dependent velo
ity de�ned in Eq. (1).
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a bFigure 2: The 
orresponden
e between (a) a hexagonal interfa
e and (b) thesigned distan
e ' to the interfa
e.
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a b 
Figure 3: (a) Two hexagons moving with 
onstant normal velo
ity growand merge. The 
orresponding signed distan
e fun
tion is plotted over atriangulated quadtree (see Se
tion 4) at (b) initial and (
) �nal times.
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ture with 
ells Ci and verti
es Vi.
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Figure 5: The eight-level quadtree mesh built around the hexagonal zero setof Figure 2.
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Figure 6: The pie
ewise bilinear interpolant ' to the signed distan
e fun
tionon the eight-level quadtree mesh of Figure 5.
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a b 
Figure 7: Flattening of the level set fun
tion for a 
ir
le moving with 
onstantnormal velo
ity. Initial ' (a), �nal ' without redistan
ing (b), and �nal 'with o

asional redistan
ing (
).
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t = 0 t = 1=2 t = 1Figure 8: A 
olle
tion of bubbles moving with linear shearing velo
ity.

31



a b 


d e fFigure 9: Tests of grid e�e
ts in sharp 
orners with linear velo
ity �eld. (a)A rotating triangle at a half period and a full period, 
omputed with bilinear
ell interpolation. (b) A triangle shrinking with V (x; y) = �52 (x; y) fromt = 0 to t = 1. (
) A triangle expanding with V (x; y) = 2(x; y) from t = 0to t = 1. Plots (d) through (f) show the same 
al
ulation with biquadrati

ell interpolation.
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t = 0 t = 100Figure 10: A 
olle
tion of 
ir
ular bubbles passively transported by adivergen
e-free shearing velo
ity.
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a b 


d e fFigure 11: Vis
osity solutions for triangles moving with positive or nega-tive unit normal velo
ity, 
omputed with bilinear 
ell interpolation: (a) Anexpanding triangle at zero angle to the mesh, with round 
orners. (b) An ex-panding triangle at angle 0.2 radians to the mesh, with round 
orners. (
) Ashrinking triangle at angle 0.2 radians to the mesh, with sharp 
orners. Plots(d) through (f) show the same 
omputations with biquadrati
 
ell interpola-tion. Ea
h plot demonstrates 
onvergen
e by superimposing three runs with40, 80 and 160 time steps on tree meshes with 6, 7 and 8 levels.
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a b 


d e f

g h iFigure 12: A 
olle
tion of randomly lo
ated, sized and oriented trefoils grow-ing and merging under unit normal velo
ity V = 1. Here (a) is the initialinterfa
e on a 6-level tree mesh, (b) plots every 8th step of 80 time steps,and (
) shows the �nal 6-level mesh. Plots (d{f) show 7 levels and 160 steps,while (g{i) show an a

urately 
onverged result with 8 levels and 320 steps.
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V = 2 + 68 
os(3� + 0:3) V = 2 + 615 
os(4� + 0:4)

V = 2 + 624 
os(5� + 0:5) V = 2 + 635 
os(6� + 0:6)Figure 13: Wul� shapes growing from 
ir
ular initial interfa
es (with radius1=2 and 
enter at (1=2�; 1=2�)) under the velo
ity fun
tions shown belowea
h plot. Here we used 160 time steps on 0 � t � 1 and 
ell-based bilinearinterpolation on an 8-level tree mesh 
overing [�3; 3℄2.
36



V = 2 + 68 
os(3� + 0:3) V = 2 + 615 
os(4� + 0:4)

V = 2 + 624 
os(5� + 0:5) V = 2 + 635 
os(6� + 0:6)Figure 14: Wul� shapes developing from non
onvex initial interfa
es givenby r = 0:4 + 0:2 
os(5�) in polar 
oordinates (r; �) 
entered at (1=2�; 1=2�),under the velo
ity fun
tions shown below ea
h plot. Here we used 160 timesteps on 0 � t � 1 and 
ell-based bilinear interpolation on an 8-level treemesh 
overing [�3; 3℄2. 37



a b 
Figure 15: A 
olle
tion of randomly lo
ated, sized and oriented trefoilsgrowing and merging under a non
onvex anisotropi
 normal velo
ity V =2 + 
os(3� + 0:3). We used biquadrati
 
ell interpolation with (a) 80 timesteps on a 6-level tree mesh, (b) 160 steps on a 7-level mesh, and (
) 320steps on a 8-level mesh, to a
hieve 
onvergen
e to graphi
al a

ura
y.
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a bFigure 16: Convergen
e of two 
ir
les 
ollapsing under 
urvature 
ow V = C,
omputed from t = 0 to t = 2 with (a) 20 time steps on 5-level tree mesh
overing [�4; 5℄2 with 1 smoothing pass per step, superimposed on 40 stepson 6-level mesh with 2 passes, (b) 80 steps on 7-level mesh with 3 passes,superimposed on 160 steps on 8-level mesh with 4 passes.
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a b 
Figure 17: Convergen
e of a 
olle
tion of trefoils to round points under 
ur-vature 
ow V = C, 
omputed from t = 0 to t = 1 with grid-based velo
ityevaluation using (a) 40 time steps on a 6-level tree mesh 
overing [�4; 4℄2with one smoothing pass per step, (b) 80 steps on a 7-level mesh with twopasses, (
) 160 steps on a 8-level mesh with three passes.
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� = 1:0

� = 0:1

� = 0:01
Figure 18: Non
onvex shapes merging under 
urvature-dependentanisotropi
 
ow V = 2 + 
os(3� + 0:3) + �C. Convergen
e to the vis
os-ity solution as � ! 0 is demonstrated with � = 1, 0.1 and 0.01 (top tobottom). Figure 15 shows the limit 
ase � = 0.41



Cell Children Parent Verti
esC0 C1, C2, C3, C4 { V0, V1, V2, V3C1 C5, C6, C7, C8 C0 V0, V4, V5, V8C2 { C0 V4, V1, V8, V6C3 { C0 V5, V8, V2, V7C4 { C0 V8, V6, V7, V3C5 { C1 V0, V9, V10, V13C6 { C1 V9, V4, V13, V11C7 { C1 V10, V13, V5, V8C8 { C1 V13, V11, V12, V8Table 1: Stored information for the quadtree of Figure 4.
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Linear InterpolationGrid Levels NT = 10 20 40 80 160 3205 0.276 0.139 0.631 0.96 0.36 0.5676 0.0413 0.169 0.253 0.135 0.176 0.4577 0.031 0.027 0.0986 0.194 0.269 0.2098 0.0449 0.0148 0.0143 0.054 0.112 0.2229 0.0479 0.0221 0.00686 0.0102 0.0384 0.0831Quadrati
 Interpolation5 0.0423 0.12 0.283 0.345 0.338 0.3416 0.0398 0.0267 0.0351 0.0518 0.0378 0.03527 0.0468 0.0227 0.00982 0.0128 0.0208 0.02398 0.0486 0.0236 0.0116 0.00565 0.00145 0.003969 0.0489 0.0241 0.0118 0.00593 0.00298 0.00118Table 2: Maximum error at t = 1 in the interfa
e shown in Figure 8, movingwith divergen
e-free linear shearing velo
ity F (x; y) = 12(x� 3y+1;�y� 12),
omputed with NT time steps of linear and quadrati
 interpolation. Thedomain is [�6; 6℄2.
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Linear InterpolationGrid Levels NT = 10 20 40 80 1605 0.0307 0.0436 0.0505 0.054 0.05576 0.00647 0.0153 0.0215 0.0249 0.0297 0.00135 0.00333 0.00981 0.0133 0.01558 0.000506 0.000707 0.00201 0.00675 0.009389 0.000123 0.00026 0.000447 0.00155 0.00505Quadrati
 InterpolationGrid Levels NT = 10 20 40 80 1605 0.00176 0.00199 0.00223 0.00234 0.002426 0.000377 0.000626 0.000754 0.000819 0.0008587 0.0000754 0.000128 0.000198 0.000239 0.0002638 0.0000128 0.0000701 0.0000206 0.0000386 0.0000519 0.00000401 0.00000402 0.00000256 0.00000562 0.00000978Table 3: Maximum of exa
t distan
e fun
tion at t = 1 on a 
ir
le of radiusR(t) = 1 + t and 
enter (1=2�; 1=2�), moving with 
onstant normal velo
ityV = 1, 
omputed with NT time steps of linear and quadrati
 interpolation.
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