
LOCALLY-CORRECTED MULTIDIMENSIONALQUADRATURE RULES FOR SINGULAR FUNCTIONS �JOHN STRAIN yAbstra
t. A

urate numeri
al integration of singular fun
tions usually requires either adaptivityor produ
t integration. Both interfere with fast summation te
hniques and thus hamper large-s
ale
omputations.This paper presents a method for 
omputing highly a

urate quadrature formulas for singularfun
tions whi
h 
ombine well with fast summation methods. Given the singularity and the N nodes,we �rst 
onstru
t weights whi
h integrate smooth fun
tions with order-k a

ura
y. Then we lo
ally
orre
t a small number of weights near the singularity, to a
hieve order-k a

ura
y on singularfun
tions as well. The method is highly eÆ
ient and runs in O(Nk2d+N log2N) time and O(k2d+N)spa
e. We derive pre
ise error bounds and time estimates and 
on�rm them with numeri
al resultswhi
h demonstrate the a

ura
y and eÆ
ien
y of the method in large-s
ale 
omputations. As part ofour implementation, we also 
onstru
t a new adaptive multidimensional produ
t Gauss quadratureroutine with an e�e
tive error estimate, and 
ompare it with a standard pa
kage.The approa
h generalizes to interpolate and di�erentiate s
attered data and to integrate singularfun
tions over 
urves and surfa
es in several dimensions.Key words. numeri
al integration, singular integrals, fast algorithms, quadtrees, singular valuede
omposition, vortex methods, potential theory, interpolationAMS subje
t 
lassi�
ations. 65D32, 65D05, 65D30, 65R201. Introdu
tion. Many numeri
al problems require the evaluation of integralsZB f(x)dx;(1.1)where B is a D-dimensional subset of Rd and f is an integrable fun
tion on B. Manymethods have been devised for the numeri
al 
al
ulation of su
h integrals, ea
h usefulfor 
ertain values of D and d and 
ertain 
lasses of B and f . In the 
ase d = D = 1an extensive literature is summarized in [6℄, while in d > 1 dimensions mu
h re
entwork is presented in [7, 15℄.This paper fo
uses on the evaluation of (1.1) in the following 
ommon situation.(a) B is a re
tangle [a; b℄ := [a1; b1℄� : : :� [ad; bd℄.(b) We are given values f(xj) of f at N points xj not of our 
hoosing.(
) We are given an integrable but singular fun
tion � : B!Rs, whi
h is Ck awayfrom a lower-dimensional subset S of B, and f has the formf(x) = '(x) � �(x) +  (x);(1.2)where ' : B!Rs and  : B!R are unknown Ck fun
tions on B.We 
onstru
t two rules for numeri
al integration. In x2, we 
onstru
t a rule Wwith weights Wj , 1 � j � N , whi
h integrates smooth fun
tions a

urately:NXj=1Wjg(xj) = ZB g(x)dx+EN ;(1.3)� This resear
h was supported by a NSF Young Investigator Award, by Air For
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ien-ti�
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ien
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2 J. STRAINwhere EN de
reases rapidly as N!1 if g is smooth enough and the points xj happento be distributed appropriately. For example, EN = O(N�k=d) if g is Ck and thepoints are uniformly distributed on B, where k is the order of a

ura
y of the rule.The 
omputation of W requires O(N(k2d + log2N)) time and O(k2d + N) spa
e.Pre
ise error bounds are proven in x2.3 and numeri
al examples are given in x2.4.In x3, we 
onstru
t a rule w with weights wj whi
h integrates singular fun
tionsof the form (1.2) a

urately. The singular rule w has the \lo
al 
orre
tion" propertythat wj =Wj ex
ept for a small number of j's, those for whi
h xj is near the singularset. This property is important in the appli
ation of fast algorithms to the eÆ
ientevaluation of families of singular integrals. The 
omputation of those wj 's di�eringfrom Wj requires O(k3d) time. Error bounds are proved in x3.2 and numeri
al resultsare given in x3.3.These general rules are 
onstru
ted with 
ertain spe
i�
 
lasses of appli
ations inmind, in
luding 
omputational 
uid dynami
s, potential theory and 
rystal growth.These appli
ations require the appli
ation of integral operatorsu(x) = ZBK(x; x0)!(x0)dx0(1.4)where K has known singular behavior on a lower-dimensional set but ! is (at leastpie
ewise) smooth. Typi
ally K is singular at a single point, we know !(sj) at Npoints sj , and we would like to approximateM values u(ti) at points ti 2 Rd. We haveno 
ontrol over the lo
ation of the sj and would like to avoid the arti�
ial vis
osityprodu
ed by interpolating, so we take the sj 's as given.A 
lassi
al approa
h to this problem is produ
t integration [6℄. Here we approxi-mate u(ti) by a rule of the form ui = NXj=1Kij!(sj)(1.5)with Kij 
hosen to integrate some 
lass of ! exa
tly for ea
h i. This is aM�N matrixmultipli
ation, so it 
osts O(MN) work, whi
h is very expensive when M and N arelarge. This has been a stumbling blo
k in 
omputational 
uid dynami
s [5℄, potentialtheory for the Lapla
e equation [14℄, and 
rystal growth [23℄. Produ
t integrationalso tends to require diÆ
ult, expensive, and sometimes impossible algebrai
 manip-ulations and evaluation of integrals in 
losed form. A major obje
tive of this paper isto eliminate the 
al
ulations required by produ
t integration, and repla
e them witha single general-purpose method whi
h produ
es lo
ally 
orre
ted quadrature rules ofarbitrary order for any given singularity.More re
ently, fast summation methods have been developed for several kernelsK. These methods evaluate the dis
rete sumui = NXj=1K(ti; sj)Wj!(sj) 1 � i �M(1.6)to a

ura
y �, in O((N+M) log �) work. See [1, 3, 4, 12, 25, 29℄ for vortex methods andpotential theory and [11, 24℄ for Gaussian kernels. However, these methods 
annotbe 
ombined with produ
t integration, where the weights depend on the point ofevaluation ti.Another 
lass of re
ently-developed fast methods is aimed more dire
tly at the
ontinuous problem (1.4); see [18, 20, 25℄ for vortex methods and potential theory



QUADRATURE RULES FOR SINGULAR FUNCTIONS 3and [10, 26℄ for heat potentials. These methods are related to produ
t integrationin some 
ases, usually have a �xed and not too high order of a

ura
y, and tend tobe slower than fast methods for dis
rete sums (1.6). Like produ
t integration, theysometimes require diÆ
ult and expensive algebrai
 manipulations and evaluation ofintegrals whi
h 
an be 
arried out only in spe
ial 
ases.Singular quadrature rules of the type developed in this paper allow the appli
ationof fast algorithms for dis
rete sums (1.6) to the 
ontinuous problem (1.4), be
ausewj are independent of the point of evaluation ti ex
ept for a few points near thesingularity. Thus fast methods 
an be applied to the sum (1.6) with weights Wj , andthen ui 
an be 
orre
ted lo
ally to get an a

urate and inexpensive approximationof u(ti). This observation was apparently �rst made in [19℄, where one-dimensionalsingular endpoint-
orre
ted trapezoidal rules were developed. It has been applied toone-dimensional integral equations in [22℄.Our method requires knowledge of the singularity �(x) only in the weak sensethat we need modi�ed moments ZB\C P�(x)�(x)dx(1.7)over re
tangles C, with P� a suitable family of multidimensional orthogonal polynomi-als. Obtaining these moments is itself a highly nontrivial task in this generality, withmany possibilities depending on the singularity and on B. We have implemented, aspart of our method, a general multidimensional adaptive Gaussian quadrature 
ode,with a novel error estimator, whi
h may be of some independent interest and is there-fore des
ribed in x4. It is suÆ
ient for vortex methods and for volume potentials inpotential theory, and hen
e for the solution of variable-
oeÆ
ient ellipti
 partial dif-ferential equations, as in [27℄. Numeri
al results in x4 indi
ate that it is 
ompetitivewith standard 
odes in dimensions d = 2 and d = 3.The te
hniques presented in this paper generalize immediately to solve severalother problems of 
onsiderable interest. We 
an approximate and di�erentiate fun
-tions known at arbitrary points, a te
hnique whi
h is useful in many 
omputationalproblems. We 
an integrate singular fun
tions over more general domains, su
h as
urves and surfa
es. Several su
h generalizations, along with several re�nements ofthe basi
 method, are dis
ussed in x5.2. Smooth rules.2.1. Overview of the 
onstru
tion. We 
onstru
t rules with N given pointsxj for integrating smooth fun
tions over a d-dimensional re
tangle B = [a; b℄ :=[a1; b1℄ � � � � � [ad; bd℄. The stru
ture of these rules will make a good base for the
onstru
tion of singular rules with lo
ally 
orre
ted weights.Let k � 1 be the desired order of a

ura
y of the rule, assume N � m :=m(k; d) := (k + d � 1)(k + d � 2) � � � (k + 1)k=d!, and 
hoose an integer L with p :=bN=2L
 � m. Using a data stru
ture developed below, we divide B into M = 2Lre
tangular sub
ells Bi with disjoint interiors su
h that B is their union and ea
h Bi
ontains either p or p + 1 points xj . Then on ea
h Bi, we 
onstru
t lo
al weightsW ji for xj 2 Bi whi
h integrate the m monomials of degree � k � 1 exa
tly over Bi.(A monomial of degree k in d dimensions has the form x�11 x�22 � � �x�dd , where ea
h �lis a nonnegative integer and j�j := �1 + �2 + : : : + �d = k. There are pre
isely mmonomials of degree � k � 1.) Be
ause of the ill-
onditioning of the power basis, we
onstru
t these weights by solving the following system of m linear equations in at



4 J. STRAINleast p unknowns: Xxj2Bi P�(xj)W ij = ZBi P�(x)dx j�j � k � 1:(2.1)Here P�(x) = P�1(x1) � � �P�d(xd)is a produ
t of one-dimensional Legendre polynomials, with the lth fa
tor s
aled andshifted to live on the interval [al; bl℄. Sin
e p � m, this system of m equations inat least p unknowns generi
ally has solutions. We 
ompute the solution W ij of leastEu
lidean norm, using the singular value de
omposition [9℄. x2.3 dis
usses what todo when no solution exists. The global weights of the rule W are then de�ned to beWj =W ij for xj 2 Bi.2.2. Details of the 
onstru
tion. We now 
onstru
t a data stru
ture withtwo useful features; �rst, it partitions B into re
tangular 
ells over whi
h we 
aneasily integrate polynomials and se
ond, there are neither too many nor too few ofthe points xj in ea
h 
ell. Too many points makes the singular value de
ompositiontoo expensive and produ
e a less a

urate rule be
ause the 
ell size in
reases, whiletoo few points makes (2.1) overdetermined so generi
ally no solution exists. Whenthe number of points p is very 
lose to the minimum required m, so (2.1) is barelysolvable, the solution tends to have large 1-norm, making it unsuitable for numeri
alintegration. This is similar to the well-known Runge phenomenon en
ountered ininterpolation (where p = m) at equidistant points. We found that p of order 2m gaveex
ellent results.Su
h a \tree stru
ture" 
an be 
onstru
ted by re
ursive subdivision. Let B = B1be the level-0 root of the tree. Divide B1 in half by a plane perpendi
ular to say thel'th 
oordinate axis, with the dividing plane lo
ated so that ea
h half of B1 
ontainseither bN=2
 or bN=2
+1 points. This gives the level-1 
ells B2 and B3. Repeat thispro
edure on B2 and B3, with the splitting dimension l 
hosen independently for ea
h
ell, to get B4 through B7, ea
h 
ontaining bN=4
 or bN=4
+1 points xj . Repeatingthis pro
edure L times gives M = 2L 
ells Bi on the �nest level L, numbered fromi = M to i = 2M � 1, ea
h 
ontaining p = bN=M
 or p + 1 points xj . The unionof all the 
ells on any given level is B. The tree stru
ture is stored by listing theboundaries of ea
h 
ell Bi = [ai; bi℄ from i = 1 to i = 2M � 1, a total of 2d � 2Mnumbers, and indexing the points into a list so that the points xj 2 Bi are given byj = j(s) for s = b(i); : : : ; e(i) and three integer fun
tions j, b and e. This 
an be donein O(N logN), but the simplest method requires sorting the points in ea
h 
ell beforeea
h subdivision, giving a total 
ost O(N log2N) for the tree 
onstru
tion when anO(N logN) sorting method su
h as heapsort [17℄ is used. Figure 2.1 shows an exampleof this 
onstru
tion. We note that hierar
hi
al data stru
tures with similar properties{ though not this parti
ular one { have been extensively dis
ussed in [21℄.The dimension l a
ross whi
h to split a given 
ell 
an be sele
ted in several ways.We 
an split the longest dimension, so that the length-dependent fa
tor in the errorbound of x2.3 is redu
ed as qui
kly as possible; 
hoose l withbl � al � bj � aj for 1 � j � d:Alternatively, we 
an 
hoose l to minimize the se
ond moment of the points in the 
ell.If fun
tion values at the nodes are available when the rule is 
onstru
ted, other 
hoi
esintended to minimize integration error for that spe
i�
 fun
tion 
an be devised.



QUADRATURE RULES FOR SINGULAR FUNCTIONS 5

Fig. 2.1. Levels 1 through 6 in the tree stru
ture with N = 1137 pseudorandom uniformlydistributed points on [0; 1℄2.For future referen
e, we note that the tree stru
ture permits eÆ
ient O(L) lookupof the level-L 
ell 
ontaining any point x 2 B. We simply begin at the root and dis
ardall 
hildren not 
ontaining x; the pro
ess is then repeated re
ursively on the remaining
hild until we rea
h the lowest level. More generally, we 
an �nd all 
ells interse
tinga given re
tangle R in time proportional to L and to their number. This will be usefulin the 
onstru
tion of singular rules.2.3. Error bounds. The global weightsWj now integrate all x� with j�j � k�1exa
tly over all level-L 
ells Bi forM � i � 2M �1. We now show that this propertyalone results in order-k a

ura
y, with a 
ondition number appearing in the errorbound.Theorem 2.1. Let B = [2M�1i=M Bi where Bi = [ai; bi℄. Suppose that W integratesx� exa
tly over ea
h Bi for j�j � k � 1. Then for any Ck fun
tion g on B, the errorE = ZB g(x)dx� NXj=1Wjg(xj)satis�es jEj � 
jBj(h=2)k Xj�j=k 1�! jj��gjjC0(B)(2.2)where h = maxi;l bil � ail is the longest 
ell edge,
 = 1 + 1jBj NXj=1 jWj j(2.3)



6 J. STRAINis the 
ondition number of the rule W , and jBj is the d-dimensional volume of B.Proof. The error in integrating a smooth fun
tion g over B is given by a sum over
ells E := ZB g � NXj=1Wjg(xj) = 2M�1Xi=M Ei;(2.4)where Ei := ZBi g � Xxj2BiW ij g(xj):(2.5)Let G be the polynomial of degree � k � 1 whi
h best approximates g on Bi in themaximum norm. Sin
e W is exa
t for G on Bi, we haveEi = ZBi(g �G)dx + Xxj2BiW ij (G(xj )� g(xj))(2.6)and thus jEij � jjg �GjjL1(Bi) + Xxj2Bi jW ij j jG(xj)� g(xj)j� 
ijBij jjg �GjjC0(Bi)where the lo
al 
ondition number 
i is de�ned by
i = 1 + 1jBij Xxj2Bi jW ij j;(2.7)jBij is the volume of Bi, and the C0 norm is de�ned byjj'jjC0(B) := maxx2B j'(x)j(2.8)for 
ontinuous fun
tions ' on a set B.The error bound on ea
h 
ell is thus separated into a fa
tor 
i independent of theintegrand, a fa
tor of jBij, and a fa
tor whi
h depends only on approximation of theintegrand on the 
ell. The �rst fa
tor 
i 
annot be bounded a priori unless all theweights are nonnegative, in whi
h 
ase 
i = 2. However, 
i 
an easily be 
omputeda posteriori and thus serves as an extremely useful diagnosti
 for the quality of therule.The volume fa
tor in the error bound depends only on the distribution of pointsand the tree stru
ture 
onstru
ted, and will add up to the volume of the domain B.Finally, we bound the error in approximating g. Assume g 2 Ck(B); then bymultidimensional Taylor expansion [8℄, we haveg(x+ y) = Xj�j�k�1 ��g(x)y��! +Rk(x; y)(2.9)where �! = �1!�2! � � ��d!, ��g = ��11 : : : ��dd g, y� = y�11 : : : y�dd , and the remainder isbounded by Rk(x; y) � Xj�j=k (hi=2)��! max0�t�1 j��g(x+ ty)j(2.10)



QUADRATURE RULES FOR SINGULAR FUNCTIONS 7on the 
ell Bi = [ai; bi℄ with side length hi = bi�ai. Sin
e G is the best approximationto g on Bi by a polynomial of degree � k � 1, we havejjg �GjjC0(Bi) � Xj�j=k (hi=2)��! jj��gjjC0(Bi)(2.11)The global error bound follows immediately:jEj � MXi=1 
ijBij jjg �GjjC0(Bi)� 
jBj(h=2)k Xj�j=k 1�! jj��gjjC0(B):Note that 
 plays the role of a 
ondition number for W , mediating betweenthe intrinsi
 diÆ
ulty of integrating g (as measured by the derivatives of g) and thea

ura
y of the �nal result. There are several ways to redu
e ea
h 
i and thusobtain a better error bound. Usually taking more points per 
ell redu
es 
i, sin
ethe additional degrees of freedom are not needed to satisfy (2.1) and 
an be appliedto redu
ing the 2-norm of W ij . However, this in
reases the 
ost of 
omputing W
onsiderably and in
reases the 
ell size h, so taking larger p is not 
ost-e�e
tive ifapplied globally.It 
an be applied adaptively, however, by going up to a di�erent level of the treestru
ture when ne
essary. To implement this, we spe
ify a toleran
e 
m. When 
i �
m, we merge Bi with its sibling in the tree stru
ture, obtaining a 
ell BI 
ontainingtwi
e as many points xj . We then re
ompute all weights Wj for whi
h xj 2 BI ,usually obtaining 
I < 
m at the 
ost of a larger singular value de
omposition anda larger 
ell size h. If 
I is still too large, the pro
ess may be repeated.This adaptive te
hnique also permits treatment of the degenerate 
ases when nosolution exists to (2.1) on 
ell Bi, be
ause the points xj are not in suÆ
iently generalposition. Su
h a 
ell 
an be merged with its sibling, after whi
h a solution is mu
hmore likely to exist. The pro
ess may be repeated if ne
essary.Another approa
h to redu
ing the error bound would be to seek the least 1-normsolution of (2.1), whi
h would minimize 
i. This 1-norm minimization problem isstandard but somewhat more expensive to solve that the 2-norm problem we solvewith the singular value de
omposition. We found that values of p of order 2m usuallyprodu
e 
i within an order of magnitude of the lower bound 2, so we expe
t littleimprovement from the 1-norm minimization approa
h and have not experimentedwith it.2.4. Implementation and numeri
al results. We implemented this methodin a portable ANSI Fortran 
ode. The 
ode a

epts the order k, the dimensiond, the number of levels L, the domain B = [a; b℄ � Rd, and the N user-spe
i�edquadrature nodes xj 2 Rd. It returns N weightsWj , the 
ell stru
ture, the maximum
ondition number en
ountered in the singular value de
ompositions, 
, the 
ell sizeh, and so forth. The numeri
al results reported here were obtained on a Sun Spar
-2workstation.We tested the 
ode by generating N = 256; 512; : : : ; 16384 pseudorandom uni-formly distributed points in the two-dimensional unit square [0; 1℄2, 
omputing theweights W with p = k2 > m = k(k + 1)=2 for k = 2; 4; 8; 12 and 16, and using



8 J. STRAINthem to integrate monomials, 
osines and Lorentzian fun
tions over [0; 1℄2. The testintegrands are thus the ve
torsg1(x) = ((x1 + x2)n : 0 � n � 3k)g2(x) = (
os(n(x1 � r1)) 
os(n(x2 � r2)) : 1 � n � 10)g3(x) = � 1n (n�2 + (x1 � r1)2)�1 1n (n�2 + (x2 � r2)2)�1 : 1 � n � 10�with ri uniformly distributed on [0; 1℄ and k the order of the rule. Note that thefamily g1 be
omes more diÆ
ult as k in
reases.Sin
e the N points are randomly generated, we 
annot expe
t a smooth 
onver-gen
e as N!1. Hen
e for ea
h integrand gj(x), we generated 20 di�erent sets ofnodes xi and 
omputed the minimum, arithmeti
 mean and maximum of the errorsEj and their base-2 logarithms Lj , and the 
orresponding standard deviations. Thebase-2 logarithm makes the order of 
onvergen
e easier to see: kth order 
orrespondsto Lj de
reasing by k=2 when N is doubled.N h 
 T L1 L2 L3128 0.3559 2.05 0.10 -10.35 -5.07 -3.03256 0.2934 2.04 0.15 -11.45 -5.65 -4.13512 0.1981 2.05 0.32 -13.44 -7.45 -4.401024 0.1536 2.04 0.69 -14.07 -8.98 -6.672048 0.1095 2.05 1.52 -15.59 -10.20 -7.514096 0.0809 2.05 3.28 -17.04 -11.56 -9.138192 0.0551 2.05 7.26 -18.94 -12.98 -9.8616384 0.0428 2.05 15.99 -19.15 -14.91 -11.25Table 2.1Mesh size h, 
ondition number 
, CPU time T and average base-2 error logarithms Lj for these
ond-order smooth rule with N random points.N h 
 T L1 L2 L3128 0.5146 3.22 0.22 -12.67 -4.90 -3.58256 0.3293 3.51 0.41 -14.54 -7.66 -5.29512 0.2776 3.60 0.84 -15.78 -9.15 -4.741024 0.1764 3.34 1.73 -18.76 -12.09 -7.672048 0.1449 3.36 3.57 -19.61 -14.40 -9.934096 0.0915 3.42 7.41 -22.30 -17.07 -12.828192 0.0752 3.48 15.53 -23.64 -18.85 -14.3616384 0.0492 3.49 32.52 -26.02 -21.88 -17.27Table 2.2Mesh size h, 
ondition number 
, CPU time T and average base-2 error logarithms Lj for thefourth-order smooth rule with N random points.Tables 2.1 through 2.5 display the averages Lj of the base-2 logarithm of theerror E produ
ed when the qth-order smooth rule W is applied to integrate the testfun
tions gj for j = 1; 2 and 3 and k = 2, 4, 8, 12 and 16. Sin
e the number of pointsdoubles in ea
h su

eeding row of ea
h table, we expe
t Lj to de
rease by k=d = k=2in ea
h step. This de
rease is 
learly evident for large N . It tends to o

ur doubledat alternate lines be
ause only when the number of points in
reases by 2d = 4 doesthe average spa
ing h de
rease by half.



QUADRATURE RULES FOR SINGULAR FUNCTIONS 9N h 
 T L1 L2 L3128 1.0000 6.20 1.21 -11.95 -5.31 -4.29256 0.5520 7.35 2.37 -14.60 -8.55 -4.56512 0.5139 6.01 4.76 -17.92 -12.42 -5.911024 0.2893 6.69 9.52 -21.39 -16.62 -9.672048 0.2635 6.24 19.16 -24.10 -21.02 -12.254096 0.1504 6.15 38.65 -28.57 -25.58 -16.598192 0.1350 6.29 77.91 -33.27 -29.16 -17.3316384 0.0786 6.58 157.08 -36.74 -34.75 -23.32Table 2.3Mesh size h, 
ondition number 
, CPU time T and average base-2 error logarithms Lj for theeighth-order smooth rule with N random points.N h 
 T L1 L2 L3256 1.0000 19.48 9.95 -14.34 -9.17 -4.85512 0.5364 24.37 19.92 -18.62 -15.91 -7.651024 0.5073 37.65 39.81 -22.09 -21.00 -9.182048 0.2762 27.28 79.75 -26.81 -28.63 -12.964096 0.2579 26.22 159.82 -31.52 -33.99 -15.348192 0.1431 28.42 320.41 -38.84 -40.07 -21.3816384 0.1324 26.38 642.06 -43.83 -46.71 -23.67Table 2.4Mesh size h, 
ondition number 
, CPU time T and average base-2 error logarithms Lj for thetwelfth-order smooth rule with N random points.The 
ode is extremely eÆ
ient. Rules of orders k = 2, 4, 8, 12 and 16 withN = 16384 nodes require T = 16, 33, 157, 642 and 2041 CPU se
onds on a Spar
-2workstation. By 
omparison, the a
tual integration of even su
h simple fun
tions asg2 and g3 with the given points and weights takes 3 and 1.5 CPU se
onds respe
-tively. Thus an integrand with a substantial degree of 
omplexity will dominate theintegration time.To demonstrate the improvement due to taking p substantially larger than m, wealso ran tests with N = p = m;m + 1; : : : ; k2 for k = 2, 4, 8, 12 and 16. Table 2.6shows some of the results. We see that larger values of p produ
e dramati
 de
reasesin 
, espe
ially for higher-order rules.3. Singular rules.3.1. Overview of the 
onstru
tion. We now sele
t and 
orre
t 
ertain weightsWj of the smooth rule W , to produ
e a singular rule w whi
h will integrate singularfun
tions f(x) = '(x) � �(x) +  (x) more a

urately.The weights to be 
orre
ted are sele
ted by forming a list of 
ells Bi in the treestru
ture built for the smooth rule W and 
orre
ting all the weights Wj for whi
h xjlies in some 
ell on the list. For ea
h 
ell Bi on the list, we 
onstru
t wj for xj 2 Biby requiring wj to satisfy the linear system of (1 + s)m equations whi
h expressesthat P�(x) and P�(x)�(x) are integrated exa
tly for j�j � k � 1:ZBi P�(x)dx = Xxj2Bi wjP�(xj)(3.1) ZBi P�(x)�t(x)dx = Xxj2Bi wjP�(xj)�t(xj)(3.2)
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 T L1 L2 L3256 1.0000 71.16 31.80 -13.39 -9.96 -5.74512 1.0000 31.93 63.70 -16.26 -16.10 -7.441024 0.5210 68.11 127.28 -20.29 -24.86 -11.532048 0.5045 53.34 254.55 -26.56 -32.94 -11.664096 0.2696 49.57 509.72 -33.16 -42.35 -19.148192 0.2576 51.48 1019.63 -39.50 -47.79 -19.6916384 0.1375 45.07 2041.41 -44.54 -48.48 -29.81Table 2.5Mesh size h, 
ondition number 
, CPU time T and average base-2 error logarithms Lj for thesixteenth-order smooth rule with N random points.k = 2; N = 3 4 5 6 7 8
 = 34 3.4 2.5 2.2 2.2 2.1k = 4; N = 10 11 12 13 14 16
 = 40 10 8.2 5.9 4.6 3.3k = 8; N = 36 40 44 48 56 64
 = 6673 85 43 24 13 7.3k = 12; N = 78 84 99 114 129 144
 = 4803412 1057 180 46 37 23k = 16; N = 136 144 172 200 228 256
 = 313597 16561 923 221 90 66Table 2.6Average 
ondition number 
 as a fun
tion of the number N = p of points per 
ell for k = 2, 4,8, 12 and 16.for j�j � k�1 and 1 � t � s. In order for these equations generi
ally to have solutionsw, we 
annot use the 
ells Bi on the lowest level L of the tree stru
ture, be
ause ea
hof these 
ontains only p � m or p+1 points xj . Instead, we use the 
ells 
onstru
tedon a level L0 < L of the tree stru
ture, for example with L0 := L� dlog2(1 + s)e if pwas 
hosen of order 2m to begin with. On level L0, we have fewer and larger 
ells, ea
h
ontaining at least p0 := N=2L0 � (1+s)m points. Thus (3.1) and (3.2) will generi
allybe solvable. In pra
ti
e, we solve (3.1) and (3.2) by the singular value de
omposition,obtaining w as the solution of least 2-norm if it exists. A major new diÆ
ulty whi
hrequirement (3.2) introdu
es is the 
omputation of the singular momentsZBi P�(x)�(x)dx(3.3)when � is not smooth. x4 is devoted entirely to this question.The a
tual sele
tion of 
ells to 
orre
t 
an be made in several ways. If � issingular at a point xs 2 B, for example, a natural 
hoi
e would be simply to 
orre
tthe 
ell Bi on level L0 whi
h 
ontains xs. However, xs might lie at the 
orner of Bi,so many nearby points would go un
orre
ted if this sele
tion were made. A variantof single-
ell 
orre
tion is to 
orre
t only the neighbor 
ells of the quadrant of 
ellBi where xs lies. An alternative and natural 
hoi
e would be to 
orre
t all 
ellsinterse
ting a region of spe
i�ed size Æ around the singular set S; these 
ells 
an befound eÆ
iently, as des
ribed in x2. However, a �xed size Æ requires 
orre
tion ofa number of points proportional to N as N!1, whi
h is una

eptably expensive iffast summation methods are employed. Thus this sele
tion s
heme is robust but tooexpensive. Also, it takes no a

ount of lo
al density variations of the points.We 
hose to sele
t 
ells for 
orre
tion by the following approa
h. The user spe
i�esa dimensionless 
orre
tion radius r
, typi
ally of order unity. We �nd the 
ell Bi =
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h the singularity lies (several 
ells if � has a higher-dimensional singularset). We then sele
t for 
orre
tion all 
ells interse
ting the re
tangle R = [xs� r
(b�a)=2; xs + r
(b� a)=2℄ of size r
 times Bi and 
entered at ea
h singular point xs 2 S.This s
ales the size of the 
orre
ted area to the lo
al 
ell size and therefore to the lo
aldensity of nodes, keeping the number of 
orre
ted points per singular point of orderunity as N!1 with r
 �xed. If D = dimS then the number of 
orre
ted points isO(ND=d). We found r
 = 3 to give ex
ellent results in pra
ti
e. The lookup of 
ellsto be 
orre
ted 
osts only O(L) per 
ell.Remark: We 
an 
onstru
t a lo
ally-
orre
ted produ
t integration rule usingthe same te
hnique; we simply drop the requirement (3.1) and go up fewer levels inthe tree stru
ture. This gives a rule whi
h integrates polynomials times � a

urately,whi
h is enough for many appli
ations. The added generality obtained by requiring(3.1) as well as (3.2) is important when the integrand may be nonsingular (for examplewhen � happens to vanish at the singularity), and 
osts little.Remark: �(xs) may be in�nite or unde�ned, so we don't want to evaluate fat xs. If xs is one of the quadrature points xj , then we eliminate it from the list ofpoints to be 
orre
ted, set wj = 0, and pro
eed.3.2. Error bounds. The error bounds for singular rules 
an be derived by poly-nomial approximation, as in the smooth 
ase. No matter how the list of 
orre
ted 
ellsis made up, there will be two types of 
ells to 
onsider; 
orre
ted and un
orre
ted. Onthe 
orre
ted 
ells, both ' and  
an be approximated and the remainder estimatedas for smooth rules. On the un
orre
ted 
ells, the derivatives of the singularity 
omeinto play; the key assumption in the error bound is that we 
orre
t all 
ells suÆ
iently
lose to the singularity.For notational 
onvenien
e, let's renumber the M 
ells used in the singular rule,so that the �rst n are 
orre
ted and the last M � n are not: thus B = [Mi=1Bi whereea
h 
ell Bi 
ontains at least (1 + s)m points for 1 � i � n and at least m points forn+ 1 � i �M . Let the sides of Bi be hil for l = 1; 2; : : : ; d and let h = maxi;l hil bethe maximum 
ell edge. Assume that we have weights wj su
h thatZBi x�dx = Xxj2Bi wjx�jand ZBi �(x)x�dx = Xxj2Bi wj�(xj)x�jfor j�j � k � 1 and 1 � i � n, whileZBi x�dx = Xxj2Bi wjx�jfor j�j � k � 1 and n+ 1 � i �M .Assume also that the union [ni=1Bi of the 
orre
ted 
ells 
ontains the set RÆ ofall points within distan
e Æ of the singular set S. For example, we assume [ni=1Bi
ontains the ball fy 2 Rd : jjxs � yjj � Æg around ea
h singular point xs. Finally,assume that � is Ck outside the singular set S and that its derivatives satisfy a growth
ondition j���(x)j � CÆ�d�j�j(3.4)



12 J. STRAINfor j�j = 0 and j�j = k, Æ > 0 and x 62 RÆ. Here C is a 
onstant and Æ > 0 isarbitrary. This assumption is very benign sin
e it does not even guarantee that � isin L1(B). It is satis�ed by the singularities o

urring in potential theory as well asby the Biot-Savart kernel � = x=jjxjjd.Starting from these assumptions, we derive a bound for the errorE = ZB '(x) � �(x) +  (x)dx � NXj=1wj('(xj ) � �(xj) +  (xj)):where ' and  are Ck. The nonsingular term in  
an be bounded exa
tly as for thesmooth rule in x2, givingj ZB  (x)dx � NXj=1wj (xj)j � 
jBj(h=2)k Xj�j=k 1�! jj�� jjC0(B):For the singular term, we have to 
onsider 
orre
ted and un
orre
ted 
ells sepa-rately. On 
orre
ted 
ells Bi ( 1 � i � n ), we have a best approximation � to ' bya polynomial of degree k � 1 and the resulting boundEi = j ZBi '(x) � �(x)dx � Xxj2Bi wj'(xj) � �(xj)j� 
i� jBij jj'� �jjC0(Bi)where the singular 
ondition number 
i� is de�ned by
i� = 1 + 1jBij Xxj2Bi jwj�(xj)j:As in x2, the best approximation error jj' � �jjC0(Bi) 
an be bounded by Taylorexpansion to get Ei � 
i� jBij(h=2)k Xj�j=k 1�! jj��'jjC0(Bi):Note that a priori 
i� 
an be in�nite, if one of the quadrature nodes happens to
oin
ide with a singular point xs 2 S. Thus 
i� must be 
omputed a posteriori andused as a measure of the quality of the rule. The methods for redu
ing 
i dis
ussedin x2.3 apply to 
i� as well. In our examples, however, we rarely en
ountered largevalues of 
i�.Now 
onsider the error due to integrating ' � � over an un
orre
ted 
ell Bi wherew =W . From x2.3, we know that the error on 
ell Bi is bounded byEi � 
ijBij(h=2)k Xj�j=k 1�! jj��(' � �)jjC0(Bi):We simplify this bound by separating derivatives of ' and �, using the standardinequality for H�older norms proved in [13℄:jj(' � �)jjCk(Bi) � C �jj�jjC0(Bi)jj'jjCk(Bi) + jj�jjCk(Bi)jj'jjC0(Bi)� :



QUADRATURE RULES FOR SINGULAR FUNCTIONS 13Here the Ck norm is de�ned byjj'jjCk(B) = jj'jjC0(B) + Xj�j=k jj��'jjC0(B)for k > 0, so Ei � C
ijBijhkjj' � �jjCk(Bi):This separates the bound for Ei into two pie
es E1i and E2i :E1i = C
ijBijhkjj�jjC0(Bi)jj'jjCk(Bi)� C
ijBijÆ�dhkjj'jjCk(Bi)and E2i = C
ijBijhkjj�jjCk(Bi)jj'jjC0(Bi)� C
ijBijÆ�d�hÆ�k jj'jjC0(Bi)where we have used assumption (3.4).We now pause momentarily to dis
uss our strategy for sele
ting 
orre
ted 
ellsBi. Clearly the 
hoi
e Æ =
onstant, 
orre
ting all 
ells within a �xed distan
e fromS, produ
es the simplest error bound. Indeed, if Æ is �xed, then the global error Esatis�es E � C
jBjjj'jjCk(B)hkjust as for the smooth rule, with a 
onstant whi
h depends on Æ. Unfortunately,in pra
ti
e we 
annot a�ord to 
ompute the O(N) 
orre
tion weights within �xeddistan
e Æ from S as N!1. Thus we give up the simpli
ity of this error bound.Instead, we take Æ = r
h where r
 is �xed, in order to 
orre
t fewer points asN!1. This 
ompli
ates both pie
es of the error bound in two di�erent ways. First,the fa
tor Æ�d seems to 
an
el the volume fa
tor jBij = O(hd), so naively summingover all O(N) un
orre
ted 
ells produ
es a fa
tor of N in both E1i and E2i . Se
ond,the fa
tor Æ�k in E2i eliminates the usual O(hk) error altogether.We handle the se
ond diÆ
ulty by seeking an error bound of a di�erent formfrom the usual O(hk). We 
hoose Æ so that (h=Æ)k � � where � is a user-spe
i�edparameter, usually smaller than hk over the range of a�ordable h. Then we seek anerror bound of the form E � O(�) + O(hk) where the 
onstant in O(�) is allowed todepend on derivatives of � but not on those of '. The 
onstant in O(hk), on theother hand, may depend on derivatives of ' as usual, but not on those of �. Similarerror bounds often o

ur in the design of fast algorithms [4, 25℄ and are quite usefulin pra
ti
al 
omputations.Thus we 
hoose (h=Æ)k � � to getEi � C
ijBijÆ�d �hkjj'jjCk(Bi) + �jj'jjC0(Bi)�and it remains to deal with the �rst diÆ
ulty, of summing over all O(N) un
orre
ted
ells Bi.



14 J. STRAINLet 
m = max
i, and divide the un
orre
ted 
ells Bi into P = O(1=Æ) = O(1=h)shells Sp = fBi : pÆ � d(Bi; S) � (p+ 1)Ægwhere the distan
e from Bi to S is de�ned byd(Bi; S) := minfjjx� xsjj : x 2 Bi; xs 2 Sg:For Bi 2 Sp, we have the stronger boundEi � C
mjBij(pÆ)�d �hkjj'jjCk(Bi) + �p�kjj'jjC0(Bi)� :Thus MXi=n+1Ei = PXp=1 XBi2SpEi� C
m0� PXp=1 p�d XBi2Sp jBij1A Æ�dhkjj'jjCk(B)+ C
m0� PXp=1 p�d�k XBi2Sp jBij1A Æ�d�jj'jjC0(B):(3.5)The volume of the shell Sp is bounded by Cpd�1Æd, and sin
e the 
ell edges are allbounded by h = O(Æ), the sum over i satis�esXBi2Sp jBij � Cpd�1Ædfor some 
onstant C. This 
an
els the fa
tor of Æ�d. The �rst sum over p in (3.5)then diverges logarithmi
ally, giving a fa
tor of logP = O(j log hj), and the se
ond isbounded by P1p=1 p�1�k <1 if k � 1. ThusMXi=n+1Ei � C
m �j loghjhkjj'jjCk(B) + �jj'jjC0(B)�We see that we su�er for the singularity by a fa
tor j loghj and a term �jj'jjC0(B).We 
on
lude that the total error due to un
orre
ted 
ells is bounded byE � C
m �j loghjhkjj'jjCk(B) + �jj'jjC0(B)�whenever (h=Æ)k � �. Our numeri
al experiments tend to 
on�rm the a

ura
y ofthis bound.Thus we have proved the following theorem:Theorem 3.1. Fix � > 0 and 
orre
t the O(ND=d) 
ells interse
ting RÆ whereD = dimS and Æ = r
h = ��1=kh:



QUADRATURE RULES FOR SINGULAR FUNCTIONS 15Then the error in integrating ' � � +  over B with the lo
ally 
orre
ted rule w isbounded byjEj � C(
 + 
�) �hkjj jjCk(B) + j loghjhkjj'jjCk(B) + �jj'jjC0(B)� :In parti
ular, we need only 
orre
t a �xed number of points as N !1 if � has onlypoint singularities.The absen
e of a volume fa
tor jBj in this bound is dismaying at �rst sight buta
tually natural, be
ause under the weak assumption (3.4) on �, the integral itselfneed not s
ale with jBj. If �(x) = jjxjj�d, for example, then s
aling the variablesshows that the integralZÆ�jjxjj�R �(x)dx = Z�Æ�jjxjj��R �(x)dxfor any �. Under stronger growth 
onditions on �, for example those satis�ed by theBiot-Savart kernel, the error estimate would s
ale in the same way as the integral.3.3. Implementation and numeri
al results . We have implemented thesete
hniques in a portable ANSI Fortran program whi
h 
onstru
ts the singular weightswj from the data stru
ture and weights W 
onstru
ted in x2. The singularity isevaluated by a user-supplied subroutine, and is thus quite general. The dimensionand order are also arbitrary user-spe
i�ed parameters. A routine for evaluating thesingular volume moments by the te
hnique of x4 is supplied, but the 
ode is highlymodular and the user 
an freely import routines for evaluating the singular moments ifthey are available e.g. in 
losed form. The polynomials P�(x) 
an also be repla
ed byother basis fun
tions if desired. The 
ode 
ontains several other re�nements dis
ussedin Se
tion 5.We have tested the 
ode on several singularities in d = 2 and d = 3 dimensions.Here we report on the results obtained with d = 2 and the Biot-Savart kernel�(x) = xjjxjjd :We ran two sequen
es of tests. First, we 
arried out a 
onvergen
e study witha regular grid. We pla
ed N = 256; 1024; : : : ; 65536 points in a square grid in B =[0; 1℄2. For ea
h k = 2, 4 and 6, we 
onstru
ted the smooth rule with these Npoints and p = k2 points per 
ell. We then generated 20 random points xs in B and
omputed the kth-order 
orre
tion weights for ea
h singularity �(x � xs), 
orre
ting
ells 
ontaining p0 = 2k2 points and within a 
orre
tion radius r
 = 3 times the 
ell
ontaining xs. Tables 3.1 through 3.3 report the averages L< and L> of the base-2logarithms of the errors in using these weights to integrate the singular monomials(x1 + x2)��(x � xr) with 0 � � � k � 1 for L< and k � � � 3k � 1 for L>. Notethat the error for � � k � 1 is not zero for two reasons; we 
ompute the singularmoments approximately and we only 
orre
t nearby 
ells. We 
ompute the singularmoments with the 
ode des
ribed in x4, using in
reasing a

ura
y as the number ofpoints in
reased: �a = �r = 10�3; 10�5; : : : ; 10�11 for N = 256; : : : ; 66536. The tablesalso report the average CPU time per 
orre
tion T , 
ondition numbers 
 and 
�, themaximum 
ell edge length h, and the number C of 
orre
ted points.The following observations 
an be made from these results. The 
onvergen
e rateis somewhat irregular, but roughly a

ords with theoreti
al expe
tations. The use ofbase-2 logarithms means that L< and L> should de
rease by k ea
h time N is quadru-pled, for the kth-order method. The number of 
orre
ted points does not in
rease with



16 J. STRAINN . However, the 
orre
tion is rather expensive due to the general-purpose nature ofthe 
ode and the ne
essity of obtaining singular moments by numeri
al integration.The in
rease in a

ura
y of the numeri
al integration a

ounts for the in
rease of Twith N . We believe a more eÆ
ient and spe
ialized implementation for a spe
i�
singularity su
h as the Biot-Savart kernel 
ould a
hieve faster run times by orders ofmagnitude. Finally, we observe that the 
ondition numbers 
 and 
� are boundedby 2 and 3.8 respe
tively.N h C T 
 
� L< L>256 0.2500 99 0.62 2.00 3.62 -12.21 -12.571024 0.1250 134 1.63 2.00 3.66 -13.15 -13.664096 0.0625 134 3.65 2.00 3.69 -15.30 -15.5716384 0.0312 139 8.18 2.00 3.71 -18.43 -17.8765536 0.0156 139 18.16 2.00 3.71 -20.73 -19.89Table 3.1Results of integrating monomials times the Biot-Savart kernel, with se
ond-order singular ruleswith N regular grid points.N h C T 
 
� L< L>256 0.5000 256 2.44 2.00 3.64 -13.57 -14.641024 0.2500 396 5.09 2.01 3.68 -17.14 -19.544096 0.1250 537 9.72 2.00 3.70 -18.40 -20.7116384 0.0625 537 17.56 2.00 3.71 -20.62 -23.2965536 0.0312 556 36.72 2.00 3.71 -23.27 -25.75Table 3.2Results of integrating monomials times the Biot-Savart kernel, with fourth-order singular ruleswith N regular grid points.N h C T 
 
� L< L>256 0.5000 256 7.45 2.00 3.69 -13.58 -14.671024 0.2500 640 19.06 2.01 3.69 -18.48 -20.184096 0.1250 883 31.14 2.01 3.74 -20.40 -24.7416384 0.0625 1075 49.23 2.00 3.71 -21.53 -26.8465536 0.0312 1113 81.26 2.00 3.71 -26.02 -31.08Table 3.3Results of integrating monomials times the Biot-Savart kernel, with sixth-order singular ruleswith N regular grid points.Our se
ond sequen
e of tests used N = 128; 256; : : : ; 16384 pseudorandom uni-formly distributed points on B = [0; 1℄2. We repeated the previous tests with thesepoints repla
ing the grid points, and the results are reported in Tables 3.4 through3.6. We observe a reasonable 
onvergen
e rate at �rst, with L< eventually levellingo� to about 10�3, 10�5 and 10�7 for the 2nd, 4th and 6th order rules respe
tively.This is the O(�) error due to integrating the singularity over the un
orre
ted 
ells bythe smooth ruleW . It appears in L< and not in L> be
ause L> involves higher-ordermonomials with larger Ck norms, so the O(hk) term dominates the O(�) term for thevalues of N used in these experiments.4. Singular moments.
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� L< L>128 0.3410 101 0.68 2.25 4.17 -11.10 -9.24256 0.2952 145 1.15 2.24 4.32 -10.26 -10.06512 0.1958 179 1.76 2.25 4.47 -9.26 -10.871024 0.1505 188 2.69 2.17 4.22 -10.08 -11.862048 0.1081 217 4.10 2.13 4.16 -10.37 -12.434096 0.0793 219 5.93 2.08 3.94 -10.94 -12.998192 0.0560 264 8.93 2.09 4.23 -11.64 -13.5916384 0.0426 273 13.17 2.06 3.97 -12.34 -14.83Table 3.4Results of integrating monomials times the Biot-Savart kernel, with se
ond-order singular ruleswith N uniformly distributed random points.N h C T 
 
� L< L>128 0.5136 128 1.65 2.15 3.96 -13.41 -10.84256 0.3269 256 3.13 2.12 4.14 -17.19 -12.43512 0.2799 407 5.11 2.41 4.61 -17.11 -14.231024 0.1748 535 7.34 2.50 4.65 -16.00 -17.052048 0.1451 696 10.93 2.56 4.80 -15.76 -18.684096 0.0883 752 14.53 2.78 5.11 -17.20 -20.348192 0.0755 1011 21.59 3.10 6.23 -16.34 -20.1616384 0.0498 957 29.01 3.25 6.50 -17.91 -22.72Table 3.5Results of integrating monomials times the Biot-Savart kernel, with fourth-order singular ruleswith N uniformly distributed random points.4.1. Overview. We now des
ribe the evaluation of the sm singular momentsZBi P�(x)�t(x)dx; j�j � k � 1; 1 � t � s:(4.1)We treat (4.1) as a spe
ial 
ase of a general problem: Given f : B!Rn, smooth awayfrom a lower-dimensional singular set S, evaluate the n-ve
tor of integralsF = ZB f(x)dx(4.2)We 
ompute (4.2) by a multidimensional adaptive produ
t Gaussian quadrature method,with an error estimate based on Chebyshev di�erentiation. This is a nonstandard ap-proa
h to (4.2) in several ways, so we des
ribe it in detail and present numeri
alresults showing that it is more eÆ
ient than at least one standard multidimensionaladaptive quadrature pa
kage.Our algorithm is organized along the following standard lines. We pro
eed step bystep to re�ne an approximation F̂ to F . At ea
h step, we have a subdivision of B intore
tangular 
ells Bi, an error estimate Ei on ea
h Bi, and an approximation F̂ to Fformed by integrating over ea
h Bi with produ
t q-point Gauss-Legendre quadrature[6℄. We store this information in a heap [28℄, a data stru
ture whi
h allows us to sele
tthe 
ell Bi with the largest error estimate at ea
h step. We re�ne F̂ by 
hoosing a 
ellBi with maximum error estimate, 
hoosing one of the 
oordinate axes, bise
ting Bialong that 
oordinate axis, and 
omputing the new integrals and error estimates. Wethen insert the new information into the heap and the next step 
an pro
eed. We stopre�ning when one of the following three situations o

urs: we run out of memory, ween
ounter roundo� error limitations, or we have a total error estimate E satisfyingE � �a + �rjjF̂ jj1
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� L< L>128 0.5654 128 4.50 2.15 4.10 -14.65 -10.93256 0.5212 256 8.51 2.20 4.57 -17.80 -13.57512 0.3097 512 16.17 2.23 4.52 -19.84 -16.281024 0.2656 788 25.21 2.53 5.00 -21.02 -18.702048 0.1626 1085 36.05 3.01 5.58 -21.13 -22.774096 0.1363 1351 47.72 3.37 6.04 -20.91 -24.658192 0.0851 1843 68.95 4.30 8.22 -21.93 -27.1516384 0.0718 1848 81.79 5.18 10.10 -21.90 -28.67Table 3.6Results of integrating monomials times the Biot-Savart kernel, with sixth-order singular ruleswith N uniformly distributed random points.where �a and �r are user-spe
i�ed absolute and relative error toleran
es.Our method employs the following nonstandard features. First, the use of produ
tGauss rules rather than nonprodu
t rules. Sin
e we are interested primarily in d = 2-or d = 3-dimensional problems, the number qd of points required by a produ
t Gaussrule of order 2q is quite 
ompetitive with standard fully symmetri
 rules. Anotheradvantage of Gauss rules is the arbitrary order of a

ura
y available: Using e.g.routine GRULE of [6℄, Gauss points and weights of order 2q are readily availablefor any q. Se
ond, the error estimate we give below requires little additional workand identi�es the dire
tion 
ontributing most to the error, the obvious 
andidate forbise
tion. The usual te
hnique for sele
ting a dire
tion to bise
t is based on fourthdi�eren
es and is somewhat unjusti�ed.4.2. Error estimation. We begin by bounding the maximum (over 1 � i � n)error in produ
t q-point Gauss-Legendre quadrature of fi(x) over a 
ell B = [a; b℄;this will suggest a dire
tion along whi
h to subdivide. Although our estimate is reallya bound and not an estimate, it turns out to be suÆ
iently sharp in pra
ti
e. Theerror estimate in one dimension for a single fun
tion f reads [6℄E1q (f) := Z ba f(x)dx � qXi=1 wif(xi)= Cq(b� a)2q+1f (2q)(�)where � 2 (a; b), wi and xi are the weights and nodes for q-point Gauss-Legendrequadrature on [a; b℄, and the error 
onstant is given byCq := (q!)4(2q + 1)((2q)!)3 :In d > 1 dimensions, adding and subtra
ting givesEdq (f) := Z b1a1 : : : Z bdad f(x1; : : : ; xd)dx1 : : : dxd � qXi1=1w1i1 : : : qXid=1wdidf(x1i1 ; : : : ; xdid)= Z b1a1 Ed�1q [f(x1; :)℄dx1 + qXi2=1w2i2 : : : qXid=1wdidE1q [f(:; x2i2 ; : : : ; xdid)℄



QUADRATURE RULES FOR SINGULAR FUNCTIONS 19Here wji is the ith weight and xji the ith node for Gauss-Legendre quadrature on[aj ; bj ℄. Thus, by indu
tion on d and the positivity of the weights wji ,jEdq [f ℄j � Cq jBj dXl=1(bl � al)2q jj�2ql f jjC0(B) =: Cq jBj dXl=1 Edlq :(4.3)where jBj = (b1 � a1) � � � (bd � ad) is the volume of B.This error bound displays the 
ontribution Edlq of ea
h dimension to the totalerror bound; thus we 
an 
hoose the dimension l where Edlq is maximum over l as thedimension a
ross whi
h to split a given 
ell B. This bound is highly pra
ti
al be
auseonly pure derivatives �2ql f are involved; these require only values of f along a singleline and are thus mu
h less expensive to 
ompute than mixed derivatives.In order to approximate this bound, we will need estimates of the quantitiesEdlq . We approximate the C0 norm by a maximum over r randomly 
hosen pointsp(1); : : : ; p(r) distributed in a Latin square [17℄ in B, and 
al
ulate the approximationDdlq := (bl � al)2q max1�j�r maxal�xl�bl j�2ql f(p(j)1 ; : : : ; xl; : : : ; p(j)d )jby Chebyshev di�erentiation. Fix j and l and letg(s) = f(p(j)1 ; : : : ; 
l + hsl; : : : ; p(j)d );where 
l = (al + bl)=2 and hl = (bl � al)=2. Then�2qs g(s) = h2q�2ql f(p(j)1 ; : : : ; 
+ hs; : : : ; p(j)d );so Edlq = 22q max1�j�r jj�2qs gjjC0We approximate the 2qth derivative of g by Chebyshev di�erentiation. Approximateg by a t-term Chebyshev seriesg(s) � 12g1 + tXk=2 gkTk�1(s);where the 
oeÆ
ients gk are 
omputed by pth-order Chebyshev quadrature with p �t+ 2; gk = 2p pXl=1 g(tl)Tk�1(tl)= 2p pXl=1 g(
os(�(l � 1=2)p )) 
os(�(k � 1=2)(l� 1=2)p ):(4.4)The jth derivative of g is approximated byg(j)(s) � 12g(j)1 + t�jXk=2 g(j)k Tk�1(s);(4.5)



20 J. STRAINwhere the 
oeÆ
ients g(j)k are determined by ba
kward re
urren
eg(0)k = gk 1 � k � t;g(j)k�1 = g(j)k+1 + 2(k � 1)g(j�1)k t� j � k � 2q + 1� j;(4.6) g(j)t�j+1 = g(j)t�j+2 = 0:Note that the last two 
oeÆ
ients, g(j)t�j�1 and g(j)t�j , 
an be expli
itly evaluated interms of gt�1 and gt alone. Similar though more 
ompli
ated expressions exist for thelower 
oeÆ
ients, but it is easier to evaluate them by re
urren
e (4.6) even if we onlywant the top two.Finally, the fa
t that jTk(s)j � 1 for jsj � 1 allows us to bound g(2q):jjg(2q)jjC0 � 12 jg(2q)1 j+ t�2qXk=2 jg(2q)k j:(4.7)Note that we need only 
ompute the 
oeÆ
ients gk with 2q + 1 � k � t; lower-orderpolynomials drop out after taking 2q derivatives.For eÆ
ien
y of implementation, however, we do not employ re
urren
e (4.6) andformulas (4.4) dire
tly. Instead, we observe that in the �nal estimate (4.7) ea
h g(2q)k isa linear fun
tional of the p-ve
tor f with 
omponents fl = f(p(j)1 ; : : : ; 
+hsl; : : : ; p(j)d :1 � j � p). Thus there is a (t� 2q)� p matrix ekl su
h thatg(2q)k = pXl=1 eklfl 1 � k � t� 2q:We simply pre
ompute this matrix, whi
h depends only on p, t and q, and store it.Then ea
h error estimate Edlq requires only p fun
tion evaluations, (t � 2q)p multi-pli
ations and additions. At minimum, p = t = 2q + 2, so ea
h error estimate 
osts2(2q + 2) multipli
ations and 2q + 2 fun
tion evaluations. Thus the total error esti-mate on Bi requires rd(2q + 2) fun
tion evaluations. Sin
e the integral requires qdfun
tion evaluations, the error estimate is not expensive if 2rd � qd�1. It also hasthe advantage that the points of evaluation for the integral and the error estimate are
ompletely di�erent (and random for the error), redu
ing the 
han
e of missing 
ellswith large errors.4.3. Re�nements. The quadrature s
heme outlined above is robust and 
exi-ble. We found, however, that its eÆ
ien
y and a

ura
y 
an be improved by severalre�nements dis
ussed below.4.3.1. Getting started. In the s
heme above, we start with a single 
ell B andsubdivide as ne
essary. But when f is known to be singular at some known point xs,we know that many subdivisions will be ne
essary. Any integrals and errors 
omputedfor a 
ell whi
h is later re�ned represent wasted e�ort. This waste 
an be redu
edby beginning with several 
ells instead of one, in essen
e taking advantage of priorknowledge of the singularity lo
ation to 
arry out the �rst few re�nements beforehand.A reasonable way to do this is to divide B into 2d sub
ells with one 
orner of ea
hbeing xs, then 
onstru
t a quadtree with several levels by re
ursively bise
ting ea
h
ell tou
hing xs. Su
h a subdivision of B 
an be extremely helpful in redu
ing thetime required to integrate f .



QUADRATURE RULES FOR SINGULAR FUNCTIONS 214.3.2. Double-loop integration. A related feature of our method is the inde-penden
e of the error estimator from the integration rule. An extreme way to usethis independen
e is to 
ompute only error estimates as we subdivide, 
omputing theintegrals only when the �nal 
ell stru
ture has been 
ompleted. This saves all thewasted e�ort of integrating over 
ells later to be re�ned, and this 
an be very sub-stantial when n is very large. Unfortunately, the use of both absolute and relativeerror 
riteria E � �a + �rjjF jjmakes this impra
ti
al sin
e F is involved in the stopping 
ondition. We 
ould use theinitial value of F 
omputed over the input 
ells, but this is likely to be unne
essarilyexpensive sin
e the value of F is likely to in
rease substantially as the singularity isresolved. The way out of this dilemma is a double-loop pro
edure in whi
h we startout with a stopping 
riterion E � �a + �rGwith G set to, say, 100jjF jj. When this test is passed, we integrate over the resulting
ell stru
ture and set G to the jjF jj thus obtained. Then we repeat the inner loop withthe new stopping 
riterion. In this way, we 
an save a large number of unne
essaryintegrations over 
ells.Another situation where the double loop approa
h is useful is when roundo�error may be important. We maintain an error estimate for ea
h 
ell separately,as well as a global estimate formed by summing them up. Thus ea
h subdivisionrequires subtra
tion of the old error estimate for the subdivided 
ell and addition ofthe two new estimates. When the initial error estimate is orders of magnitude largerthan the �nal result, serious roundo� problems o

ur. A double loop is thereforeemployed; after termination of the inner loop over 
ells, we re-sum the integral anderror estimates. If the stopping 
riterion is violated after resumming, we restartimmediately from where we left o�.4.3.3. Cautious error estimation. A re�nement whi
h is important for a

u-ra
y and o

urs in most e�e
tive quadrature routines is the idea of 
autious two-levelerror estimation (see e.g. [7℄). Here we use, in addition to the error estimate Ei 
om-puted for the 
urrent 
ell, information about the parent 
ell. The errors and integrals
omputed for the parent 
ell are used separately.Caution means that we do not believe an error estimate whi
h is mu
h smallerthan the parental estimate; thus we repla
e the new error estimate Ei by max(Ei; �
Eold)where �
 is a user-spe
i�ed degree of 
aution related to the order of a

ura
y of therule. Typi
ally �
 = 10�2 is a reasonable 
hoi
e. The idea of nonzero �
 is to preventold information from being ignored in later de
isions.The use of two-level error estimates, on the other hand, means that we 
onsideralso the 
hange in the integrals produ
ed by the subdivision. Thus we repla
e Eiby max(Ei; �dj�F j) where �F is the maximum 
hange in any integral due to thesubdivision. Note that two-level error estimators are in
ompatible with the doubleloop pro
edure proposed above, and the two are therefore o�ered as mutually ex
lusiveoptions in our implementation.4.3.4. Shared singularities. In the spe
ial situation we 
onsider here, we areintegrating a long ve
tor of n = sm fun
tions simultaneously, where ea
h fun
tion hasthe same singularity stru
ture. The repeated evaluations of all the fun
tions involved



22 J. STRAINin the error estimates is wasteful, so we have implemented a restart fa
ility. We�rst integrate the singularity �(x) alone, then use the 
ell stru
ture 
onstru
ted asa starting point for the integration of the polynomials P�(x)�(x) as well. Numeri
alexperiments with k = 2; 4; 6 and 8 and q = 2; 3; 4; 6; 8 and 10 and � the Biot-Savartkernel (so d = s = 2) shows that this 
an save a fa
tor of �ve to ten in CPU time.However, they also show that further improvements in the eÆ
ien
y of obtaining theinitial 
ell stru
ture 
annot improve the speed of the 
ode mu
h; indeed, even if theinitial 
ell stru
ture were known a priori, we would only save about one-third of theCPU time. Further speedups 
an 
ome only from redu
ing the number of pointsemployed or evaluating the fun
tions faster. Improvement in either area is 
ertainlypossible.4.4. Numeri
al results. We implemented the multidimensional adaptive prod-u
t Gaussian s
heme above in a portable ANSI Fortran 
ode, with the dimension d asa parameter. Although our aim was primarily robustness and reliability, the resulting
ode is surprisingly eÆ
ient.We tested the 
ode on three problems of various degrees and types of diÆ
ulty,following the probabilisti
 te
hnique of [16℄. In ea
h 
ase, we integrated a family ofintegrands with randomly pla
ed or randomly oriented singularities and measured theaverage error and su

ess rate. We used three families of integrands. First, a smoothbut os
illatory family of 
osines:f1(x) = (
os(j(x1 � xr1)) 
os(j(x2 � xr2)) � � � 
os(j(xd � xrd)) : j = 1; 2; : : : ; 10)Se
ond, skewed exponentials of in
reasing steepness with dis
ontinuities at angles tothe 
oordinate axes:f2(x) = (exp(�jjjAx� xrjj1) : j = 1; 2; : : : ; 10)where A is a random matrix with entries 
hosen from a uniform distribution on [0,1℄and jjxjj1 =Pdi=1 jxij is the Manhattan norm. Finally, m = 36 Legendre polynomialson [0; 1℄2 times the 2-dimensional Biot-Savart kernel as in moment 
al
ulations:f3(x) = P�(x)�(x � xr)with j�j � 7 and �(x) = x=jjxjjd. Here xr is 
hosen from a uniform distribution on[0; 1℄d. In all 
ases the domain of integration was [0; 1℄d and the dimension was d = 2.We ran 100 samples of ea
h family. The results are shown in Tables 4.1 through4.3 below. For these tables, we used �
 = �d = 10�2, r = 2, t = p = 2q + 2 and� := �a = �r = 10�1; 10�2; : : : ; 10�7. We report the number of fun
tion evaluationsNF , the CPU time T and the error E produ
ed by our 
ode. We found q = 10, q = 3and q = 4 to be the most eÆ
ient rule sizes for f1, f2 and f3 respe
tively. Figure 4.1shows the tree-stru
tured subdivisions 
onstru
ted with �a = 10�3; 10�5 and 10�7 forf2 and f3. It is 
lear that the 
ode is re�ning in the right pla
es.For 
omparison, Tables 4.4 through 4.6 show the 
orresponding results for themultidimensional adaptive fully symmetri
 quadrature routine DCUHRE presentedin [2℄. The following 
on
lusions 
an be drawn from this 
omparison.First, in the integration of the Biot-Savart kernel times polynomials, DCUHREa
hieved most eÆ
ient results with the 13th order rule, be
ause the kernel is smoothaway from the singularity. It required 48 CPU se
. with � = 10�7. The errors werevery reliably less than the estimate, and in fa
t very 
lose to the estimate. Gaussian



QUADRATURE RULES FOR SINGULAR FUNCTIONS 23quadrature, on the other hand, was most eÆ
ient with a 4-point 8th-order rule when� = 10�7. It required 11 CPU se
. with � = 10�7, about four times faster thanDCUHRE. The errors from our Chebyshev error estimator were less reliable in thesense that they were sometimes mu
h less than the estimate and sometimes slightlymore.On 
osines, high-order rules were the most e�e
tive. For example, 20th orderGaussian quadrature required 0.04 CPU se
. to a
hieve pre
ision 10�7. DCUHRErequired 0.17 CPU se
. with the 13th order rule.For skew exponentials, whi
h are C0 but are not C1 along the randomly orientedhyperplanes determined by A and xr , the 9th order rule of DCUHRE was moreeÆ
ient than 13th or 7th. This is a little surprising, be
ause the 7th order rule isre
ommended by its authors for problems |like this one| requiring great adaptivity.The 9th order rule required 72 CPU se
. with � = 10�7 and a
hieved error 10�7reliably. Gaussian quadrature, on the other hand, got best results with a 6th-orderrule, requiring 73 CPU se
. with � = 10�7.

Fig. 4.1. Tree stru
ture for adaptive Gaussian quadrature.



24 J. STRAIN�a = �r NF T E0.10E+00 188 0.03 0.63E-110.10E-01 188 0.03 0.63E-110.10E-02 188 0.04 0.63E-110.10E-03 188 0.03 0.63E-110.10E-04 188 0.04 0.63E-110.10E-05 188 0.03 0.63E-110.10E-06 188 0.03 0.63E-11Table 4.1Twentieth-order Gaussian quadrature on 
osines.�a = �r NF T E0.10E+00 221 0.03 0.65E+000.10E-01 1115 0.13 0.97E-020.10E-02 4788 0.55 0.65E-030.10E-03 17736 2.01 0.29E-040.10E-04 59655 6.71 0.24E-050.10E-05 201884 22.62 0.69E-060.10E-06 651924 72.97 0.86E-07Table 4.2Sixth-order Gaussian quadrature on skewed exponentials.�a = �r NF T E0.10E+00 321 0.28 0.12E+010.10E-01 771 0.67 0.28E-010.10E-02 1536 1.33 0.11E-020.10E-03 2793 2.43 0.27E-030.10E-04 4649 4.04 0.66E-050.10E-05 7638 6.65 0.21E-050.10E-06 12651 11.01 0.33E-06Table 4.3Eighth-order Gaussian quadrature on the Biot-Savart kernel times polynomials.�a = �r NF T E0.10E+00 195 0.04 0.11E-030.10E-01 195 0.04 0.11E-030.10E-02 195 0.04 0.11E-030.10E-03 286 0.05 0.43E-040.10E-04 442 0.08 0.50E-050.10E-05 793 0.14 0.65E-060.10E-06 975 0.17 0.45E-07Table 4.4DCUHRE on 
osines.�a = �r NF T E0.10E+00 178 0.02 0.77E-010.10E-01 1069 0.12 0.90E-020.10E-02 4158 0.44 0.99E-030.10E-03 15886 1.65 0.10E-030.10E-04 58733 6.10 0.10E-040.10E-05 202989 21.12 0.10E-050.10E-06 685872 71.72 0.10E-06Table 4.5DCUHRE on skewed exponentials.
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�a = �r NF T E0.10E+00 2613 2.05 0.89E-010.10E-01 5473 4.30 0.93E-020.10E-02 10270 8.06 0.93E-030.10E-03 17147 13.50 0.97E-040.10E-04 26702 21.03 0.97E-050.10E-05 40742 32.12 0.98E-060.10E-06 61308 48.37 0.98E-07Table 4.6DCUHRE on the Biot-Savart kernel times polynomials.



26 J. STRAIN5. Re�nements and Generalizations. The above methods for 
onstru
tingsmooth and singular quadrature rules 
an be re�ned and generalized in several ways.The smooth rule 
an be made adaptive to redu
e 
, and the order 
an be lo
allyvaried to mat
h the smoothness of the integrand. Chebyshev polynomials 
an repla
eLegendre polynomials, allowing the use of non-equidistant FFT te
hniques to speedup the least 2-norm 
al
ulations. For that matter, any other set of basis fun
tions 
anrepla
e Legendre polynomials, yielding rules whi
h are exa
t for that 
lass of basisfun
tions.Both singular and smooth rules 
an be derived for approximating linear fun
tion-als other than integration over B. An important example, interpolation, is dis
ussedin detail below. This leads to a di�erent approa
h to evaluating integrals of singularfun
tions; transfer the integrand values to ni
e points by interpolation, then use ni
erules on the ni
e points. This eliminates the ne
essity of 
omputing singular momentsfor every 
orre
ted point.Both rules 
an also be used to integrate over more general domains than re
tan-gles, as dis
ussed below. A parti
ularly ex
iting prospe
t is the 
onstru
tion of rulesfor integrating singular fun
tions over 
urves and surfa
es, for the boundary integralsolution of partial di�erential equations. This is of 
ourse another spe
ial 
ase of theapproximation of other linear fun
tionals mentioned in the previous paragraph.We 
ould equally well 
onstru
tW ji to integrate exa
tly the kd monomials x�11 � � �x�ddwith produ
t degree max�l � k � 1, rather than integrating the m(k; d) = O(kd=d!)monomials with standard degree �1+: : :+�d � k�1. This 
hoi
e is a nonstandard one(see [6℄), and would have several advantages and disadvantages. The �rst, and mostimportant, is the improved a

ura
y of su
h a rule (see [6℄). Rules of produ
t order khave order k in the standard sense, as well, but they tend to have 
onsiderably smallererrors than most rules of standard order k. They use more points than the minimumne
essary to a
hieve standard order k by a fa
tor of d!, but this is not overwhelminglyexpensive in small dimensions like d = 2 or d = 3. Another reason is that we useprodu
t Gaussian quadrature rules to evaluate the moments (see x4), so produ
t orderis more 
onvenient. And �nally, it is easier to 
onstru
t a general multidimensionalroutine in whi
h the dimension d is an input parameter when rules of produ
t orderk are 
onstru
ted, be
ause it is easier to map a re
tangle than a simplex onto aninterval. Su
h a rule is more eÆ
ient than standard rules in some ways, be
ause weare evaluating all ne
essary Legendre polynomials P�l(xl) with 0 � �l � k� 1, so wemight as well multiply them together to get the remaining terms. Our experimentalimplementation, however, revealed that produ
t rules produ
e slightly larger errorsat greater expense, due to in
reased 
ell sizes. Hen
e our �nal 
ode used rules whi
hintegrate exa
tly monomials of standard degree � k � 1 ex
lusively.Another re�nement is as follows. The error analysis suggests that it might be
omputationally useful to have two di�erent orders of a

ura
y, for the smooth ruleand the singular rule. For example, we might 
onstru
t a 16th-order smooth rule but
orre
t it lo
ally only to 4th order. We have implemented this feature in our 
urrent
ode but our experien
e is not yet suÆ
ient to indi
ate its usefulness.5.1. S
attered data interpolation. A 
ommon problem of 
omputationalphysi
s is to 
onstru
t a globally de�ned \ni
e" fun
tion whi
h takes given valuesu(xj) at given points xj . The te
hniques developed above generalize immediately tosolve this problem.The fun
tion we 
onstru
t is a polynomial p(x) on ea
h 
ell Bi of the tree stru
-ture we 
onstru
ted for the smooth rule. A polynomial p of degree � k � 1 
an be



QUADRATURE RULES FOR SINGULAR FUNCTIONS 27represented as a Legendre seriesp(x) = Xj�j�k�1 p̂(�)P�(x)where P� is a shifted and s
aled Legendre polynomial on Bi = [a; b℄ and p̂(�) arethe Legendre 
oeÆ
ients of p. Ea
h p̂(�) is a linear fun
tional of p, hen
e 
an beapproximated by p̂(�) = Xxj2Bi wj(�)p(xj )where wj are exa
t for p = P�, j�j � k � 1. Thus w(�) = (wj(�) : xj 2 Bi) 
an befound as e.g. the least 2-norm solution ofÆ�� = Xxj2Bi wj(�)P�(xj)for j�j � k�1 and j�j � k�1. Them by p or p+1 matrix (P�(xj)) whi
h appears needbe subje
ted to the singular value de
omposition only on
e, and then ea
h � requiresonly two matrix-ve
tor multiplies and a s
aling by the singular values. Thus giventhe m by p or p + 1 matrix (wj(�)), the Legendre 
oeÆ
ients of a ni
e polynomialinterpolating values pj at points xj 
an be 
omputed by matrix multipli
ation:p̂(�) = Xxj2Bi wj(�)pj :Then the Legendre series provides an interpolant to the s
attered data pj .This lo
al interpolant on Bi is not of 
ourse 
ontinuous between 
ells. However, itis likely to be reasonably smooth sin
e wj solves a least 2-norm problem. It will haveorder of a

ura
y O(hk) where Bi has sides of length � h and pj are values of a Ckfun
tion on B. An expansion in other basis fun
tions on ea
h Bi 
an be 
onstru
tedin the same way, as 
an the derivative of s
attered data values.5.2. General B. The te
hniques developed in x2 and x3 extend to integrate over
urves and surfa
es in R2 and R3. Suppose we want to 
al
ulateZ� f(x)dxwhere f is singular at some point xs whi
h may be in or near the 
urve or surfa
e�. We en
lose � in a box B and 
onstru
t the usual tree stru
ture 
ontaining the Ngiven points xj , whi
h may be either in or outside �. Now we 
onstru
t, e.g. for thesmooth rule, weights W ij satisfyingXxj2BiW ijP�(xj) = Z�\Bi P�(x)dx(5.1)on ea
h 
ell Bi. The global weights de�ned to be Wj = W ij if xj 2 Bi 
an be
omputed by the singular value de
omposition if enough points are in Bi and willintegrate smooth fun
tions a

urately over �. The singular rule is produ
ed from thesmooth rule in the usual way.



28 J. STRAINThere are two new 
ompli
ations in this approa
h when � is not a re
tangle.First, we need the moments Z�\Bi P�(x)dxof polynomials over � \ Bi. If � is a pie
ewise linear manifold these moments areexa
tly 
omputable. In general, however, and 
ertainly when a singular rule is desired,some form of adaptive numeri
al integration over � will be needed. For general �this is a diÆ
ult problem; we expe
t approximation by pie
ewise polynomial � andnumeri
al integration as in the �nite element method will work, but other te
hniquesmay be faster. Note that the Gaussian integration 
ode we have developed in x4
an easily be extended to integrate over polyhedra rather than re
tangles, be
auseGaussian rules 
an readily be mapped to polyhedra with 2d verti
es in d dimensions.Polyhedra 
an be subdivided into polyhedra with 2d verti
es, with only the boundary
ells being non-re
tangular.Se
ond, the equations (5.1) are more likely to be rank-de�
ient, in whi
h 
aseno solution W ij will exist. If � is a plane, for example, then polynomials in variablesperpendi
ular to the plane are super
uous and we 
annot integrate them exa
tlywith any W . The singular value de
omposition provides a natural treatment of thisdiÆ
ulty; simply ignore all equations whi
h 
annot be satis�ed. They will not a�e
tthe a

ura
y of the rule W , be
ause W only integrates over � in any 
ase.The a

ura
y of the rule requires more ma
hinery to analyze. The additionalingredient is extension theorems; we need to extend fun
tions on � to smooth fun
tionson Bi without in
reasing the size of derivatives. That this 
an be done is proved ine.g. [8℄. It follows that a rule 
onstru
ted in this way will enjoy the same 
onvergen
eproperties as in the 
ase when � is a re
tangle.6. A
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