
LOCALLY-CORRECTED MULTIDIMENSIONALQUADRATURE RULES FOR SINGULAR FUNCTIONS �JOHN STRAIN yAbstrat. Aurate numerial integration of singular funtions usually requires either adaptivityor produt integration. Both interfere with fast summation tehniques and thus hamper large-saleomputations.This paper presents a method for omputing highly aurate quadrature formulas for singularfuntions whih ombine well with fast summation methods. Given the singularity and the N nodes,we �rst onstrut weights whih integrate smooth funtions with order-k auray. Then we loallyorret a small number of weights near the singularity, to ahieve order-k auray on singularfuntions as well. The method is highly eÆient and runs in O(Nk2d+N log2N) time and O(k2d+N)spae. We derive preise error bounds and time estimates and on�rm them with numerial resultswhih demonstrate the auray and eÆieny of the method in large-sale omputations. As part ofour implementation, we also onstrut a new adaptive multidimensional produt Gauss quadratureroutine with an e�etive error estimate, and ompare it with a standard pakage.The approah generalizes to interpolate and di�erentiate sattered data and to integrate singularfuntions over urves and surfaes in several dimensions.Key words. numerial integration, singular integrals, fast algorithms, quadtrees, singular valuedeomposition, vortex methods, potential theory, interpolationAMS subjet lassi�ations. 65D32, 65D05, 65D30, 65R201. Introdution. Many numerial problems require the evaluation of integralsZB f(x)dx;(1.1)where B is a D-dimensional subset of Rd and f is an integrable funtion on B. Manymethods have been devised for the numerial alulation of suh integrals, eah usefulfor ertain values of D and d and ertain lasses of B and f . In the ase d = D = 1an extensive literature is summarized in [6℄, while in d > 1 dimensions muh reentwork is presented in [7, 15℄.This paper fouses on the evaluation of (1.1) in the following ommon situation.(a) B is a retangle [a; b℄ := [a1; b1℄� : : :� [ad; bd℄.(b) We are given values f(xj) of f at N points xj not of our hoosing.() We are given an integrable but singular funtion � : B!Rs, whih is Ck awayfrom a lower-dimensional subset S of B, and f has the formf(x) = '(x) � �(x) +  (x);(1.2)where ' : B!Rs and  : B!R are unknown Ck funtions on B.We onstrut two rules for numerial integration. In x2, we onstrut a rule Wwith weights Wj , 1 � j � N , whih integrates smooth funtions aurately:NXj=1Wjg(xj) = ZB g(x)dx+EN ;(1.3)� This researh was supported by a NSF Young Investigator Award, by Air Fore OÆe of Sien-ti� Researh Grant FDF49620-93-1-0053, and by the Applied Mathematial Sienes Subprogramof the OÆe of Energy Researh, U.S. Department of Energy under Contrat DE-AC03-76SF00098.y Department of Mathematis and Lawrene Berkeley Laboratory, University of California, Berke-ley, California 94720 (strain�math.berkeley.edu).1



2 J. STRAINwhere EN dereases rapidly as N!1 if g is smooth enough and the points xj happento be distributed appropriately. For example, EN = O(N�k=d) if g is Ck and thepoints are uniformly distributed on B, where k is the order of auray of the rule.The omputation of W requires O(N(k2d + log2N)) time and O(k2d + N) spae.Preise error bounds are proven in x2.3 and numerial examples are given in x2.4.In x3, we onstrut a rule w with weights wj whih integrates singular funtionsof the form (1.2) aurately. The singular rule w has the \loal orretion" propertythat wj =Wj exept for a small number of j's, those for whih xj is near the singularset. This property is important in the appliation of fast algorithms to the eÆientevaluation of families of singular integrals. The omputation of those wj 's di�eringfrom Wj requires O(k3d) time. Error bounds are proved in x3.2 and numerial resultsare given in x3.3.These general rules are onstruted with ertain spei� lasses of appliations inmind, inluding omputational uid dynamis, potential theory and rystal growth.These appliations require the appliation of integral operatorsu(x) = ZBK(x; x0)!(x0)dx0(1.4)where K has known singular behavior on a lower-dimensional set but ! is (at leastpieewise) smooth. Typially K is singular at a single point, we know !(sj) at Npoints sj , and we would like to approximateM values u(ti) at points ti 2 Rd. We haveno ontrol over the loation of the sj and would like to avoid the arti�ial visosityprodued by interpolating, so we take the sj 's as given.A lassial approah to this problem is produt integration [6℄. Here we approxi-mate u(ti) by a rule of the form ui = NXj=1Kij!(sj)(1.5)with Kij hosen to integrate some lass of ! exatly for eah i. This is aM�N matrixmultipliation, so it osts O(MN) work, whih is very expensive when M and N arelarge. This has been a stumbling blok in omputational uid dynamis [5℄, potentialtheory for the Laplae equation [14℄, and rystal growth [23℄. Produt integrationalso tends to require diÆult, expensive, and sometimes impossible algebrai manip-ulations and evaluation of integrals in losed form. A major objetive of this paper isto eliminate the alulations required by produt integration, and replae them witha single general-purpose method whih produes loally orreted quadrature rules ofarbitrary order for any given singularity.More reently, fast summation methods have been developed for several kernelsK. These methods evaluate the disrete sumui = NXj=1K(ti; sj)Wj!(sj) 1 � i �M(1.6)to auray �, in O((N+M) log �) work. See [1, 3, 4, 12, 25, 29℄ for vortex methods andpotential theory and [11, 24℄ for Gaussian kernels. However, these methods annotbe ombined with produt integration, where the weights depend on the point ofevaluation ti.Another lass of reently-developed fast methods is aimed more diretly at theontinuous problem (1.4); see [18, 20, 25℄ for vortex methods and potential theory



QUADRATURE RULES FOR SINGULAR FUNCTIONS 3and [10, 26℄ for heat potentials. These methods are related to produt integrationin some ases, usually have a �xed and not too high order of auray, and tend tobe slower than fast methods for disrete sums (1.6). Like produt integration, theysometimes require diÆult and expensive algebrai manipulations and evaluation ofintegrals whih an be arried out only in speial ases.Singular quadrature rules of the type developed in this paper allow the appliationof fast algorithms for disrete sums (1.6) to the ontinuous problem (1.4), beausewj are independent of the point of evaluation ti exept for a few points near thesingularity. Thus fast methods an be applied to the sum (1.6) with weights Wj , andthen ui an be orreted loally to get an aurate and inexpensive approximationof u(ti). This observation was apparently �rst made in [19℄, where one-dimensionalsingular endpoint-orreted trapezoidal rules were developed. It has been applied toone-dimensional integral equations in [22℄.Our method requires knowledge of the singularity �(x) only in the weak sensethat we need modi�ed moments ZB\C P�(x)�(x)dx(1.7)over retangles C, with P� a suitable family of multidimensional orthogonal polynomi-als. Obtaining these moments is itself a highly nontrivial task in this generality, withmany possibilities depending on the singularity and on B. We have implemented, aspart of our method, a general multidimensional adaptive Gaussian quadrature ode,with a novel error estimator, whih may be of some independent interest and is there-fore desribed in x4. It is suÆient for vortex methods and for volume potentials inpotential theory, and hene for the solution of variable-oeÆient ellipti partial dif-ferential equations, as in [27℄. Numerial results in x4 indiate that it is ompetitivewith standard odes in dimensions d = 2 and d = 3.The tehniques presented in this paper generalize immediately to solve severalother problems of onsiderable interest. We an approximate and di�erentiate fun-tions known at arbitrary points, a tehnique whih is useful in many omputationalproblems. We an integrate singular funtions over more general domains, suh asurves and surfaes. Several suh generalizations, along with several re�nements ofthe basi method, are disussed in x5.2. Smooth rules.2.1. Overview of the onstrution. We onstrut rules with N given pointsxj for integrating smooth funtions over a d-dimensional retangle B = [a; b℄ :=[a1; b1℄ � � � � � [ad; bd℄. The struture of these rules will make a good base for theonstrution of singular rules with loally orreted weights.Let k � 1 be the desired order of auray of the rule, assume N � m :=m(k; d) := (k + d � 1)(k + d � 2) � � � (k + 1)k=d!, and hoose an integer L with p :=bN=2L � m. Using a data struture developed below, we divide B into M = 2Lretangular subells Bi with disjoint interiors suh that B is their union and eah Biontains either p or p + 1 points xj . Then on eah Bi, we onstrut loal weightsW ji for xj 2 Bi whih integrate the m monomials of degree � k � 1 exatly over Bi.(A monomial of degree k in d dimensions has the form x�11 x�22 � � �x�dd , where eah �lis a nonnegative integer and j�j := �1 + �2 + : : : + �d = k. There are preisely mmonomials of degree � k � 1.) Beause of the ill-onditioning of the power basis, weonstrut these weights by solving the following system of m linear equations in at



4 J. STRAINleast p unknowns: Xxj2Bi P�(xj)W ij = ZBi P�(x)dx j�j � k � 1:(2.1)Here P�(x) = P�1(x1) � � �P�d(xd)is a produt of one-dimensional Legendre polynomials, with the lth fator saled andshifted to live on the interval [al; bl℄. Sine p � m, this system of m equations inat least p unknowns generially has solutions. We ompute the solution W ij of leastEulidean norm, using the singular value deomposition [9℄. x2.3 disusses what todo when no solution exists. The global weights of the rule W are then de�ned to beWj =W ij for xj 2 Bi.2.2. Details of the onstrution. We now onstrut a data struture withtwo useful features; �rst, it partitions B into retangular ells over whih we aneasily integrate polynomials and seond, there are neither too many nor too few ofthe points xj in eah ell. Too many points makes the singular value deompositiontoo expensive and produe a less aurate rule beause the ell size inreases, whiletoo few points makes (2.1) overdetermined so generially no solution exists. Whenthe number of points p is very lose to the minimum required m, so (2.1) is barelysolvable, the solution tends to have large 1-norm, making it unsuitable for numerialintegration. This is similar to the well-known Runge phenomenon enountered ininterpolation (where p = m) at equidistant points. We found that p of order 2m gaveexellent results.Suh a \tree struture" an be onstruted by reursive subdivision. Let B = B1be the level-0 root of the tree. Divide B1 in half by a plane perpendiular to say thel'th oordinate axis, with the dividing plane loated so that eah half of B1 ontainseither bN=2 or bN=2+1 points. This gives the level-1 ells B2 and B3. Repeat thisproedure on B2 and B3, with the splitting dimension l hosen independently for eahell, to get B4 through B7, eah ontaining bN=4 or bN=4+1 points xj . Repeatingthis proedure L times gives M = 2L ells Bi on the �nest level L, numbered fromi = M to i = 2M � 1, eah ontaining p = bN=M or p + 1 points xj . The unionof all the ells on any given level is B. The tree struture is stored by listing theboundaries of eah ell Bi = [ai; bi℄ from i = 1 to i = 2M � 1, a total of 2d � 2Mnumbers, and indexing the points into a list so that the points xj 2 Bi are given byj = j(s) for s = b(i); : : : ; e(i) and three integer funtions j, b and e. This an be donein O(N logN), but the simplest method requires sorting the points in eah ell beforeeah subdivision, giving a total ost O(N log2N) for the tree onstrution when anO(N logN) sorting method suh as heapsort [17℄ is used. Figure 2.1 shows an exampleof this onstrution. We note that hierarhial data strutures with similar properties{ though not this partiular one { have been extensively disussed in [21℄.The dimension l aross whih to split a given ell an be seleted in several ways.We an split the longest dimension, so that the length-dependent fator in the errorbound of x2.3 is redued as quikly as possible; hoose l withbl � al � bj � aj for 1 � j � d:Alternatively, we an hoose l to minimize the seond moment of the points in the ell.If funtion values at the nodes are available when the rule is onstruted, other hoiesintended to minimize integration error for that spei� funtion an be devised.



QUADRATURE RULES FOR SINGULAR FUNCTIONS 5

Fig. 2.1. Levels 1 through 6 in the tree struture with N = 1137 pseudorandom uniformlydistributed points on [0; 1℄2.For future referene, we note that the tree struture permits eÆient O(L) lookupof the level-L ell ontaining any point x 2 B. We simply begin at the root and disardall hildren not ontaining x; the proess is then repeated reursively on the remaininghild until we reah the lowest level. More generally, we an �nd all ells intersetinga given retangle R in time proportional to L and to their number. This will be usefulin the onstrution of singular rules.2.3. Error bounds. The global weightsWj now integrate all x� with j�j � k�1exatly over all level-L ells Bi forM � i � 2M �1. We now show that this propertyalone results in order-k auray, with a ondition number appearing in the errorbound.Theorem 2.1. Let B = [2M�1i=M Bi where Bi = [ai; bi℄. Suppose that W integratesx� exatly over eah Bi for j�j � k � 1. Then for any Ck funtion g on B, the errorE = ZB g(x)dx� NXj=1Wjg(xj)satis�es jEj � 
jBj(h=2)k Xj�j=k 1�! jj��gjjC0(B)(2.2)where h = maxi;l bil � ail is the longest ell edge,
 = 1 + 1jBj NXj=1 jWj j(2.3)



6 J. STRAINis the ondition number of the rule W , and jBj is the d-dimensional volume of B.Proof. The error in integrating a smooth funtion g over B is given by a sum overells E := ZB g � NXj=1Wjg(xj) = 2M�1Xi=M Ei;(2.4)where Ei := ZBi g � Xxj2BiW ij g(xj):(2.5)Let G be the polynomial of degree � k � 1 whih best approximates g on Bi in themaximum norm. Sine W is exat for G on Bi, we haveEi = ZBi(g �G)dx + Xxj2BiW ij (G(xj )� g(xj))(2.6)and thus jEij � jjg �GjjL1(Bi) + Xxj2Bi jW ij j jG(xj)� g(xj)j� 
ijBij jjg �GjjC0(Bi)where the loal ondition number 
i is de�ned by
i = 1 + 1jBij Xxj2Bi jW ij j;(2.7)jBij is the volume of Bi, and the C0 norm is de�ned byjj'jjC0(B) := maxx2B j'(x)j(2.8)for ontinuous funtions ' on a set B.The error bound on eah ell is thus separated into a fator 
i independent of theintegrand, a fator of jBij, and a fator whih depends only on approximation of theintegrand on the ell. The �rst fator 
i annot be bounded a priori unless all theweights are nonnegative, in whih ase 
i = 2. However, 
i an easily be omputeda posteriori and thus serves as an extremely useful diagnosti for the quality of therule.The volume fator in the error bound depends only on the distribution of pointsand the tree struture onstruted, and will add up to the volume of the domain B.Finally, we bound the error in approximating g. Assume g 2 Ck(B); then bymultidimensional Taylor expansion [8℄, we haveg(x+ y) = Xj�j�k�1 ��g(x)y��! +Rk(x; y)(2.9)where �! = �1!�2! � � ��d!, ��g = ��11 : : : ��dd g, y� = y�11 : : : y�dd , and the remainder isbounded by Rk(x; y) � Xj�j=k (hi=2)��! max0�t�1 j��g(x+ ty)j(2.10)



QUADRATURE RULES FOR SINGULAR FUNCTIONS 7on the ell Bi = [ai; bi℄ with side length hi = bi�ai. Sine G is the best approximationto g on Bi by a polynomial of degree � k � 1, we havejjg �GjjC0(Bi) � Xj�j=k (hi=2)��! jj��gjjC0(Bi)(2.11)The global error bound follows immediately:jEj � MXi=1 
ijBij jjg �GjjC0(Bi)� 
jBj(h=2)k Xj�j=k 1�! jj��gjjC0(B):Note that 
 plays the role of a ondition number for W , mediating betweenthe intrinsi diÆulty of integrating g (as measured by the derivatives of g) and theauray of the �nal result. There are several ways to redue eah 
i and thusobtain a better error bound. Usually taking more points per ell redues 
i, sinethe additional degrees of freedom are not needed to satisfy (2.1) and an be appliedto reduing the 2-norm of W ij . However, this inreases the ost of omputing Wonsiderably and inreases the ell size h, so taking larger p is not ost-e�etive ifapplied globally.It an be applied adaptively, however, by going up to a di�erent level of the treestruture when neessary. To implement this, we speify a tolerane 
m. When 
i �
m, we merge Bi with its sibling in the tree struture, obtaining a ell BI ontainingtwie as many points xj . We then reompute all weights Wj for whih xj 2 BI ,usually obtaining 
I < 
m at the ost of a larger singular value deomposition anda larger ell size h. If 
I is still too large, the proess may be repeated.This adaptive tehnique also permits treatment of the degenerate ases when nosolution exists to (2.1) on ell Bi, beause the points xj are not in suÆiently generalposition. Suh a ell an be merged with its sibling, after whih a solution is muhmore likely to exist. The proess may be repeated if neessary.Another approah to reduing the error bound would be to seek the least 1-normsolution of (2.1), whih would minimize 
i. This 1-norm minimization problem isstandard but somewhat more expensive to solve that the 2-norm problem we solvewith the singular value deomposition. We found that values of p of order 2m usuallyprodue 
i within an order of magnitude of the lower bound 2, so we expet littleimprovement from the 1-norm minimization approah and have not experimentedwith it.2.4. Implementation and numerial results. We implemented this methodin a portable ANSI Fortran ode. The ode aepts the order k, the dimensiond, the number of levels L, the domain B = [a; b℄ � Rd, and the N user-spei�edquadrature nodes xj 2 Rd. It returns N weightsWj , the ell struture, the maximumondition number enountered in the singular value deompositions, 
, the ell sizeh, and so forth. The numerial results reported here were obtained on a Sun Spar-2workstation.We tested the ode by generating N = 256; 512; : : : ; 16384 pseudorandom uni-formly distributed points in the two-dimensional unit square [0; 1℄2, omputing theweights W with p = k2 > m = k(k + 1)=2 for k = 2; 4; 8; 12 and 16, and using



8 J. STRAINthem to integrate monomials, osines and Lorentzian funtions over [0; 1℄2. The testintegrands are thus the vetorsg1(x) = ((x1 + x2)n : 0 � n � 3k)g2(x) = (os(n(x1 � r1)) os(n(x2 � r2)) : 1 � n � 10)g3(x) = � 1n (n�2 + (x1 � r1)2)�1 1n (n�2 + (x2 � r2)2)�1 : 1 � n � 10�with ri uniformly distributed on [0; 1℄ and k the order of the rule. Note that thefamily g1 beomes more diÆult as k inreases.Sine the N points are randomly generated, we annot expet a smooth onver-gene as N!1. Hene for eah integrand gj(x), we generated 20 di�erent sets ofnodes xi and omputed the minimum, arithmeti mean and maximum of the errorsEj and their base-2 logarithms Lj , and the orresponding standard deviations. Thebase-2 logarithm makes the order of onvergene easier to see: kth order orrespondsto Lj dereasing by k=2 when N is doubled.N h 
 T L1 L2 L3128 0.3559 2.05 0.10 -10.35 -5.07 -3.03256 0.2934 2.04 0.15 -11.45 -5.65 -4.13512 0.1981 2.05 0.32 -13.44 -7.45 -4.401024 0.1536 2.04 0.69 -14.07 -8.98 -6.672048 0.1095 2.05 1.52 -15.59 -10.20 -7.514096 0.0809 2.05 3.28 -17.04 -11.56 -9.138192 0.0551 2.05 7.26 -18.94 -12.98 -9.8616384 0.0428 2.05 15.99 -19.15 -14.91 -11.25Table 2.1Mesh size h, ondition number 
, CPU time T and average base-2 error logarithms Lj for theseond-order smooth rule with N random points.N h 
 T L1 L2 L3128 0.5146 3.22 0.22 -12.67 -4.90 -3.58256 0.3293 3.51 0.41 -14.54 -7.66 -5.29512 0.2776 3.60 0.84 -15.78 -9.15 -4.741024 0.1764 3.34 1.73 -18.76 -12.09 -7.672048 0.1449 3.36 3.57 -19.61 -14.40 -9.934096 0.0915 3.42 7.41 -22.30 -17.07 -12.828192 0.0752 3.48 15.53 -23.64 -18.85 -14.3616384 0.0492 3.49 32.52 -26.02 -21.88 -17.27Table 2.2Mesh size h, ondition number 
, CPU time T and average base-2 error logarithms Lj for thefourth-order smooth rule with N random points.Tables 2.1 through 2.5 display the averages Lj of the base-2 logarithm of theerror E produed when the qth-order smooth rule W is applied to integrate the testfuntions gj for j = 1; 2 and 3 and k = 2, 4, 8, 12 and 16. Sine the number of pointsdoubles in eah sueeding row of eah table, we expet Lj to derease by k=d = k=2in eah step. This derease is learly evident for large N . It tends to our doubledat alternate lines beause only when the number of points inreases by 2d = 4 doesthe average spaing h derease by half.



QUADRATURE RULES FOR SINGULAR FUNCTIONS 9N h 
 T L1 L2 L3128 1.0000 6.20 1.21 -11.95 -5.31 -4.29256 0.5520 7.35 2.37 -14.60 -8.55 -4.56512 0.5139 6.01 4.76 -17.92 -12.42 -5.911024 0.2893 6.69 9.52 -21.39 -16.62 -9.672048 0.2635 6.24 19.16 -24.10 -21.02 -12.254096 0.1504 6.15 38.65 -28.57 -25.58 -16.598192 0.1350 6.29 77.91 -33.27 -29.16 -17.3316384 0.0786 6.58 157.08 -36.74 -34.75 -23.32Table 2.3Mesh size h, ondition number 
, CPU time T and average base-2 error logarithms Lj for theeighth-order smooth rule with N random points.N h 
 T L1 L2 L3256 1.0000 19.48 9.95 -14.34 -9.17 -4.85512 0.5364 24.37 19.92 -18.62 -15.91 -7.651024 0.5073 37.65 39.81 -22.09 -21.00 -9.182048 0.2762 27.28 79.75 -26.81 -28.63 -12.964096 0.2579 26.22 159.82 -31.52 -33.99 -15.348192 0.1431 28.42 320.41 -38.84 -40.07 -21.3816384 0.1324 26.38 642.06 -43.83 -46.71 -23.67Table 2.4Mesh size h, ondition number 
, CPU time T and average base-2 error logarithms Lj for thetwelfth-order smooth rule with N random points.The ode is extremely eÆient. Rules of orders k = 2, 4, 8, 12 and 16 withN = 16384 nodes require T = 16, 33, 157, 642 and 2041 CPU seonds on a Spar-2workstation. By omparison, the atual integration of even suh simple funtions asg2 and g3 with the given points and weights takes 3 and 1.5 CPU seonds respe-tively. Thus an integrand with a substantial degree of omplexity will dominate theintegration time.To demonstrate the improvement due to taking p substantially larger than m, wealso ran tests with N = p = m;m + 1; : : : ; k2 for k = 2, 4, 8, 12 and 16. Table 2.6shows some of the results. We see that larger values of p produe dramati dereasesin 
, espeially for higher-order rules.3. Singular rules.3.1. Overview of the onstrution. We now selet and orret ertain weightsWj of the smooth rule W , to produe a singular rule w whih will integrate singularfuntions f(x) = '(x) � �(x) +  (x) more aurately.The weights to be orreted are seleted by forming a list of ells Bi in the treestruture built for the smooth rule W and orreting all the weights Wj for whih xjlies in some ell on the list. For eah ell Bi on the list, we onstrut wj for xj 2 Biby requiring wj to satisfy the linear system of (1 + s)m equations whih expressesthat P�(x) and P�(x)�(x) are integrated exatly for j�j � k � 1:ZBi P�(x)dx = Xxj2Bi wjP�(xj)(3.1) ZBi P�(x)�t(x)dx = Xxj2Bi wjP�(xj)�t(xj)(3.2)



10 J. STRAINN h 
 T L1 L2 L3256 1.0000 71.16 31.80 -13.39 -9.96 -5.74512 1.0000 31.93 63.70 -16.26 -16.10 -7.441024 0.5210 68.11 127.28 -20.29 -24.86 -11.532048 0.5045 53.34 254.55 -26.56 -32.94 -11.664096 0.2696 49.57 509.72 -33.16 -42.35 -19.148192 0.2576 51.48 1019.63 -39.50 -47.79 -19.6916384 0.1375 45.07 2041.41 -44.54 -48.48 -29.81Table 2.5Mesh size h, ondition number 
, CPU time T and average base-2 error logarithms Lj for thesixteenth-order smooth rule with N random points.k = 2; N = 3 4 5 6 7 8
 = 34 3.4 2.5 2.2 2.2 2.1k = 4; N = 10 11 12 13 14 16
 = 40 10 8.2 5.9 4.6 3.3k = 8; N = 36 40 44 48 56 64
 = 6673 85 43 24 13 7.3k = 12; N = 78 84 99 114 129 144
 = 4803412 1057 180 46 37 23k = 16; N = 136 144 172 200 228 256
 = 313597 16561 923 221 90 66Table 2.6Average ondition number 
 as a funtion of the number N = p of points per ell for k = 2, 4,8, 12 and 16.for j�j � k�1 and 1 � t � s. In order for these equations generially to have solutionsw, we annot use the ells Bi on the lowest level L of the tree struture, beause eahof these ontains only p � m or p+1 points xj . Instead, we use the ells onstrutedon a level L0 < L of the tree struture, for example with L0 := L� dlog2(1 + s)e if pwas hosen of order 2m to begin with. On level L0, we have fewer and larger ells, eahontaining at least p0 := N=2L0 � (1+s)m points. Thus (3.1) and (3.2) will generiallybe solvable. In pratie, we solve (3.1) and (3.2) by the singular value deomposition,obtaining w as the solution of least 2-norm if it exists. A major new diÆulty whihrequirement (3.2) introdues is the omputation of the singular momentsZBi P�(x)�(x)dx(3.3)when � is not smooth. x4 is devoted entirely to this question.The atual seletion of ells to orret an be made in several ways. If � issingular at a point xs 2 B, for example, a natural hoie would be simply to orretthe ell Bi on level L0 whih ontains xs. However, xs might lie at the orner of Bi,so many nearby points would go unorreted if this seletion were made. A variantof single-ell orretion is to orret only the neighbor ells of the quadrant of ellBi where xs lies. An alternative and natural hoie would be to orret all ellsinterseting a region of spei�ed size Æ around the singular set S; these ells an befound eÆiently, as desribed in x2. However, a �xed size Æ requires orretion ofa number of points proportional to N as N!1, whih is unaeptably expensive iffast summation methods are employed. Thus this seletion sheme is robust but tooexpensive. Also, it takes no aount of loal density variations of the points.We hose to selet ells for orretion by the following approah. The user spei�esa dimensionless orretion radius r, typially of order unity. We �nd the ell Bi =



QUADRATURE RULES FOR SINGULAR FUNCTIONS 11[a; b℄ in whih the singularity lies (several ells if � has a higher-dimensional singularset). We then selet for orretion all ells interseting the retangle R = [xs� r(b�a)=2; xs + r(b� a)=2℄ of size r times Bi and entered at eah singular point xs 2 S.This sales the size of the orreted area to the loal ell size and therefore to the loaldensity of nodes, keeping the number of orreted points per singular point of orderunity as N!1 with r �xed. If D = dimS then the number of orreted points isO(ND=d). We found r = 3 to give exellent results in pratie. The lookup of ellsto be orreted osts only O(L) per ell.Remark: We an onstrut a loally-orreted produt integration rule usingthe same tehnique; we simply drop the requirement (3.1) and go up fewer levels inthe tree struture. This gives a rule whih integrates polynomials times � aurately,whih is enough for many appliations. The added generality obtained by requiring(3.1) as well as (3.2) is important when the integrand may be nonsingular (for examplewhen � happens to vanish at the singularity), and osts little.Remark: �(xs) may be in�nite or unde�ned, so we don't want to evaluate fat xs. If xs is one of the quadrature points xj , then we eliminate it from the list ofpoints to be orreted, set wj = 0, and proeed.3.2. Error bounds. The error bounds for singular rules an be derived by poly-nomial approximation, as in the smooth ase. No matter how the list of orreted ellsis made up, there will be two types of ells to onsider; orreted and unorreted. Onthe orreted ells, both ' and  an be approximated and the remainder estimatedas for smooth rules. On the unorreted ells, the derivatives of the singularity omeinto play; the key assumption in the error bound is that we orret all ells suÆientlylose to the singularity.For notational onveniene, let's renumber the M ells used in the singular rule,so that the �rst n are orreted and the last M � n are not: thus B = [Mi=1Bi whereeah ell Bi ontains at least (1 + s)m points for 1 � i � n and at least m points forn+ 1 � i �M . Let the sides of Bi be hil for l = 1; 2; : : : ; d and let h = maxi;l hil bethe maximum ell edge. Assume that we have weights wj suh thatZBi x�dx = Xxj2Bi wjx�jand ZBi �(x)x�dx = Xxj2Bi wj�(xj)x�jfor j�j � k � 1 and 1 � i � n, whileZBi x�dx = Xxj2Bi wjx�jfor j�j � k � 1 and n+ 1 � i �M .Assume also that the union [ni=1Bi of the orreted ells ontains the set RÆ ofall points within distane Æ of the singular set S. For example, we assume [ni=1Biontains the ball fy 2 Rd : jjxs � yjj � Æg around eah singular point xs. Finally,assume that � is Ck outside the singular set S and that its derivatives satisfy a growthondition j���(x)j � CÆ�d�j�j(3.4)



12 J. STRAINfor j�j = 0 and j�j = k, Æ > 0 and x 62 RÆ. Here C is a onstant and Æ > 0 isarbitrary. This assumption is very benign sine it does not even guarantee that � isin L1(B). It is satis�ed by the singularities ourring in potential theory as well asby the Biot-Savart kernel � = x=jjxjjd.Starting from these assumptions, we derive a bound for the errorE = ZB '(x) � �(x) +  (x)dx � NXj=1wj('(xj ) � �(xj) +  (xj)):where ' and  are Ck. The nonsingular term in  an be bounded exatly as for thesmooth rule in x2, givingj ZB  (x)dx � NXj=1wj (xj)j � 
jBj(h=2)k Xj�j=k 1�! jj�� jjC0(B):For the singular term, we have to onsider orreted and unorreted ells sepa-rately. On orreted ells Bi ( 1 � i � n ), we have a best approximation � to ' bya polynomial of degree k � 1 and the resulting boundEi = j ZBi '(x) � �(x)dx � Xxj2Bi wj'(xj) � �(xj)j� 
i� jBij jj'� �jjC0(Bi)where the singular ondition number 
i� is de�ned by
i� = 1 + 1jBij Xxj2Bi jwj�(xj)j:As in x2, the best approximation error jj' � �jjC0(Bi) an be bounded by Taylorexpansion to get Ei � 
i� jBij(h=2)k Xj�j=k 1�! jj��'jjC0(Bi):Note that a priori 
i� an be in�nite, if one of the quadrature nodes happens tooinide with a singular point xs 2 S. Thus 
i� must be omputed a posteriori andused as a measure of the quality of the rule. The methods for reduing 
i disussedin x2.3 apply to 
i� as well. In our examples, however, we rarely enountered largevalues of 
i�.Now onsider the error due to integrating ' � � over an unorreted ell Bi wherew =W . From x2.3, we know that the error on ell Bi is bounded byEi � 
ijBij(h=2)k Xj�j=k 1�! jj��(' � �)jjC0(Bi):We simplify this bound by separating derivatives of ' and �, using the standardinequality for H�older norms proved in [13℄:jj(' � �)jjCk(Bi) � C �jj�jjC0(Bi)jj'jjCk(Bi) + jj�jjCk(Bi)jj'jjC0(Bi)� :



QUADRATURE RULES FOR SINGULAR FUNCTIONS 13Here the Ck norm is de�ned byjj'jjCk(B) = jj'jjC0(B) + Xj�j=k jj��'jjC0(B)for k > 0, so Ei � C
ijBijhkjj' � �jjCk(Bi):This separates the bound for Ei into two piees E1i and E2i :E1i = C
ijBijhkjj�jjC0(Bi)jj'jjCk(Bi)� C
ijBijÆ�dhkjj'jjCk(Bi)and E2i = C
ijBijhkjj�jjCk(Bi)jj'jjC0(Bi)� C
ijBijÆ�d�hÆ�k jj'jjC0(Bi)where we have used assumption (3.4).We now pause momentarily to disuss our strategy for seleting orreted ellsBi. Clearly the hoie Æ =onstant, orreting all ells within a �xed distane fromS, produes the simplest error bound. Indeed, if Æ is �xed, then the global error Esatis�es E � C
jBjjj'jjCk(B)hkjust as for the smooth rule, with a onstant whih depends on Æ. Unfortunately,in pratie we annot a�ord to ompute the O(N) orretion weights within �xeddistane Æ from S as N!1. Thus we give up the simpliity of this error bound.Instead, we take Æ = rh where r is �xed, in order to orret fewer points asN!1. This ompliates both piees of the error bound in two di�erent ways. First,the fator Æ�d seems to anel the volume fator jBij = O(hd), so naively summingover all O(N) unorreted ells produes a fator of N in both E1i and E2i . Seond,the fator Æ�k in E2i eliminates the usual O(hk) error altogether.We handle the seond diÆulty by seeking an error bound of a di�erent formfrom the usual O(hk). We hoose Æ so that (h=Æ)k � � where � is a user-spei�edparameter, usually smaller than hk over the range of a�ordable h. Then we seek anerror bound of the form E � O(�) + O(hk) where the onstant in O(�) is allowed todepend on derivatives of � but not on those of '. The onstant in O(hk), on theother hand, may depend on derivatives of ' as usual, but not on those of �. Similarerror bounds often our in the design of fast algorithms [4, 25℄ and are quite usefulin pratial omputations.Thus we hoose (h=Æ)k � � to getEi � C
ijBijÆ�d �hkjj'jjCk(Bi) + �jj'jjC0(Bi)�and it remains to deal with the �rst diÆulty, of summing over all O(N) unorretedells Bi.



14 J. STRAINLet 
m = max
i, and divide the unorreted ells Bi into P = O(1=Æ) = O(1=h)shells Sp = fBi : pÆ � d(Bi; S) � (p+ 1)Ægwhere the distane from Bi to S is de�ned byd(Bi; S) := minfjjx� xsjj : x 2 Bi; xs 2 Sg:For Bi 2 Sp, we have the stronger boundEi � C
mjBij(pÆ)�d �hkjj'jjCk(Bi) + �p�kjj'jjC0(Bi)� :Thus MXi=n+1Ei = PXp=1 XBi2SpEi� C
m0� PXp=1 p�d XBi2Sp jBij1A Æ�dhkjj'jjCk(B)+ C
m0� PXp=1 p�d�k XBi2Sp jBij1A Æ�d�jj'jjC0(B):(3.5)The volume of the shell Sp is bounded by Cpd�1Æd, and sine the ell edges are allbounded by h = O(Æ), the sum over i satis�esXBi2Sp jBij � Cpd�1Ædfor some onstant C. This anels the fator of Æ�d. The �rst sum over p in (3.5)then diverges logarithmially, giving a fator of logP = O(j log hj), and the seond isbounded by P1p=1 p�1�k <1 if k � 1. ThusMXi=n+1Ei � C
m �j loghjhkjj'jjCk(B) + �jj'jjC0(B)�We see that we su�er for the singularity by a fator j loghj and a term �jj'jjC0(B).We onlude that the total error due to unorreted ells is bounded byE � C
m �j loghjhkjj'jjCk(B) + �jj'jjC0(B)�whenever (h=Æ)k � �. Our numerial experiments tend to on�rm the auray ofthis bound.Thus we have proved the following theorem:Theorem 3.1. Fix � > 0 and orret the O(ND=d) ells interseting RÆ whereD = dimS and Æ = rh = ��1=kh:



QUADRATURE RULES FOR SINGULAR FUNCTIONS 15Then the error in integrating ' � � +  over B with the loally orreted rule w isbounded byjEj � C(
 + 
�) �hkjj jjCk(B) + j loghjhkjj'jjCk(B) + �jj'jjC0(B)� :In partiular, we need only orret a �xed number of points as N !1 if � has onlypoint singularities.The absene of a volume fator jBj in this bound is dismaying at �rst sight butatually natural, beause under the weak assumption (3.4) on �, the integral itselfneed not sale with jBj. If �(x) = jjxjj�d, for example, then saling the variablesshows that the integralZÆ�jjxjj�R �(x)dx = Z�Æ�jjxjj��R �(x)dxfor any �. Under stronger growth onditions on �, for example those satis�ed by theBiot-Savart kernel, the error estimate would sale in the same way as the integral.3.3. Implementation and numerial results . We have implemented thesetehniques in a portable ANSI Fortran program whih onstruts the singular weightswj from the data struture and weights W onstruted in x2. The singularity isevaluated by a user-supplied subroutine, and is thus quite general. The dimensionand order are also arbitrary user-spei�ed parameters. A routine for evaluating thesingular volume moments by the tehnique of x4 is supplied, but the ode is highlymodular and the user an freely import routines for evaluating the singular moments ifthey are available e.g. in losed form. The polynomials P�(x) an also be replaed byother basis funtions if desired. The ode ontains several other re�nements disussedin Setion 5.We have tested the ode on several singularities in d = 2 and d = 3 dimensions.Here we report on the results obtained with d = 2 and the Biot-Savart kernel�(x) = xjjxjjd :We ran two sequenes of tests. First, we arried out a onvergene study witha regular grid. We plaed N = 256; 1024; : : : ; 65536 points in a square grid in B =[0; 1℄2. For eah k = 2, 4 and 6, we onstruted the smooth rule with these Npoints and p = k2 points per ell. We then generated 20 random points xs in B andomputed the kth-order orretion weights for eah singularity �(x � xs), orretingells ontaining p0 = 2k2 points and within a orretion radius r = 3 times the ellontaining xs. Tables 3.1 through 3.3 report the averages L< and L> of the base-2logarithms of the errors in using these weights to integrate the singular monomials(x1 + x2)��(x � xr) with 0 � � � k � 1 for L< and k � � � 3k � 1 for L>. Notethat the error for � � k � 1 is not zero for two reasons; we ompute the singularmoments approximately and we only orret nearby ells. We ompute the singularmoments with the ode desribed in x4, using inreasing auray as the number ofpoints inreased: �a = �r = 10�3; 10�5; : : : ; 10�11 for N = 256; : : : ; 66536. The tablesalso report the average CPU time per orretion T , ondition numbers 
 and 
�, themaximum ell edge length h, and the number C of orreted points.The following observations an be made from these results. The onvergene rateis somewhat irregular, but roughly aords with theoretial expetations. The use ofbase-2 logarithms means that L< and L> should derease by k eah time N is quadru-pled, for the kth-order method. The number of orreted points does not inrease with



16 J. STRAINN . However, the orretion is rather expensive due to the general-purpose nature ofthe ode and the neessity of obtaining singular moments by numerial integration.The inrease in auray of the numerial integration aounts for the inrease of Twith N . We believe a more eÆient and speialized implementation for a spei�singularity suh as the Biot-Savart kernel ould ahieve faster run times by orders ofmagnitude. Finally, we observe that the ondition numbers 
 and 
� are boundedby 2 and 3.8 respetively.N h C T 
 
� L< L>256 0.2500 99 0.62 2.00 3.62 -12.21 -12.571024 0.1250 134 1.63 2.00 3.66 -13.15 -13.664096 0.0625 134 3.65 2.00 3.69 -15.30 -15.5716384 0.0312 139 8.18 2.00 3.71 -18.43 -17.8765536 0.0156 139 18.16 2.00 3.71 -20.73 -19.89Table 3.1Results of integrating monomials times the Biot-Savart kernel, with seond-order singular ruleswith N regular grid points.N h C T 
 
� L< L>256 0.5000 256 2.44 2.00 3.64 -13.57 -14.641024 0.2500 396 5.09 2.01 3.68 -17.14 -19.544096 0.1250 537 9.72 2.00 3.70 -18.40 -20.7116384 0.0625 537 17.56 2.00 3.71 -20.62 -23.2965536 0.0312 556 36.72 2.00 3.71 -23.27 -25.75Table 3.2Results of integrating monomials times the Biot-Savart kernel, with fourth-order singular ruleswith N regular grid points.N h C T 
 
� L< L>256 0.5000 256 7.45 2.00 3.69 -13.58 -14.671024 0.2500 640 19.06 2.01 3.69 -18.48 -20.184096 0.1250 883 31.14 2.01 3.74 -20.40 -24.7416384 0.0625 1075 49.23 2.00 3.71 -21.53 -26.8465536 0.0312 1113 81.26 2.00 3.71 -26.02 -31.08Table 3.3Results of integrating monomials times the Biot-Savart kernel, with sixth-order singular ruleswith N regular grid points.Our seond sequene of tests used N = 128; 256; : : : ; 16384 pseudorandom uni-formly distributed points on B = [0; 1℄2. We repeated the previous tests with thesepoints replaing the grid points, and the results are reported in Tables 3.4 through3.6. We observe a reasonable onvergene rate at �rst, with L< eventually levellingo� to about 10�3, 10�5 and 10�7 for the 2nd, 4th and 6th order rules respetively.This is the O(�) error due to integrating the singularity over the unorreted ells bythe smooth ruleW . It appears in L< and not in L> beause L> involves higher-ordermonomials with larger Ck norms, so the O(hk) term dominates the O(�) term for thevalues of N used in these experiments.4. Singular moments.
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� L< L>128 0.3410 101 0.68 2.25 4.17 -11.10 -9.24256 0.2952 145 1.15 2.24 4.32 -10.26 -10.06512 0.1958 179 1.76 2.25 4.47 -9.26 -10.871024 0.1505 188 2.69 2.17 4.22 -10.08 -11.862048 0.1081 217 4.10 2.13 4.16 -10.37 -12.434096 0.0793 219 5.93 2.08 3.94 -10.94 -12.998192 0.0560 264 8.93 2.09 4.23 -11.64 -13.5916384 0.0426 273 13.17 2.06 3.97 -12.34 -14.83Table 3.4Results of integrating monomials times the Biot-Savart kernel, with seond-order singular ruleswith N uniformly distributed random points.N h C T 
 
� L< L>128 0.5136 128 1.65 2.15 3.96 -13.41 -10.84256 0.3269 256 3.13 2.12 4.14 -17.19 -12.43512 0.2799 407 5.11 2.41 4.61 -17.11 -14.231024 0.1748 535 7.34 2.50 4.65 -16.00 -17.052048 0.1451 696 10.93 2.56 4.80 -15.76 -18.684096 0.0883 752 14.53 2.78 5.11 -17.20 -20.348192 0.0755 1011 21.59 3.10 6.23 -16.34 -20.1616384 0.0498 957 29.01 3.25 6.50 -17.91 -22.72Table 3.5Results of integrating monomials times the Biot-Savart kernel, with fourth-order singular ruleswith N uniformly distributed random points.4.1. Overview. We now desribe the evaluation of the sm singular momentsZBi P�(x)�t(x)dx; j�j � k � 1; 1 � t � s:(4.1)We treat (4.1) as a speial ase of a general problem: Given f : B!Rn, smooth awayfrom a lower-dimensional singular set S, evaluate the n-vetor of integralsF = ZB f(x)dx(4.2)We ompute (4.2) by a multidimensional adaptive produt Gaussian quadrature method,with an error estimate based on Chebyshev di�erentiation. This is a nonstandard ap-proah to (4.2) in several ways, so we desribe it in detail and present numerialresults showing that it is more eÆient than at least one standard multidimensionaladaptive quadrature pakage.Our algorithm is organized along the following standard lines. We proeed step bystep to re�ne an approximation F̂ to F . At eah step, we have a subdivision of B intoretangular ells Bi, an error estimate Ei on eah Bi, and an approximation F̂ to Fformed by integrating over eah Bi with produt q-point Gauss-Legendre quadrature[6℄. We store this information in a heap [28℄, a data struture whih allows us to seletthe ell Bi with the largest error estimate at eah step. We re�ne F̂ by hoosing a ellBi with maximum error estimate, hoosing one of the oordinate axes, biseting Bialong that oordinate axis, and omputing the new integrals and error estimates. Wethen insert the new information into the heap and the next step an proeed. We stopre�ning when one of the following three situations ours: we run out of memory, weenounter roundo� error limitations, or we have a total error estimate E satisfyingE � �a + �rjjF̂ jj1



18 J. STRAINN h C T 
 
� L< L>128 0.5654 128 4.50 2.15 4.10 -14.65 -10.93256 0.5212 256 8.51 2.20 4.57 -17.80 -13.57512 0.3097 512 16.17 2.23 4.52 -19.84 -16.281024 0.2656 788 25.21 2.53 5.00 -21.02 -18.702048 0.1626 1085 36.05 3.01 5.58 -21.13 -22.774096 0.1363 1351 47.72 3.37 6.04 -20.91 -24.658192 0.0851 1843 68.95 4.30 8.22 -21.93 -27.1516384 0.0718 1848 81.79 5.18 10.10 -21.90 -28.67Table 3.6Results of integrating monomials times the Biot-Savart kernel, with sixth-order singular ruleswith N uniformly distributed random points.where �a and �r are user-spei�ed absolute and relative error toleranes.Our method employs the following nonstandard features. First, the use of produtGauss rules rather than nonprodut rules. Sine we are interested primarily in d = 2-or d = 3-dimensional problems, the number qd of points required by a produt Gaussrule of order 2q is quite ompetitive with standard fully symmetri rules. Anotheradvantage of Gauss rules is the arbitrary order of auray available: Using e.g.routine GRULE of [6℄, Gauss points and weights of order 2q are readily availablefor any q. Seond, the error estimate we give below requires little additional workand identi�es the diretion ontributing most to the error, the obvious andidate forbisetion. The usual tehnique for seleting a diretion to biset is based on fourthdi�erenes and is somewhat unjusti�ed.4.2. Error estimation. We begin by bounding the maximum (over 1 � i � n)error in produt q-point Gauss-Legendre quadrature of fi(x) over a ell B = [a; b℄;this will suggest a diretion along whih to subdivide. Although our estimate is reallya bound and not an estimate, it turns out to be suÆiently sharp in pratie. Theerror estimate in one dimension for a single funtion f reads [6℄E1q (f) := Z ba f(x)dx � qXi=1 wif(xi)= Cq(b� a)2q+1f (2q)(�)where � 2 (a; b), wi and xi are the weights and nodes for q-point Gauss-Legendrequadrature on [a; b℄, and the error onstant is given byCq := (q!)4(2q + 1)((2q)!)3 :In d > 1 dimensions, adding and subtrating givesEdq (f) := Z b1a1 : : : Z bdad f(x1; : : : ; xd)dx1 : : : dxd � qXi1=1w1i1 : : : qXid=1wdidf(x1i1 ; : : : ; xdid)= Z b1a1 Ed�1q [f(x1; :)℄dx1 + qXi2=1w2i2 : : : qXid=1wdidE1q [f(:; x2i2 ; : : : ; xdid)℄



QUADRATURE RULES FOR SINGULAR FUNCTIONS 19Here wji is the ith weight and xji the ith node for Gauss-Legendre quadrature on[aj ; bj ℄. Thus, by indution on d and the positivity of the weights wji ,jEdq [f ℄j � Cq jBj dXl=1(bl � al)2q jj�2ql f jjC0(B) =: Cq jBj dXl=1 Edlq :(4.3)where jBj = (b1 � a1) � � � (bd � ad) is the volume of B.This error bound displays the ontribution Edlq of eah dimension to the totalerror bound; thus we an hoose the dimension l where Edlq is maximum over l as thedimension aross whih to split a given ell B. This bound is highly pratial beauseonly pure derivatives �2ql f are involved; these require only values of f along a singleline and are thus muh less expensive to ompute than mixed derivatives.In order to approximate this bound, we will need estimates of the quantitiesEdlq . We approximate the C0 norm by a maximum over r randomly hosen pointsp(1); : : : ; p(r) distributed in a Latin square [17℄ in B, and alulate the approximationDdlq := (bl � al)2q max1�j�r maxal�xl�bl j�2ql f(p(j)1 ; : : : ; xl; : : : ; p(j)d )jby Chebyshev di�erentiation. Fix j and l and letg(s) = f(p(j)1 ; : : : ; l + hsl; : : : ; p(j)d );where l = (al + bl)=2 and hl = (bl � al)=2. Then�2qs g(s) = h2q�2ql f(p(j)1 ; : : : ; + hs; : : : ; p(j)d );so Edlq = 22q max1�j�r jj�2qs gjjC0We approximate the 2qth derivative of g by Chebyshev di�erentiation. Approximateg by a t-term Chebyshev seriesg(s) � 12g1 + tXk=2 gkTk�1(s);where the oeÆients gk are omputed by pth-order Chebyshev quadrature with p �t+ 2; gk = 2p pXl=1 g(tl)Tk�1(tl)= 2p pXl=1 g(os(�(l � 1=2)p )) os(�(k � 1=2)(l� 1=2)p ):(4.4)The jth derivative of g is approximated byg(j)(s) � 12g(j)1 + t�jXk=2 g(j)k Tk�1(s);(4.5)



20 J. STRAINwhere the oeÆients g(j)k are determined by bakward reurreneg(0)k = gk 1 � k � t;g(j)k�1 = g(j)k+1 + 2(k � 1)g(j�1)k t� j � k � 2q + 1� j;(4.6) g(j)t�j+1 = g(j)t�j+2 = 0:Note that the last two oeÆients, g(j)t�j�1 and g(j)t�j , an be expliitly evaluated interms of gt�1 and gt alone. Similar though more ompliated expressions exist for thelower oeÆients, but it is easier to evaluate them by reurrene (4.6) even if we onlywant the top two.Finally, the fat that jTk(s)j � 1 for jsj � 1 allows us to bound g(2q):jjg(2q)jjC0 � 12 jg(2q)1 j+ t�2qXk=2 jg(2q)k j:(4.7)Note that we need only ompute the oeÆients gk with 2q + 1 � k � t; lower-orderpolynomials drop out after taking 2q derivatives.For eÆieny of implementation, however, we do not employ reurrene (4.6) andformulas (4.4) diretly. Instead, we observe that in the �nal estimate (4.7) eah g(2q)k isa linear funtional of the p-vetor f with omponents fl = f(p(j)1 ; : : : ; +hsl; : : : ; p(j)d :1 � j � p). Thus there is a (t� 2q)� p matrix ekl suh thatg(2q)k = pXl=1 eklfl 1 � k � t� 2q:We simply preompute this matrix, whih depends only on p, t and q, and store it.Then eah error estimate Edlq requires only p funtion evaluations, (t � 2q)p multi-pliations and additions. At minimum, p = t = 2q + 2, so eah error estimate osts2(2q + 2) multipliations and 2q + 2 funtion evaluations. Thus the total error esti-mate on Bi requires rd(2q + 2) funtion evaluations. Sine the integral requires qdfuntion evaluations, the error estimate is not expensive if 2rd � qd�1. It also hasthe advantage that the points of evaluation for the integral and the error estimate areompletely di�erent (and random for the error), reduing the hane of missing ellswith large errors.4.3. Re�nements. The quadrature sheme outlined above is robust and exi-ble. We found, however, that its eÆieny and auray an be improved by severalre�nements disussed below.4.3.1. Getting started. In the sheme above, we start with a single ell B andsubdivide as neessary. But when f is known to be singular at some known point xs,we know that many subdivisions will be neessary. Any integrals and errors omputedfor a ell whih is later re�ned represent wasted e�ort. This waste an be reduedby beginning with several ells instead of one, in essene taking advantage of priorknowledge of the singularity loation to arry out the �rst few re�nements beforehand.A reasonable way to do this is to divide B into 2d subells with one orner of eahbeing xs, then onstrut a quadtree with several levels by reursively biseting eahell touhing xs. Suh a subdivision of B an be extremely helpful in reduing thetime required to integrate f .



QUADRATURE RULES FOR SINGULAR FUNCTIONS 214.3.2. Double-loop integration. A related feature of our method is the inde-pendene of the error estimator from the integration rule. An extreme way to usethis independene is to ompute only error estimates as we subdivide, omputing theintegrals only when the �nal ell struture has been ompleted. This saves all thewasted e�ort of integrating over ells later to be re�ned, and this an be very sub-stantial when n is very large. Unfortunately, the use of both absolute and relativeerror riteria E � �a + �rjjF jjmakes this impratial sine F is involved in the stopping ondition. We ould use theinitial value of F omputed over the input ells, but this is likely to be unneessarilyexpensive sine the value of F is likely to inrease substantially as the singularity isresolved. The way out of this dilemma is a double-loop proedure in whih we startout with a stopping riterion E � �a + �rGwith G set to, say, 100jjF jj. When this test is passed, we integrate over the resultingell struture and set G to the jjF jj thus obtained. Then we repeat the inner loop withthe new stopping riterion. In this way, we an save a large number of unneessaryintegrations over ells.Another situation where the double loop approah is useful is when roundo�error may be important. We maintain an error estimate for eah ell separately,as well as a global estimate formed by summing them up. Thus eah subdivisionrequires subtration of the old error estimate for the subdivided ell and addition ofthe two new estimates. When the initial error estimate is orders of magnitude largerthan the �nal result, serious roundo� problems our. A double loop is thereforeemployed; after termination of the inner loop over ells, we re-sum the integral anderror estimates. If the stopping riterion is violated after resumming, we restartimmediately from where we left o�.4.3.3. Cautious error estimation. A re�nement whih is important for au-ray and ours in most e�etive quadrature routines is the idea of autious two-levelerror estimation (see e.g. [7℄). Here we use, in addition to the error estimate Ei om-puted for the urrent ell, information about the parent ell. The errors and integralsomputed for the parent ell are used separately.Caution means that we do not believe an error estimate whih is muh smallerthan the parental estimate; thus we replae the new error estimate Ei by max(Ei; �Eold)where � is a user-spei�ed degree of aution related to the order of auray of therule. Typially � = 10�2 is a reasonable hoie. The idea of nonzero � is to preventold information from being ignored in later deisions.The use of two-level error estimates, on the other hand, means that we onsideralso the hange in the integrals produed by the subdivision. Thus we replae Eiby max(Ei; �dj�F j) where �F is the maximum hange in any integral due to thesubdivision. Note that two-level error estimators are inompatible with the doubleloop proedure proposed above, and the two are therefore o�ered as mutually exlusiveoptions in our implementation.4.3.4. Shared singularities. In the speial situation we onsider here, we areintegrating a long vetor of n = sm funtions simultaneously, where eah funtion hasthe same singularity struture. The repeated evaluations of all the funtions involved



22 J. STRAINin the error estimates is wasteful, so we have implemented a restart faility. We�rst integrate the singularity �(x) alone, then use the ell struture onstruted asa starting point for the integration of the polynomials P�(x)�(x) as well. Numerialexperiments with k = 2; 4; 6 and 8 and q = 2; 3; 4; 6; 8 and 10 and � the Biot-Savartkernel (so d = s = 2) shows that this an save a fator of �ve to ten in CPU time.However, they also show that further improvements in the eÆieny of obtaining theinitial ell struture annot improve the speed of the ode muh; indeed, even if theinitial ell struture were known a priori, we would only save about one-third of theCPU time. Further speedups an ome only from reduing the number of pointsemployed or evaluating the funtions faster. Improvement in either area is ertainlypossible.4.4. Numerial results. We implemented the multidimensional adaptive prod-ut Gaussian sheme above in a portable ANSI Fortran ode, with the dimension d asa parameter. Although our aim was primarily robustness and reliability, the resultingode is surprisingly eÆient.We tested the ode on three problems of various degrees and types of diÆulty,following the probabilisti tehnique of [16℄. In eah ase, we integrated a family ofintegrands with randomly plaed or randomly oriented singularities and measured theaverage error and suess rate. We used three families of integrands. First, a smoothbut osillatory family of osines:f1(x) = (os(j(x1 � xr1)) os(j(x2 � xr2)) � � � os(j(xd � xrd)) : j = 1; 2; : : : ; 10)Seond, skewed exponentials of inreasing steepness with disontinuities at angles tothe oordinate axes:f2(x) = (exp(�jjjAx� xrjj1) : j = 1; 2; : : : ; 10)where A is a random matrix with entries hosen from a uniform distribution on [0,1℄and jjxjj1 =Pdi=1 jxij is the Manhattan norm. Finally, m = 36 Legendre polynomialson [0; 1℄2 times the 2-dimensional Biot-Savart kernel as in moment alulations:f3(x) = P�(x)�(x � xr)with j�j � 7 and �(x) = x=jjxjjd. Here xr is hosen from a uniform distribution on[0; 1℄d. In all ases the domain of integration was [0; 1℄d and the dimension was d = 2.We ran 100 samples of eah family. The results are shown in Tables 4.1 through4.3 below. For these tables, we used � = �d = 10�2, r = 2, t = p = 2q + 2 and� := �a = �r = 10�1; 10�2; : : : ; 10�7. We report the number of funtion evaluationsNF , the CPU time T and the error E produed by our ode. We found q = 10, q = 3and q = 4 to be the most eÆient rule sizes for f1, f2 and f3 respetively. Figure 4.1shows the tree-strutured subdivisions onstruted with �a = 10�3; 10�5 and 10�7 forf2 and f3. It is lear that the ode is re�ning in the right plaes.For omparison, Tables 4.4 through 4.6 show the orresponding results for themultidimensional adaptive fully symmetri quadrature routine DCUHRE presentedin [2℄. The following onlusions an be drawn from this omparison.First, in the integration of the Biot-Savart kernel times polynomials, DCUHREahieved most eÆient results with the 13th order rule, beause the kernel is smoothaway from the singularity. It required 48 CPU se. with � = 10�7. The errors werevery reliably less than the estimate, and in fat very lose to the estimate. Gaussian



QUADRATURE RULES FOR SINGULAR FUNCTIONS 23quadrature, on the other hand, was most eÆient with a 4-point 8th-order rule when� = 10�7. It required 11 CPU se. with � = 10�7, about four times faster thanDCUHRE. The errors from our Chebyshev error estimator were less reliable in thesense that they were sometimes muh less than the estimate and sometimes slightlymore.On osines, high-order rules were the most e�etive. For example, 20th orderGaussian quadrature required 0.04 CPU se. to ahieve preision 10�7. DCUHRErequired 0.17 CPU se. with the 13th order rule.For skew exponentials, whih are C0 but are not C1 along the randomly orientedhyperplanes determined by A and xr , the 9th order rule of DCUHRE was moreeÆient than 13th or 7th. This is a little surprising, beause the 7th order rule isreommended by its authors for problems |like this one| requiring great adaptivity.The 9th order rule required 72 CPU se. with � = 10�7 and ahieved error 10�7reliably. Gaussian quadrature, on the other hand, got best results with a 6th-orderrule, requiring 73 CPU se. with � = 10�7.

Fig. 4.1. Tree struture for adaptive Gaussian quadrature.



24 J. STRAIN�a = �r NF T E0.10E+00 188 0.03 0.63E-110.10E-01 188 0.03 0.63E-110.10E-02 188 0.04 0.63E-110.10E-03 188 0.03 0.63E-110.10E-04 188 0.04 0.63E-110.10E-05 188 0.03 0.63E-110.10E-06 188 0.03 0.63E-11Table 4.1Twentieth-order Gaussian quadrature on osines.�a = �r NF T E0.10E+00 221 0.03 0.65E+000.10E-01 1115 0.13 0.97E-020.10E-02 4788 0.55 0.65E-030.10E-03 17736 2.01 0.29E-040.10E-04 59655 6.71 0.24E-050.10E-05 201884 22.62 0.69E-060.10E-06 651924 72.97 0.86E-07Table 4.2Sixth-order Gaussian quadrature on skewed exponentials.�a = �r NF T E0.10E+00 321 0.28 0.12E+010.10E-01 771 0.67 0.28E-010.10E-02 1536 1.33 0.11E-020.10E-03 2793 2.43 0.27E-030.10E-04 4649 4.04 0.66E-050.10E-05 7638 6.65 0.21E-050.10E-06 12651 11.01 0.33E-06Table 4.3Eighth-order Gaussian quadrature on the Biot-Savart kernel times polynomials.�a = �r NF T E0.10E+00 195 0.04 0.11E-030.10E-01 195 0.04 0.11E-030.10E-02 195 0.04 0.11E-030.10E-03 286 0.05 0.43E-040.10E-04 442 0.08 0.50E-050.10E-05 793 0.14 0.65E-060.10E-06 975 0.17 0.45E-07Table 4.4DCUHRE on osines.�a = �r NF T E0.10E+00 178 0.02 0.77E-010.10E-01 1069 0.12 0.90E-020.10E-02 4158 0.44 0.99E-030.10E-03 15886 1.65 0.10E-030.10E-04 58733 6.10 0.10E-040.10E-05 202989 21.12 0.10E-050.10E-06 685872 71.72 0.10E-06Table 4.5DCUHRE on skewed exponentials.
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�a = �r NF T E0.10E+00 2613 2.05 0.89E-010.10E-01 5473 4.30 0.93E-020.10E-02 10270 8.06 0.93E-030.10E-03 17147 13.50 0.97E-040.10E-04 26702 21.03 0.97E-050.10E-05 40742 32.12 0.98E-060.10E-06 61308 48.37 0.98E-07Table 4.6DCUHRE on the Biot-Savart kernel times polynomials.



26 J. STRAIN5. Re�nements and Generalizations. The above methods for onstrutingsmooth and singular quadrature rules an be re�ned and generalized in several ways.The smooth rule an be made adaptive to redue 
, and the order an be loallyvaried to math the smoothness of the integrand. Chebyshev polynomials an replaeLegendre polynomials, allowing the use of non-equidistant FFT tehniques to speedup the least 2-norm alulations. For that matter, any other set of basis funtions anreplae Legendre polynomials, yielding rules whih are exat for that lass of basisfuntions.Both singular and smooth rules an be derived for approximating linear funtion-als other than integration over B. An important example, interpolation, is disussedin detail below. This leads to a di�erent approah to evaluating integrals of singularfuntions; transfer the integrand values to nie points by interpolation, then use nierules on the nie points. This eliminates the neessity of omputing singular momentsfor every orreted point.Both rules an also be used to integrate over more general domains than retan-gles, as disussed below. A partiularly exiting prospet is the onstrution of rulesfor integrating singular funtions over urves and surfaes, for the boundary integralsolution of partial di�erential equations. This is of ourse another speial ase of theapproximation of other linear funtionals mentioned in the previous paragraph.We ould equally well onstrutW ji to integrate exatly the kd monomials x�11 � � �x�ddwith produt degree max�l � k � 1, rather than integrating the m(k; d) = O(kd=d!)monomials with standard degree �1+: : :+�d � k�1. This hoie is a nonstandard one(see [6℄), and would have several advantages and disadvantages. The �rst, and mostimportant, is the improved auray of suh a rule (see [6℄). Rules of produt order khave order k in the standard sense, as well, but they tend to have onsiderably smallererrors than most rules of standard order k. They use more points than the minimumneessary to ahieve standard order k by a fator of d!, but this is not overwhelminglyexpensive in small dimensions like d = 2 or d = 3. Another reason is that we useprodut Gaussian quadrature rules to evaluate the moments (see x4), so produt orderis more onvenient. And �nally, it is easier to onstrut a general multidimensionalroutine in whih the dimension d is an input parameter when rules of produt orderk are onstruted, beause it is easier to map a retangle than a simplex onto aninterval. Suh a rule is more eÆient than standard rules in some ways, beause weare evaluating all neessary Legendre polynomials P�l(xl) with 0 � �l � k� 1, so wemight as well multiply them together to get the remaining terms. Our experimentalimplementation, however, revealed that produt rules produe slightly larger errorsat greater expense, due to inreased ell sizes. Hene our �nal ode used rules whihintegrate exatly monomials of standard degree � k � 1 exlusively.Another re�nement is as follows. The error analysis suggests that it might beomputationally useful to have two di�erent orders of auray, for the smooth ruleand the singular rule. For example, we might onstrut a 16th-order smooth rule butorret it loally only to 4th order. We have implemented this feature in our urrentode but our experiene is not yet suÆient to indiate its usefulness.5.1. Sattered data interpolation. A ommon problem of omputationalphysis is to onstrut a globally de�ned \nie" funtion whih takes given valuesu(xj) at given points xj . The tehniques developed above generalize immediately tosolve this problem.The funtion we onstrut is a polynomial p(x) on eah ell Bi of the tree stru-ture we onstruted for the smooth rule. A polynomial p of degree � k � 1 an be



QUADRATURE RULES FOR SINGULAR FUNCTIONS 27represented as a Legendre seriesp(x) = Xj�j�k�1 p̂(�)P�(x)where P� is a shifted and saled Legendre polynomial on Bi = [a; b℄ and p̂(�) arethe Legendre oeÆients of p. Eah p̂(�) is a linear funtional of p, hene an beapproximated by p̂(�) = Xxj2Bi wj(�)p(xj )where wj are exat for p = P�, j�j � k � 1. Thus w(�) = (wj(�) : xj 2 Bi) an befound as e.g. the least 2-norm solution ofÆ�� = Xxj2Bi wj(�)P�(xj)for j�j � k�1 and j�j � k�1. Them by p or p+1 matrix (P�(xj)) whih appears needbe subjeted to the singular value deomposition only one, and then eah � requiresonly two matrix-vetor multiplies and a saling by the singular values. Thus giventhe m by p or p + 1 matrix (wj(�)), the Legendre oeÆients of a nie polynomialinterpolating values pj at points xj an be omputed by matrix multipliation:p̂(�) = Xxj2Bi wj(�)pj :Then the Legendre series provides an interpolant to the sattered data pj .This loal interpolant on Bi is not of ourse ontinuous between ells. However, itis likely to be reasonably smooth sine wj solves a least 2-norm problem. It will haveorder of auray O(hk) where Bi has sides of length � h and pj are values of a Ckfuntion on B. An expansion in other basis funtions on eah Bi an be onstrutedin the same way, as an the derivative of sattered data values.5.2. General B. The tehniques developed in x2 and x3 extend to integrate overurves and surfaes in R2 and R3. Suppose we want to alulateZ� f(x)dxwhere f is singular at some point xs whih may be in or near the urve or surfae�. We enlose � in a box B and onstrut the usual tree struture ontaining the Ngiven points xj , whih may be either in or outside �. Now we onstrut, e.g. for thesmooth rule, weights W ij satisfyingXxj2BiW ijP�(xj) = Z�\Bi P�(x)dx(5.1)on eah ell Bi. The global weights de�ned to be Wj = W ij if xj 2 Bi an beomputed by the singular value deomposition if enough points are in Bi and willintegrate smooth funtions aurately over �. The singular rule is produed from thesmooth rule in the usual way.



28 J. STRAINThere are two new ompliations in this approah when � is not a retangle.First, we need the moments Z�\Bi P�(x)dxof polynomials over � \ Bi. If � is a pieewise linear manifold these moments areexatly omputable. In general, however, and ertainly when a singular rule is desired,some form of adaptive numerial integration over � will be needed. For general �this is a diÆult problem; we expet approximation by pieewise polynomial � andnumerial integration as in the �nite element method will work, but other tehniquesmay be faster. Note that the Gaussian integration ode we have developed in x4an easily be extended to integrate over polyhedra rather than retangles, beauseGaussian rules an readily be mapped to polyhedra with 2d verties in d dimensions.Polyhedra an be subdivided into polyhedra with 2d verties, with only the boundaryells being non-retangular.Seond, the equations (5.1) are more likely to be rank-de�ient, in whih aseno solution W ij will exist. If � is a plane, for example, then polynomials in variablesperpendiular to the plane are superuous and we annot integrate them exatlywith any W . The singular value deomposition provides a natural treatment of thisdiÆulty; simply ignore all equations whih annot be satis�ed. They will not a�etthe auray of the rule W , beause W only integrates over � in any ase.The auray of the rule requires more mahinery to analyze. The additionalingredient is extension theorems; we need to extend funtions on � to smooth funtionson Bi without inreasing the size of derivatives. That this an be done is proved ine.g. [8℄. It follows that a rule onstruted in this way will enjoy the same onvergeneproperties as in the ase when � is a retangle.6. Aknowledgements . The author would like to thank Prof. V. Rokhlinfor helpful onversations. This researh was supported by a NSF Young InvestigatorAward, by Air Fore OÆe of Sienti� Researh Grant 92-0165 and by the AppliedMathematial Sienes Subprogram of the OÆe of Energy Researh, U.S. Departmentof Energy under Contrat DE-AC03-76SF00098.REFERENCES[1℄ C. R. Anderson, A method of loal orretions for omputing the veloity �eld due to aolletion of vortex blobs, J. Comput. Phys., 62 (1986), pp. 111{127.[2℄ J. Berntsen, T. O. Espelid, and A. Genz, An adaptive algorithm for the approximate al-ulation of multiple integrals, ACM Trans. Math. Softw., 17 (1991), pp. 437{451.[3℄ A. Brandt and A. A. Lubreht, Multilevel matrix multipliation and fast solution of integralequations, J. Comput. Phys., 90 (1990), p. 348.[4℄ J. Carrier, L. Greengard, and V. Rokhlin, A fast adaptive multipole method for partilesimulations, SIAM J. Si. Stat. Comput., 9 (1988), pp. 669{686.[5℄ A. J. Chorin, Numerial study of slightly visous ow, J. Fluid Meh., 57 (1973), pp. 785{796.[6℄ P. J. Davis and P. Rabinowitz, Methods of Numerial Integration, Computer siene andapplied mathematis, Aademi Press, seond ed., 1984.[7℄ T. O. Espelid and A. Genz, eds., Numerial integration : reent developments, software, andappliations, Kluwer Aademi, Dordreht; Boston, 1992.[8℄ D. Gilbarg and N. S. Trudinger, Ellipti partial di�erential equations of seond order,Springer-Verlag, 1983.[9℄ G. H. Golub and C. F. van Loan, Matrix Computations, Johns Hopkins University Press,Baltimore, seond ed., 1989.[10℄ L. Greengard and J. Strain, A fast algorithm for the evaluation of heat potentials, Comm.Pure Appl. Math., XLIII (1990), pp. 949{963.
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