LOCALLY-CORRECTED MULTIDIMENSIONAL
QUADRATURE RULES FOR SINGULAR FUNCTIONS *

JOHN STRAIN T

Abstract. Accurate numerical integration of singular functions usually requires either adaptivity
or product integration. Both interfere with fast summation techniques and thus hamper large-scale
computations.

This paper presents a method for computing highly accurate quadrature formulas for singular
functions which combine well with fast summation methods. Given the singularity and the N nodes,
we first construct weights which integrate smooth functions with order-k accuracy. Then we locally
correct a small number of weights near the singularity, to achieve order-k accuracy on singular
functions as well. The method is highly efficient and runs in O(Nk2%4 N log? N) time and O(k2? +N)
space. We derive precise error bounds and time estimates and confirm them with numerical results
which demonstrate the accuracy and efficiency of the method in large-scale computations. As part of
our implementation, we also construct a new adaptive multidimensional product Gauss quadrature
routine with an effective error estimate, and compare it with a standard package.

The approach generalizes to interpolate and differentiate scattered data and to integrate singular
functions over curves and surfaces in several dimensions.

Key words. numerical integration, singular integrals, fast algorithms, quadtrees, singular value
decomposition, vortex methods, potential theory, interpolation

AMS subject classifications. 65D32, 65D05, 65D30, 65R20

1. Introduction. Many numerical problems require the evaluation of integrals
(1.1) |t
B

where B is a D-dimensional subset of R? and f is an integrable function on B. Many
methods have been devised for the numerical calculation of such integrals, each useful
for certain values of D and d and certain classes of B and f. In the case d=D =1
an extensive literature is summarized in [6], while in d > 1 dimensions much recent
work is presented in [7, 15].

This paper focuses on the evaluation of (1.1) in the following common situation.

(a) B is a rectangle [a,b] := [a1,b1] X ... X [ag, bg]-

(b) We are given values f(x;) of f at N points ; not of our choosing.

(c) We are given an integrable but singular function o : B—R?, which is C* away
from a lower-dimensional subset S of B, and f has the form

(1.2) f(@) = ¢(x) - o) + ¢(2),

where ¢ : B5R? and ¢ : B=>R are unknown C* functions on B.
We construct two rules for numerical integration. In §2, we construct a rule W
with weights W;, 1 < j < N, which integrates smooth functions accurately:

N
(1.3) Zng(xj):/Bg(x)dx-l-EN,

* This research was supported by a NSF Young Investigator Award, by Air Force Office of Scien-
tific Research Grant FDF49620-93-1-0053, and by the Applied Mathematical Sciences Subprogram
of the Office of Energy Research, U.S. Department of Energy under Contract DE-AC03-76SF00098.

T Department of Mathematics and Lawrence Berkeley Laboratory, University of California, Berke-
ley, California 94720 (strain@math.berkeley.edu).

1

2 J. STRAIN

where Ey decreases rapidly as N—oo if g is smooth enough and the points z; happen
to be distributed appropriately. For example, Ex = O(N~#/%) if g is C* and the
points are uniformly distributed on B, where k is the order of accuracy of the rule.
The computation of W requires O(N(k2? + log” N)) time and O(k** + N) space.
Precise error bounds are proven in §2.3 and numerical examples are given in §2.4.

In §3, we construct a rule w with weights w; which integrates singular functions
of the form (1.2) accurately. The singular rule w has the “local correction” property
that w; = W; except for a small number of j’s, those for which x; is near the singular
set. This property is important in the application of fast algorithms to the efficient
evaluation of families of singular integrals. The computation of those w;’s differing
from W; requires O(k3?) time. Error bounds are proved in §3.2 and numerical results
are given in §3.3.

These general rules are constructed with certain specific classes of applications in
mind, including computational fluid dynamics, potential theory and crystal growth.
These applications require the application of integral operators

(1.4) u(z) :/BK(xw')w(x')dx'

where K has known singular behavior on a lower-dimensional set but w is (at least
piecewise) smooth. Typically K is singular at a single point, we know w(s;) at N
points s;, and we would like to approximate M values u(t;) at points t; € R%. We have
no control over the location of the s; and would like to avoid the artificial viscosity
produced by interpolating, so we take the s;’s as given.

A classical approach to this problem is product integration [6]. Here we approxi-
mate u(t;) by a rule of the form

N
(1.5) u; = ZKijw(Sj)

with K;; chosen to integrate some class of w exactly for each <. This is a M x N matrix
multiplication, so it costs O(M N) work, which is very expensive when M and N are
large. This has been a stumbling block in computational fluid dynamics [5], potential
theory for the Laplace equation [14], and crystal growth [23]. Product integration
also tends to require difficult, expensive, and sometimes impossible algebraic manip-
ulations and evaluation of integrals in closed form. A major objective of this paper is
to eliminate the calculations required by product integration, and replace them with
a single general-purpose method which produces locally corrected quadrature rules of
arbitrary order for any given singularity.

More recently, fast summation methods have been developed for several kernels
K. These methods evaluate the discrete sum

N
(1.6) ui =Y K(ti,sj)Ww(s;)) 1<i<M

=1

to accuracy €, in O((N +M)loge) work. See [1, 3, 4, 12, 25, 29] for vortex methods and
potential theory and [11, 24] for Gaussian kernels. However, these methods cannot
be combined with product integration, where the weights depend on the point of
evaluation t;.

Another class of recently-developed fast methods is aimed more directly at the
continuous problem (1.4); see [18, 20, 25] for vortex methods and potential theory

QUADRATURE RULES FOR SINGULAR FUNCTIONS 3

and [10, 26] for heat potentials. These methods are related to product integration
in some cases, usually have a fixed and not too high order of accuracy, and tend to
be slower than fast methods for discrete sums (1.6). Like product integration, they
sometimes require difficult and expensive algebraic manipulations and evaluation of
integrals which can be carried out only in special cases.

Singular quadrature rules of the type developed in this paper allow the application
of fast algorithms for discrete sums (1.6) to the continuous problem (1.4), because
w; are independent of the point of evaluation t; except for a few points near the
singularity. Thus fast methods can be applied to the sum (1.6) with weights W;, and
then u; can be corrected locally to get an accurate and inexpensive approximation
of u(t;). This observation was apparently first made in [19], where one-dimensional
singular endpoint-corrected trapezoidal rules were developed. It has been applied to
one-dimensional integral equations in [22].

Our method requires knowledge of the singularity o(z) only in the weak sense
that we need modified moments

(1.7 Py (z)o(x)dx
BnC

over rectangles C', with P, a suitable family of multidimensional orthogonal polynomi-
als. Obtaining these moments is itself a highly nontrivial task in this generality, with
many possibilities depending on the singularity and on B. We have implemented, as
part of our method, a general multidimensional adaptive Gaussian quadrature code,
with a novel error estimator, which may be of some independent interest and is there-
fore described in §4. It is sufficient for vortex methods and for volume potentials in
potential theory, and hence for the solution of variable-coefficient elliptic partial dif-
ferential equations, as in [27]. Numerical results in §4 indicate that it is competitive
with standard codes in dimensions d =2 and d = 3.

The techniques presented in this paper generalize immediately to solve several
other problems of considerable interest. We can approximate and differentiate func-
tions known at arbitrary points, a technique which is useful in many computational
problems. We can integrate singular functions over more general domains, such as
curves and surfaces. Several such generalizations, along with several refinements of
the basic method, are discussed in §5.

2. Smooth rules.

2.1. Overview of the construction. We construct rules with IV given points
x; for integrating smooth functions over a d-dimensional rectangle B = [a,b] :=
[a1,b1] X -+ X [ag,bq]. The structure of these rules will make a good base for the
construction of singular rules with locally corrected weights.

Let £ > 1 be the desired order of accuracy of the rule, assume N > m :=
m(k,d) == (k+d—-1)(k+d—2)---(k+ 1)k/d!, and choose an integer L with p :=
|N/2E| > m. Using a data structure developed below, we divide B into M = 2%
rectangular subcells B; with disjoint interiors such that B is their union and each B;
contains either p or p 4+ 1 points z;. Then on each B;, we construct local weights
WZJ for z; € B; which integrate the m monomials of degree < k — 1 exactly over B;.
(A monomial of degree k in d dimensions has the form z{"'x52 - - - 3}*, where each q;
is a nonnegative integer and |a| := oy + az + ...+ ag = k. There are precisely m
monomials of degree < k — 1.) Because of the ill-conditioning of the power basis, we
construct these weights by solving the following system of m linear equations in at

4 J. STRAIN

least p unknowns:

(2.1) $ Pa(xj)W;:/BvPa(x)dx] <k —1.

T;EB;
Here

Pa(x) = Pal(xl) "'Pad(xd)

is a product of one-dimensional Legendre polynomials, with the [th factor scaled and
shifted to live on the interval [a;,;]. Since p > m, this system of m equations in
at least p unknowns generically has solutions. We compute the solution WJZ of least
Euclidean norm, using the singular value decomposition [9]. §2.3 discusses what to
do when no solution exists. The global weights of the rule W are then defined to be

Wj = W; for T; € B;.

2.2. Details of the construction. We now construct a data structure with
two useful features; first, it partitions B into rectangular cells over which we can
easily integrate polynomials and second, there are neither too many nor too few of
the points z; in each cell. Too many points makes the singular value decomposition
too expensive and produce a less accurate rule because the cell size increases, while
too few points makes (2.1) overdetermined so generically no solution exists. When
the number of points p is very close to the minimum required m, so (2.1) is barely
solvable, the solution tends to have large 1-norm, making it unsuitable for numerical
integration. This is similar to the well-known Runge phenomenon encountered in
interpolation (where p = m) at equidistant points. We found that p of order 2m gave
excellent results.

Such a “tree structure” can be constructed by recursive subdivision. Let B = B;
be the level-0 root of the tree. Divide By in half by a plane perpendicular to say the
I’th coordinate axis, with the dividing plane located so that each half of B; contains
either [N/2] or [N/2] +1 points. This gives the level-1 cells B, and Bs. Repeat this
procedure on By and Bs, with the splitting dimension / chosen independently for each
cell, to get By through By, each containing | N/4| or [N/4]| + 1 points z;. Repeating
this procedure L times gives M = 2% cells B; on the finest level L, numbered from
i =M toi=2M — 1, each containing p = |[N/M] or p + 1 points ;. The union
of all the cells on any given level is B. The tree structure is stored by listing the
boundaries of each cell B; = [a;,b;] from ¢ = 1 to i = 2M — 1, a total of 2d - 2M
numbers, and indexing the points into a list so that the points x; € B; are given by
j =j(s) for s = b(i),...,e(i) and three integer functions 7, b and e. This can be done
in O(N log N), but the simplest method requires sorting the points in each cell before
each subdivision, giving a total cost O(N log N) for the tree construction when an
O(N log N) sorting method such as heapsort [17] is used. Figure 2.1 shows an example
of this construction. We note that hierarchical data structures with similar properties
— though not this particular one — have been extensively discussed in [21].

The dimension [across which to split a given cell can be selected in several ways.
We can split the longest dimension, so that the length-dependent factor in the error
bound of §2.3 is reduced as quickly as possible; choose [with

by —a; > b —a; for 1<y <d.

Alternatively, we can choose [to minimize the second moment of the points in the cell.
If function values at the nodes are available when the rule is constructed, other choices
intended to minimize integration error for that specific function can be devised.

QUADRATURE RULES FOR SINGULAR FUNCTIONS)

Foar T — - — T — - EET I e T e

Fic. 2.1. Lewvels 1 through 6 in the tree structure with N = 1137 pseudorandom uniformly
distributed points on [0,1]2.

For future reference, we note that the tree structure permits efficient O(L) lookup
of the level-L cell containing any point € B. We simply begin at the root and discard
all children not containing x; the process is then repeated recursively on the remaining
child until we reach the lowest level. More generally, we can find all cells intersecting
a given rectangle R in time proportional to L and to their number. This will be useful
in the construction of singular rules.

2.3. Error bounds. The global weights W; now integrate all 2 with |a| < k-1
exactly over all level-L cells B; for M < ¢ < 2M — 1. We now show that this property
alone results in order-k accuracy, with a condition number appearing in the error
bound.

THEOREM 2.1. Let B = U?EAZIBi where B; = [a;,b;]. Suppose that W integrates

«

2% exactly over each B; for |a| <k —1. Then for any C* function g on B, the error
E= / x)dx — Z W;g(x;)
Jj=1
satisfies
; 1 a0
(2.2) |B| <QIB|(h/2)" Y Sil19%glloo(m)

|| =k

where h = max;; by — a; is the longest cell edge,

(2.3) —1+|B|Z|W|

6 J. STRAIN

is the condition number of the rule W, and |B| is the d-dimensional volume of B.
Proof. The error in integrating a smooth function g over B is given by a sum over
cells

N 2M—1
(2.4) E::/ 9= Wiglz;)= > Ei
B j=1 i=M
where
(2.5) i::/ g— Y Wigl)).

z;EB;

Let G be the polynomial of degree < k — 1 which best approximates g on B; in the
maximum norm. Since W is exact for G on B;, we have

(2.6) E - / (g- Gz + 3 WiG(;) - g(;))
Bi z;EB;
and thus
Bl < lg=Gllopy+ S WHIG(;) — glay)]

z;€EB;
< QBilllg - Glleoca,)

where the local condition number ¢ is defined by

(2.7) Qf

z,GB
|B;| is the volume of B;, and the C° norm is defined by
2. =
(2.8) lelleos) = max|p(z)]

for continuous functions ¢ on a set B.

The error bound on each cell is thus separated into a factor Q* independent of the
integrand, a factor of | B;|, and a factor which depends only on approximation of the
integrand on the cell. The first factor Q¢ cannot be bounded a priori unless all the
weights are nonnegative, in which case Q¢ = 2. However, Q¢ can easily be computed
a posteriori and thus serves as an extremely useful diagnostic for the quality of the
rule.

The volume factor in the error bound depends only on the distribution of points
and the tree structure constructed, and will add up to the volume of the domain B.

Finally, we bound the error in approximating g. Assume g € C*(B); then by
multidimensional Taylor expansion [§], we have

(2.9) glz+y)= > 9% —+Rk(x Y)
o <k—1

where a! = ajlas! - aq!, 0% = 07" ...07"g, y* = yi* ...y;", and the remainder is
bounded by

(2.10) Ri(r,y) < Y

la|=k

(hl/2) let
of o2 1"l +

QUADRATURE RULES FOR SINGULAR FUNCTIONS 7

on the cell B; = [a;, b;] with side length h; = b;—a;. Since G is the best approximation
to g on B; by a polynomial of degree < k — 1, we have

(hi/2)®
a!

(2.11) llg — Gllcos,) < Z

la|=k

||aag||CO(Bi)
The global error bound follows immediately:

M
El < Y QBilllg ~ Cllens,

i=1

a 1o
< Q|B|(h/2)" Z a”a glleos) O
la|=k

a

Note that € plays the role of a condition number for W, mediating between
the intrinsic difficulty of integrating g (as measured by the derivatives of ¢) and the
accuracy of the final result. There are several ways to reduce each Q° and thus
obtain a better error bound. Usually taking more points per cell reduces ¢, since
the additional degrees of freedom are not needed to satisfy (2.1) and can be applied
to reducing the 2-norm of WJZ However, this increases the cost of computing W
considerably and increases the cell size h, so taking larger p is not cost-effective if
applied globally.

It can be applied adaptively, however, by going up to a different level of the tree
structure when necessary. To implement this, we specify a tolerance €,,. When Q! >
., we merge B; with its sibling in the tree structure, obtaining a cell By containing
twice as many points ;. We then recompute all weights W; for which z; € By,
usually obtaining Q < €0, at the cost of a larger singular value decomposition and
a larger cell size h. If Q is still too large, the process may be repeated.

This adaptive technique also permits treatment of the degenerate cases when no
solution exists to (2.1) on cell B;, because the points z; are not in sufficiently general
position. Such a cell can be merged with its sibling, after which a solution is much
more likely to exist. The process may be repeated if necessary.

Another approach to reducing the error bound would be to seek the least 1-norm
solution of (2.1), which would minimize Q. This 1-norm minimization problem is
standard but somewhat more expensive to solve that the 2-norm problem we solve
with the singular value decomposition. We found that values of p of order 2m usually
produce Q' within an order of magnitude of the lower bound 2, so we expect little
improvement from the 1-norm minimization approach and have not experimented
with it.

2.4. Implementation and numerical results. We implemented this method
in a portable ANSI Fortran code. The code accepts the order k, the dimension
d, the number of levels L, the domain B = [a,b] C RY, and the N user-specified
quadrature nodes x; € RY. It returns N weights Wj, the cell structure, the maximum
condition number encountered in the singular value decompositions, 2, the cell size
h, and so forth. The numerical results reported here were obtained on a Sun Sparc-2
workstation.

We tested the code by generating N = 256,512,...,16384 pseudorandom uni-
formly distributed points in the two-dimensional unit square [0, 1]?, computing the
weights W with p = k2 > m = k(k + 1)/2 for k = 2,4,8,12 and 16, and using

8 J. STRAIN

them to integrate monomials, cosines and Lorentzian functions over [0, 1]2. The test
integrands are thus the vectors

g2(x) = (cos(n(z1 —r1)) cos(n(ze —r2)) : 1 <n < 10)

n@) = (20 o =)

N2+ (ra—1e)?) t:1<n< 10)
n

with 7; uniformly distributed on [0,1] and k the order of the rule. Note that the
family g; becomes more difficult as & increases.

Since the N points are randomly generated, we cannot expect a smooth conver-
gence as N—oo. Hence for each integrand g;(z), we generated 20 different sets of
nodes x; and computed the minimum, arithmetic mean and maximum of the errors
E; and their base-2 logarithms L;, and the corresponding standard deviations. The
base-2 logarithm makes the order of convergence easier to see: kth order corresponds
to L; decreasing by k/2 when N is doubled.

N h Q T L Lo L3
128 0.3559 2.05 0.10 -10.35 -5.07 -3.03
256 0.2934 2.04 0.15 -11.45 -5.65 -4.13
512 0.1981 2.05 0.32 -13.44 -7.45 -4.40
1024 0.1536 2.04 0.69 -14.07 -8.98 -6.67
2048 0.1095 2.05 1.52 -15.59 -10.20 -7.51
4096 0.0809 2.05 3.28 -17.04 -11.56 -9.13
8192 0.0551 2.05 726 -18.94 -12.98 -9.86
16384 0.0428 2.05 15.99 -19.15 -14.91 -11.25
TABLE 2.1
Mesh size h, condition number Q, CPU time T and average base-2 error logarithms L; for the
second-order smooth rule with N random points.

N h Q T L Lo L3
128 0.5146 3.22 0.22 -12.67 -4.90 -3.58
256 0.3293 3.51 0.41 -14.54 -7.66 -5.29
512 0.2776 3.60 0.84 -15.78 -9.15 -4.74
1024 0.1764 3.34 1.73 -18.76 -12.09 -7.67
2048 0.1449 3.36 3.57 -19.61 -14.40 -9.93
4096 0.0915 3.42 7.41 -22.30 -17.07 -12.82
8192 0.0752 3.48 15.53 -23.64 -18.85 -14.36
16384 0.0492 3.49 32.52 -26.02 -21.88 -17.27
TABLE 2.2
Mesh size h, condition number Q, CPU time T and average base-2 error logarithms L; for the
fourth-order smooth rule with N random points.

Tables 2.1 through 2.5 display the averages L; of the base-2 logarithm of the
error F¥ produced when the gth-order smooth rule W is applied to integrate the test
functions g; for j = 1,2 and 3 and k =2, 4, 8, 12 and 16. Since the number of points
doubles in each succeeding row of each table, we expect L; to decrease by k/d = k/2
in each step. This decrease is clearly evident for large N. It tends to occur doubled
at alternate lines because only when the number of points increases by 2¢ = 4 does
the average spacing h decrease by half.

QUADRATURE RULES FOR SINGULAR FUNCTIONS 9

N h Q T L Lo L3
128 1.0000 6.20 1.21 -11.95 -5.31 -4.29
256 0.5520 7.35 2.37 -14.60 -8.55 -4.56
512 0.5139 6.01 4.76 -17.92 -1242 -5.91
1024 0.2893 6.69 9.52 -21.39 -16.62 -9.67
2048 0.2635 6.24 19.16 -24.10 -21.02 -12.25
4096 0.1504 6.15 38.65 -28.57 -25.58 -16.59
8192 0.1350 6.29 77.91 -33.27 -29.16 -17.33
16384 0.0786 6.58 157.08 -36.74 -34.75 -23.32
TABLE 2.3
Mesh size h, condition number Q, CPU time T and average base-2 error logarithms L; for the
eighth-order smooth rule with N random points.

N h Q T Ly Lo L3
256 1.0000 19.48 9.95 -14.34 -9.17 -4.85
512 0.5364 24.37 19.92 -18.62 -15.91 -7.65
1024 0.5073 37.65 39.81 -22.09 -21.00 -9.18
2048 0.2762 27.28 79.75 -26.81 -28.63 -12.96
4096 0.2579 26.22 159.82 -31.52 -33.99 -15.34
8192 0.1431 28.42 32041 -38.84 -40.07 -21.38
16384 0.1324 26.38 642.06 -43.83 -46.71 -23.67
TABLE 2.4
Mesh size h, condition number Q, CPU time T and average base-2 error logarithms L; for the
twelfth-order smooth rule with N random points.

The code is extremely efficient. Rules of orders £ = 2, 4, 8 12 and 16 with
N = 16384 nodes require 7" = 16, 33, 157, 642 and 2041 CPU seconds on a Sparc-2
workstation. By comparison, the actual integration of even such simple functions as
g2 and g3 with the given points and weights takes 3 and 1.5 CPU seconds respec-
tively. Thus an integrand with a substantial degree of complexity will dominate the
integration time.

To demonstrate the improvement due to taking p substantially larger than m, we
also ran tests with N = p=m,m+1,...,k% for k = 2, 4, 8, 12 and 16. Table 2.6
shows some of the results. We see that larger values of p produce dramatic decreases
in €, especially for higher-order rules.

3. Singular rules.

3.1. Overview of the construction. We now select and correct certain weights
W; of the smooth rule W, to produce a singular rule w which will integrate singular
functions f(z) = p(x) - o(z) + ¥ (x) more accurately.

The weights to be corrected are selected by forming a list of cells B; in the tree
structure built for the smooth rule W and correcting all the weights W; for which x;
lies in some cell on the list. For each cell B; on the list, we construct w; for x; € B;
by requiring w; to satisfy the linear system of (1 4+ s)m equations which expresses
that P, (z) and P,(z)o(x) are integrated exactly for |a| < k — 1:

(3.1) P, (x)dx = w; Py (x5)
(3.2) /B' Py (x)o(x)dx = Z w; Py(z)o¢(xj)

z;EB;

10 J. STRAIN

N h Q T Ly Lo L3
256 1.0000 71.16 31.80 -13.39 -9.96 -5.74
512 1.0000 31.93 63.70 -16.26 -16.10 -7.44
1024 0.5210 68.11 127.28 -20.29 -24.86 -11.53
2048 0.5045 53.34 254.55 -26.56 -32.94 -11.66
4096 0.2696 49.57 509.72 -33.16 -42.35 -19.14
8192 0.2576 51.48 1019.63 -39.50 -47.79 -19.69
16384 0.1375 45.07 2041.41 -44.54 -48.48 -29.81
TABLE 2.5
Mesh size h, condition number Q, CPU time T and average base-2 error logarithms L; for the
sizteenth-order smooth rule with N random points.

k=2 N = 3 4 5 6 7 8
Q= 34 3.4 2.5 2.2 2.2 2.1

k=4, N = 10 11 12 13 14 16
Q= 40 10 8.2 5.9 4.6 3.3

k=8 N = 36 40 44 48 56 64
Q= 6673 85 43 24 13 7.3

k=12, N = 78 84 99 114 129 144
Q= 4803412 1057 180 46 37 23

k=16, N = 136 144 172 200 228 256
Q= 313597 16561 923 221 90 66

TABLE 2.6

Average condition number Q2 as a function of the number N = p of points per cell for k =2, 4,
8, 12 and 16.

for |a| <k—1and 1 <t < s. In order for these equations generically to have solutions
w, we cannot use the cells B; on the lowest level L of the tree structure, because each
of these contains only p > m or p+ 1 points ;. Instead, we use the cells constructed
on a level L' < L of the tree structure, for example with L' := L — [log,(1 + s)] if p
was chosen of order 2m to begin with. On level L', we have fewer and larger cells, each
containing at least p’ := N/2%" > (14s)m points. Thus (3.1) and (3.2) will generically
be solvable. In practice, we solve (3.1) and (3.2) by the singular value decomposition,
obtaining w as the solution of least 2-norm if it exists. A major new difficulty which
requirement (3.2) introduces is the computation of the singular moments

(3.3) /Bv P, (z)o(x)dx

when ¢ is not smooth. §4 is devoted entirely to this question.

The actual selection of cells to correct can be made in several ways. If o is
singular at a point x5 € B, for example, a natural choice would be simply to correct
the cell B; on level L' which contains z;. However, xs might lie at the corner of B;,
so many nearby points would go uncorrected if this selection were made. A variant
of single-cell correction is to correct only the neighbor cells of the quadrant of cell
B; where z; lies. An alternative and natural choice would be to correct all cells
intersecting a region of specified size § around the singular set S; these cells can be
found efficiently, as described in §2. However, a fixed size § requires correction of
a number of points proportional to N as N—oo, which is unacceptably expensive if
fast summation methods are employed. Thus this selection scheme is robust but too
expensive. Also, it takes no account of local density variations of the points.

We chose to select cells for correction by the following approach. The user specifies
a dimensionless correction radius 7., typically of order unity. We find the cell B; =

QUADRATURE RULES FOR SINGULAR FUNCTIONS 11

[a,b] in which the singularity lies (several cells if o has a higher-dimensional singular
set). We then select for correction all cells intersecting the rectangle R = [z — r.(b—
a)/2,xs+1.(b—a)/2] of size r. times B; and centered at each singular point x5 € S.
This scales the size of the corrected area to the local cell size and therefore to the local
density of nodes, keeping the number of corrected points per singular point of order
unity as N—oo with r, fixed. If D = dim S then the number of corrected points is
O(NP/d). We found r. = 3 to give excellent results in practice. The lookup of cells
to be corrected costs only O(L) per cell.

Remark: We can construct a locally-corrected product integration rule using
the same technique; we simply drop the requirement (3.1) and go up fewer levels in
the tree structure. This gives a rule which integrates polynomials times ¢ accurately,
which is enough for many applications. The added generality obtained by requiring
(3.1) as well as (3.2) is important when the integrand may be nonsingular (for example
when o happens to vanish at the singularity), and costs little.

Remark: o(z;) may be infinite or undefined, so we don’t want to evaluate f
at z,. If z; is one of the quadrature points z;, then we eliminate it from the list of
points to be corrected, set w; = 0, and proceed.

3.2. Error bounds. The error bounds for singular rules can be derived by poly-
nomial approximation, as in the smooth case. No matter how the list of corrected cells
is made up, there will be two types of cells to consider; corrected and uncorrected. On
the corrected cells, both ¢ and v can be approximated and the remainder estimated
as for smooth rules. On the uncorrected cells, the derivatives of the singularity come
into play; the key assumption in the error bound is that we correct all cells sufficiently
close to the singularity.

For notational convenience, let’s renumber the M cells used in the singular rule,
so that the first n are corrected and the last M — n are not: thus B = UM B; where
each cell B; contains at least (1 + s)m points for 1 < i < n and at least m points for
n+1<i< M. Let the sides of B; be h;; for [=1,2,...,d and let h = max;; h; be
the maximum cell edge. Assume that we have weights w; such that

/ xdr = Z w;x§
Bi T;EB;
and
/ o(x)z“de = Z wjo(x;)zs
Bi T;EB;
for |a] <k —1and 1 <i<n, while
/ xdr = Z w;x§
Bi z;€EB;

for ja| <k—-—landn+1<i< M.

Assume also that the union U}, B; of the corrected cells contains the set R; of
all points within distance § of the singular set S. For example, we assume U} B;
contains the ball {y € R : ||zs — y|| < 6} around each singular point zs. Finally,
assume that o is C* outside the singular set S and that its derivatives satisfy a growth
condition

(3.4) 0% (x)] < Co 1

12 J. STRAIN

for |a| = 0 and |a] = k, 6 > 0 and * ¢ R;. Here C is a constant and § > 0 is
arbitrary. This assumption is very benign since it does not even guarantee that o is
in L'(B). It is satisfied by the singularities occurring in potential theory as well as
by the Biot-Savart kernel o = z/||z||?.

Starting from these assumptions, we derive a bound for the error

N
E= /B (@) - o(x) + (a)dr ;ij(xj) o) + (aj)-

where ¢ and ¢ are C*. The nonsingular term in 1 can be bounded exactly as for the
smooth rule in §2, giving

al 1
[vtands =S)] < QUBIE/2* S 10 o

loe|=k

For the singular term, we have to consider corrected and uncorrected cells sepa-
rately. On corrected cells B; (1 <i < n), we have a best approximation ® to ¢ by
a polynomial of degree k — 1 and the resulting bound

o= 1 o) o= 3 wele)- o)

z;EB;
Q| Bil llp — ®llco(n,)

IA

where the singular condition number Q¢ is defined by

i 1
Q) =1+ —= > |wjo(z;)|.
|B7I| T;€B;

As in §2, the best approximation error ||¢ — ®||co(p;) can be bounded by Taylor
expansion to get

- X 1
E; < QLIBi|(h/2)" > a||aa99||00(3,:)~
laj=k

Note that a priori Q! can be infinite, if one of the quadrature nodes happens to
coincide with a singular point z5 € S. Thus Q! must be computed a posteriori and
used as a measure of the quality of the rule. The methods for reducing Q¢ discussed
in §2.3 apply to Q% as well. In our examples, however, we rarely encountered large
values of L.

Now consider the error due to integrating ¢ - 0 over an uncorrected cell B; where
w = W. From §2.3, we know that the error on cell B; is bounded by

A ¢ 1 o
E; <Q'|Bil(h/2)* 0% (e - a)lleon,).
|a|=k

We simplify this bound by separating derivatives of ¢ and o, using the standard
inequality for Holder norms proved in [13]:

(e - lerm) < C (llolleomalleller) + lloller s llelloos.)) -

QUADRATURE RULES FOR SINGULAR FUNCTIONS 13

Here the C* norm is defined by

lleller sy = llelleom) + Z [[0%¢llco(m)
la|=k

for £ > 0, so
E; < Ci|Bilh*|lg - ollon s,
This separates the bound for E; into two pieces E} and E?:

E} CQ| Bi| ¥ o || o) llllox (8
CQUIBi|6~h¥ ||l (B,

IN

and

5
[

CU|Bi|h*||o|cn ()

lelleocs:)

IN

(M
cu15157* () llellooim

where we have used assumption (3.4).

We now pause momentarily to discuss our strategy for selecting corrected cells
B;. Clearly the choice § =constant, correcting all cells within a fixed distance from
S, produces the simplest error bound. Indeed, if ¢ is fixed, then the global error E
satisfies

E < CB|||¢llex (k"

just as for the smooth rule, with a constant which depends on §. Unfortunately,
in practice we cannot afford to compute the O(N) correction weights within fixed
distance ¢ from S as N—oo. Thus we give up the simplicity of this error bound.

Instead, we take 6 = r.h where r. is fixed, in order to correct fewer points as
N —00. This complicates both pieces of the error bound in two different ways. First,
the factor 6~¢ seems to cancel the volume factor |B;| = O(h?), so naively summing
over all O(N) uncorrected cells produces a factor of N in both E! and E?. Second,
the factor 6 * in E? eliminates the usual O(h*) error altogether.

We handle the second difficulty by seeking an error bound of a different form
from the usual O(h*). We choose ¢ so that (h/d)* < e where € is a user-specified
parameter, usually smaller than h* over the range of affordable h. Then we seek an
error bound of the form E < O(e) + O(h*) where the constant in O(e) is allowed to
depend on derivatives of o but not on those of p. The constant in O(h*), on the
other hand, may depend on derivatives of ¢ as usual, but not on those of ¢. Similar
error bounds often occur in the design of fast algorithms [4, 25] and are quite useful
in practical computations.

Thus we choose (h/6)* < € to get

E; < CQB|6™ (h¥||¢llcx (B, + ellellcos))

and it remains to deal with the first difficulty, of summing over all O(N) uncorrected
cells B;.

14 J. STRAIN

Let Q,, = max ¢, and divide the uncorrected cells B; into P = O(1/8) = O(1/h)
shells

Sp ={B; : pd <d(B;,S) < (p+1)d}
where the distance from B; to S is defined by
d(B;,S) := min{||z — zs|| : © € Bj,zs € S}.
For B; € S, we have the stronger bound

E; < CQu|Bi|(p8) " (h*|lollex) + ep™*llellons,) -

Thus
M P
DB =3) B
i=n+1 p=1 B;cS,
»
< (Z |Bz‘| 5~ h"gllow (m)
—1 Bies,
»
(3.5) Z TR B 6ol oo m)-
=1 BieS,

The volume of the shell S, is bounded by Cp?¢=1§¢ and since the cell edges are all
bounded by h = O(6), the sum over i satisfies

> IBi| < Cptts
B;eS,

for some constant C. This cancels the factor of 67¢. The first sum over p in (3.5)
then diverges logarithmically, giving a factor of log P = O(]log h|), and the second is
bounded by > 2, p17F < o0 if k > 1. Thus

M
> Ei < CQp (|log hlB¥||¢llcon) + €llellcos))
i=n+1

We see that we suffer for the singularity by a factor |logh| and a term €||¢||co(p)
We conclude that the total error due to uncorrected cells is bounded by

E < Oy (Jlog h|1F||ol|on) + €llellcos))

whenever (h/§)* < e. Our numerical experiments tend to confirm the accuracy of
this bound.

Thus we have proved the following theorem:

THEOREM 3.1. Fiz e > 0 and correct the O(NP/4) cells intersecting Rs where
D =dim S and

§=r.h =e VEp,

QUADRATURE RULES FOR SINGULAR FUNCTIONS 15

Then the error in integrating ¢ - o + 1 over B with the locally corrected rule w is
bounded by

1B < C(Q+ Qo) (W [¢llon(m) + [og hlh [l) + ell@lloo(m)) -

In particular, we need only correct a fixed number of points as N — oo if ¢ has only
point singularities.

The absence of a volume factor |B| in this bound is dismaying at first sight but
actually natural, because under the weak assumption (3.4) on o, the integral itself
need not scale with |B|. If o(x) = ||z||~¢, for example, then scaling the variables
shows that the integral

/ o(x)dx = / o(x)dx
5<|z]|<R o< |z[<eR

for any e. Under stronger growth conditions on o, for example those satisfied by the
Biot-Savart kernel, the error estimate would scale in the same way as the integral.

3.3. Implementation and numerical results . We have implemented these
techniques in a portable ANSI Fortran program which constructs the singular weights
w; from the data structure and weights W constructed in §2. The singularity is
evaluated by a user-supplied subroutine, and is thus quite general. The dimension
and order are also arbitrary user-specified parameters. A routine for evaluating the
singular volume moments by the technique of §4 is supplied, but the code is highly
modular and the user can freely import routines for evaluating the singular moments if
they are available e.g. in closed form. The polynomials P, (z) can also be replaced by
other basis functions if desired. The code contains several other refinements discussed
in Section 5.

We have tested the code on several singularities in d = 2 and d = 3 dimensions.
Here we report on the results obtained with d = 2 and the Biot-Savart kernel

We ran two sequences of tests. First, we carried out a convergence study with
a regular grid. We placed N = 256,1024,...,65536 points in a square grid in B =
[0,1]2. For each k¥ = 2, 4 and 6, we constructed the smooth rule with these N
points and p = k2 points per cell. We then generated 20 random points z, in B and
computed the kth-order correction weights for each singularity o(x — xs), correcting
cells containing p’ = 2k? points and within a correction radius 7, = 3 times the cell
containing xs. Tables 3.1 through 3.3 report the averages L. and L~ of the base-2
logarithms of the errors in using these weights to integrate the singular monomials
(1 + 22)% (x — x,) with 0 < a < k—1for L. and k < a < 3k — 1 for L~. Note
that the error for a < k£ — 1 is not zero for two reasons; we compute the singular
moments approximately and we only correct nearby cells. We compute the singular
moments with the code described in §4, using increasing accuracy as the number of
points increased: €, =€, = 1073,107°,...,107 ! for N = 256,...,66536. The tables
also report the average CPU time per correction T', condition numbers Q and Q,, the
maximum cell edge length h, and the number C' of corrected points.

The following observations can be made from these results. The convergence rate
is somewhat irregular, but roughly accords with theoretical expectations. The use of
base-2 logarithms means that L. and L~ should decrease by k each time N is quadru-
pled, for the kth-order method. The number of corrected points does not increase with

16 J. STRAIN

N. However, the correction is rather expensive due to the general-purpose nature of
the code and the necessity of obtaining singular moments by numerical integration.
The increase in accuracy of the numerical integration accounts for the increase of T
with N. We believe a more efficient and specialized implementation for a specific
singularity such as the Biot-Savart kernel could achieve faster run times by orders of
magnitude. Finally, we observe that the condition numbers 2 and 2, are bounded
by 2 and 3.8 respectively.

N h C T Q Qo L« L
256 0.2500 99 0.62 2.00 3.62 -12.21 -12.57
1024 0.1250 134 1.63 2.00 3.66 -13.15 -13.66
4096 0.0625 134 3.65 2.00 3.69 -15.30 -15.57
16384 0.0312 139 818 2.00 3.71 -1843 -17.87
65536 0.0156 139 18.16 2.00 3.71 -20.73 -19.89
TABLE 3.1
Results of integrating monomials times the Biot-Savart kernel, with second-order singular rules
with N regular grid points.

N h C T Q Qo L« L
256 0.5000 256 244 2.00 3.64 -13.57 -14.64
1024 0.2500 396 5.09 2.01 3.68 -17.14 -19.54
4096 0.1250 537 9.72 2.00 3.70 -18.40 -20.71
16384 0.0625 537 17.56 2.00 3.71 -20.62 -23.29
65536 0.0312 556 36.72 2.00 3.71 -23.27 -25.75
TABLE 3.2
Results of integrating monomials times the Biot-Savart kernel, with fourth-order singular rules
with N regular grid points.

N h C T Q Qo L< L
256 0.5000 256 7.45 200 3.69 -13.58 -14.67
1024 0.2500 640 19.06 2.01 3.69 -18.48 -20.18
4096 0.1250 883 31.14 2.01 3.74 -20.40 -24.74
16384 0.0625 1075 49.23 2.00 3.71 -21.53 -26.84
65536 0.0312 1113 81.26 2.00 3.71 -26.02 -31.08
TABLE 3.3
Results of integrating monomials times the Biot-Savart kernel, with sizth-order singular rules
with N regular grid points.

Our second sequence of tests used N = 128,256, ...,16384 pseudorandom uni-
formly distributed points on B = [0,1]2. We repeated the previous tests with these
points replacing the grid points, and the results are reported in Tables 3.4 through
3.6. We observe a reasonable convergence rate at first, with L. eventually levelling
off to about 1072, 10~° and 10~ 7 for the 2nd, 4th and 6th order rules respectively.
This is the O(e) error due to integrating the singularity over the uncorrected cells by
the smooth rule W. It appears in L. and not in L~ because L+ involves higher-order
monomials with larger C* norms, so the O(h*) term dominates the O(e) term for the
values of N used in these experiments.

4. Singular moments.

QUADRATURE RULES FOR SINGULAR FUNCTIONS 17

N h C T Q Qo L« L
128 0.3410 101 0.68 225 4.17 -11.10 -9.24
256 0.2952 145 1.15 224 432 -10.26 -10.06
512 0.1958 179 1.76 225 447 -9.26 -10.87
1024 0.1505 188 2.69 2.17 4.22 -10.08 -11.86
2048 0.1081 217 410 2.13 4.16 -10.37 -12.43
4096 0.0793 219 593 2.08 394 -10.94 -12.99
8192 0.0560 264 893 2.09 4.23 -11.64 -13.59
16384 0.0426 273 13.17 2.06 3.97 -12.34 -14.83
TABLE 3.4
Results of integrating monomials times the Biot-Savart kernel, with second-order singular rules
with N uniformly distributed random points.

N h C T Q Qo L« L
128 0.5136 128 1.65 2.15 3.96 -13.41 -10.84
256 0.3269 256 3.13 212 414 -17.19 -12.43
512 0.2799 407 5.11 241 461 -17.11 -14.23
1024 0.1748 535 734 250 4.65 -16.00 -17.05
2048 0.1451 696 10.93 2,56 4.80 -15.76 -18.68
4096 0.0883 752 1453 2,78 5.11 -17.20 -20.34
8192 0.0755 1011 21.59 3.10 6.23 -16.34 -20.16
16384 0.0498 957 29.01 3.25 6.50 -17.91 -22.72
TABLE 3.5
Results of integrating monomials times the Biot-Savart kernel, with fourth-order singular rules
with N uniformly distributed random points.

4.1. Overview. We now describe the evaluation of the sm singular moments
(4.1) / Py (x)o(x)dx, o] <k-1,1<t<s.
B;

We treat (4.1) as a special case of a general problem: Given f : B—R", smooth away
from a lower-dimensional singular set S, evaluate the n-vector of integrals

(4.2) F:/Bf(x)dx

We compute (4.2) by a multidimensional adaptive product Gaussian quadrature method,
with an error estimate based on Chebyshev differentiation. This is a nonstandard ap-
proach to (4.2) in several ways, so we describe it in detail and present numerical
results showing that it is more efficient than at least one standard multidimensional
adaptive quadrature package.

Our algorithm is organized along the following standard lines. We proceed step by
step to refine an approximation Fto F. At each step, we have a subdivision of B into
rectangular cells B;, an error estimate F; on each B;, and an approximation FtoF
formed by integrating over each B; with product g-point Gauss-Legendre quadrature
[6]. We store this information in a heap [28], a data structure which allows us to select
the cell B; with the largest error estimate at each step. We refine 2 by choosing a cell
B; with maximum error estimate, choosing one of the coordinate axes, bisecting B;
along that coordinate axis, and computing the new integrals and error estimates. We
then insert the new information into the heap and the next step can proceed. We stop
refining when one of the following three situations occurs: we run out of memory, we
encounter roundoff error limitations, or we have a total error estimate E satisfying

E<e+ellFlle

18 J. STRAIN

N h C T Q Qo L« L
128 0.5654 128 450 215 4.10 -14.65 -10.93
256 0.5212 256 8.51 2.20 4.57 -17.80 -13.57
512 0.3097 512 16.17 2.23 452 -19.84 -16.28
1024 0.2656 788 2521 2.53 5.00 -21.02 -18.70
2048 0.1626 1085 36.05 3.01 558 -21.13 -22.77
4096 0.1363 1351 47.72 3.37 6.04 -20.91 -24.65
8192 0.0851 1843 68.95 4.30 8.22 -21.93 -27.15
16384 0.0718 1848 81.79 5.18 10.10 -21.90 -28.67
TABLE 3.6
Results of integrating monomials times the Biot-Savart kernel, with sizth-order singular rules
with N uniformly distributed random points.

where €, and €, are user-specified absolute and relative error tolerances.

Our method employs the following nonstandard features. First, the use of product
Gauss rules rather than nonproduct rules. Since we are interested primarily in d = 2-
or d = 3-dimensional problems, the number ¢? of points required by a product Gauss
rule of order 2q is quite competitive with standard fully symmetric rules. Another
advantage of Gauss rules is the arbitrary order of accuracy available: Using e.g.
routine GRULE of [6], Gauss points and weights of order 2¢ are readily available
for any ¢. Second, the error estimate we give below requires little additional work
and identifies the direction contributing most to the error, the obvious candidate for
bisection. The usual technique for selecting a direction to bisect is based on fourth
differences and is somewhat unjustified.

4.2. Error estimation. We begin by bounding the maximum (over 1 < i < n)
error in product ¢-point Gauss-Legendre quadrature of f;(x) over a cell B = [a,b];
this will suggest a direction along which to subdivide. Although our estimate is really
a bound and not an estimate, it turns out to be sufficiently sharp in practice. The
error estimate in one dimension for a single function f reads [6]

b q
) = [f@)dn = Y wif()
= G- a0 (g

where £ € (a,b), w; and z; are the weights and nodes for ¢g-point Gauss-Legendre
quadrature on [a, b], and the error constant is given by

_ (a"*
O = BT D

In d > 1 dimensions, adding and subtracting gives
ba

by q q
E;l(f) = / f(x17...7xd)dx1...dxd—Zwill...wadf(xllﬁ...,xfd)

a1 aq 7;1:1

b1

1qg=1

_ / BV f (o, ey + 30wl S wh BN S (e,)]

QUADRATURE RULES FOR SINGULAR FUNCTIONS 19
Here w! is the ith weight and] the ith node for Gauss-Legendre quadrature on
[a;,b;]. Thus, by induction on d and the positivity of the weights w?,

d d
(4.3) |2 < ColBIY (b — an)* (107" fllcos) = Col Bl Y Efh.

=1 =1

where |B| = (by —a1) -+ (bg — aq) is the volume of B.

This error bound displays the contribution Eﬁ] of each dimension to the total
error bound; thus we can choose the dimension [where Effz is maximum over [as the
dimension across which to split a given cell B. This bound is highly practical because
only pure derivatives 612 ?f are involved; these require only values of f along a single
line and are thus much less expensive to compute than mixed derivatives.

In order to approximate this bound, we will need estimates of the quantities
Eﬁ]. We approximate the C° norm by a maximum over r randomly chosen points

p(, ..., p") distributed in a Latin square [17] in B, and calculate the approximation
D¢ = (b — a;)*" max max |9} qf(pl N 7...,p(J))|
1 1<j<r ar <z <h d

by Chebyshev differentiation. Fix j and [and let

g(s) = f(pgj),...,cl +hsl,...,pfj)),
where ¢; = (a; + b;)/2 and h; = (b; — a;)/2. Then
0%g(s) = K22 f(p\) . c+hs,...,pP)),
SO

Ej;

_ 92 2
q — 2 qlrgjaéiqnasqg”c’o

We approximate the 2¢th derivative of ¢ by Chebyshev differentiation. Approximate
g by a t-term Chebyshev series

t
1
g(s) ~ St ngkal(S)v

k=2

where the coefficients g, are computed by pth-order Chebyshev quadrature with p >
t+2;

14

9k = gzg(tz)qu(h)
p =1
(4.4) _]23 zp:g(cos(ﬂ(l —p1/2) 1 cos("= 1/?(1 -1,

=1

The jth derivative of g is approximated by

—Jj
Z])Tk 1

k=2

(4.5) g(j)

l\DI»—A

20 J. STRAIN

where the coefficients g,(f) are determined by backward recurrence

o = g 1<k<t,
(4.6) o = gl 2k -1gl Y t—j>k>2+1-],
gt@jﬂ = gt(J—)j+2 =0.

Note that the last two coefficients, gt(ﬂ)];l and ggﬂ)j can be explicitly evaluated in
terms of g;—1 and g; alone. Similar though more complicated expressions exist for the
lower coefficients, but it is easier to evaluate them by recurrence (4.6) even if we only
want the top two.

Finally, the fact that |T%(s)] < 1 for |s| < 1 allows us to bound ¢*9:

t—2q

1
(4.7) g leo < 31011+ 37 19" 1
k=2

Note that we need only compute the coefficients g, with 2¢ + 1 < k < t; lower-order
polynomials drop out after taking 2¢ derivatives.
For efficiency of implementation, however, we do not employ recurrence (4.6) and

formulas (4.4) directly. Instead, we observe that in the final estimate (4.7) each g}(fQ) is

a linear functional of the p-vector f with components f; = f(pgj)7 ...,ct+hsg, ... 7pfij) :

1 <7 < p). Thus there is a (t — 2¢) X p matrix eg; such that
P

g,(fq) = Zemﬁ 1 S k S t— 2(].
=1

We simply precompute this matrix, which depends only on p, ¢ and ¢, and store it.
Then each error estimate Effz requires only p function evaluations, (t — 2¢)p multi-
plications and additions. At minimum, p = ¢t = 2¢ + 2, so each error estimate costs
2(2¢ + 2) multiplications and 2¢ + 2 function evaluations. Thus the total error esti-
mate on B; requires 7d(2¢ + 2) function evaluations. Since the integral requires ¢¢
function evaluations, the error estimate is not expensive if 2rd < ¢¢~'. It also has
the advantage that the points of evaluation for the integral and the error estimate are
completely different (and random for the error), reducing the chance of missing cells

with large errors.

4.3. Refinements. The quadrature scheme outlined above is robust and flexi-
ble. We found, however, that its efficiency and accuracy can be improved by several
refinements discussed below.

4.3.1. Getting started. In the scheme above, we start with a single cell B and
subdivide as necessary. But when f is known to be singular at some known point zs,
we know that many subdivisions will be necessary. Any integrals and errors computed
for a cell which is later refined represent wasted effort. This waste can be reduced
by beginning with several cells instead of one, in essence taking advantage of prior
knowledge of the singularity location to carry out the first few refinements beforehand.
A reasonable way to do this is to divide B into 2¢ subcells with one corner of each
being x4, then construct a quadtree with several levels by recursively bisecting each
cell touching x5. Such a subdivision of B can be extremely helpful in reducing the
time required to integrate f.

QUADRATURE RULES FOR SINGULAR FUNCTIONS 21

4.3.2. Double-loop integration. A related feature of our method is the inde-
pendence of the error estimator from the integration rule. An extreme way to use
this independence is to compute only error estimates as we subdivide, computing the
integrals only when the final cell structure has been completed. This saves all the
wasted effort of integrating over cells later to be refined, and this can be very sub-
stantial when n is very large. Unfortunately, the use of both absolute and relative
error criteria

E <e,+ €| F|

makes this impractical since F' is involved in the stopping condition. We could use the
initial value of F' computed over the input cells, but this is likely to be unnecessarily
expensive since the value of F' is likely to increase substantially as the singularity is
resolved. The way out of this dilemma is a double-loop procedure in which we start
out with a stopping criterion

E<e,+€.G

with G set to, say, 100||F||. When this test is passed, we integrate over the resulting
cell structure and set G to the ||F'|| thus obtained. Then we repeat the inner loop with
the new stopping criterion. In this way, we can save a large number of unnecessary
integrations over cells.

Another situation where the double loop approach is useful is when roundoff
error may be important. We maintain an error estimate for each cell separately,
as well as a global estimate formed by summing them up. Thus each subdivision
requires subtraction of the old error estimate for the subdivided cell and addition of
the two new estimates. When the initial error estimate is orders of magnitude larger
than the final result, serious roundoff problems occur. A double loop is therefore
employed; after termination of the inner loop over cells, we re-sum the integral and
error estimates. If the stopping criterion is violated after resumming, we restart
immediately from where we left off.

4.3.3. Cautious error estimation. A refinement which is important for accu-
racy and occurs in most effective quadrature routines is the idea of cautious two-level
error estimation (see e.g. [7]). Here we use, in addition to the error estimate E; com-
puted for the current cell, information about the parent cell. The errors and integrals
computed for the parent cell are used separately.

Caution means that we do not believe an error estimate which is much smaller
than the parental estimate; thus we replace the new error estimate E; by max(F;, €.Eyq)
where €. is a user-specified degree of caution related to the order of accuracy of the
rule. Typically e, = 1072 is a reasonable choice. The idea of nonzero €, is to prevent
old information from being ignored in later decisions.

The use of two-level error estimates, on the other hand, means that we consider
also the change in the integrals produced by the subdivision. Thus we replace E;
by max(E;, e4|AF|) where AF is the maximum change in any integral due to the
subdivision. Note that two-level error estimators are incompatible with the double
loop procedure proposed above, and the two are therefore offered as mutually exclusive
options in our implementation.

4.3.4. Shared singularities. In the special situation we consider here, we are
integrating a long vector of n = sm functions simultaneously, where each function has
the same singularity structure. The repeated evaluations of all the functions involved

22 J. STRAIN

in the error estimates is wasteful, so we have implemented a restart facility. We
first integrate the singularity o(z) alone, then use the cell structure constructed as
a starting point for the integration of the polynomials P, (z)o(x) as well. Numerical
experiments with £ = 2,4,6 and 8 and ¢ = 2,3,4,6,8 and 10 and o the Biot-Savart
kernel (so d = s = 2) shows that this can save a factor of five to ten in CPU time.
However, they also show that further improvements in the efficiency of obtaining the
initial cell structure cannot improve the speed of the code much; indeed, even if the
initial cell structure were known a priori, we would only save about one-third of the
CPU time. Further speedups can come only from reducing the number of points
employed or evaluating the functions faster. Improvement in either area is certainly
possible.

4.4. Numerical results. We implemented the multidimensional adaptive prod-
uct Gaussian scheme above in a portable ANSI Fortran code, with the dimension d as
a parameter. Although our aim was primarily robustness and reliability, the resulting
code is surprisingly efficient.

We tested the code on three problems of various degrees and types of difficulty,
following the probabilistic technique of [16]. In each case, we integrated a family of
integrands with randomly placed or randomly oriented singularities and measured the
average error and success rate. We used three families of integrands. First, a smooth
but oscillatory family of cosines:

fi(2) = (cos(i(as — 2,1)) cos(i(wz — 2,2)) - - cos(j(xa — wra)) § = 1,2,..., 10)

Second, skewed exponentials of increasing steepness with discontinuities at angles to
the coordinate axes:

fa(x) = (exp(—jl|Az — xp|l1) : j = 1,2,...,10)

where A is a random matrix with entries chosen from a uniform distribution on [0,1]

and ||z||; = Z?:l |z;| is the Manhattan norm. Finally, m = 36 Legendre polynomials
on [0,1]? times the 2-dimensional Biot-Savart kernel as in moment calculations:

f3(z) = Pa(z)o(z — zr)

with |a| < 7 and o(z) = x/||z||¢. Here z, is chosen from a uniform distribution on
[0,1]%. In all cases the domain of integration was [0, 1]? and the dimension was d = 2.
We ran 100 samples of each family. The results are shown in Tables 4.1 through
4.3 below. For these tables, we used ¢, = ¢ = 1072, r = 2, t = p = 2¢ + 2 and
€:=¢€, =€ = 1071,1072,...,1077. We report the number of function evaluations
Nr, the CPU time T and the error E produced by our code. We found ¢ =10, ¢ =3
and ¢ = 4 to be the most efficient rule sizes for fi, fo and f3 respectively. Figure 4.1
shows the tree-structured subdivisions constructed with e, = 1072,107° and 10~ for
f2 and fs. It is clear that the code is refining in the right places.

For comparison, Tables 4.4 through 4.6 show the corresponding results for the
multidimensional adaptive fully symmetric quadrature routine DCUHRE presented
in [2]. The following conclusions can be drawn from this comparison.

First, in the integration of the Biot-Savart kernel times polynomials, DCUHRE
achieved most efficient results with the 13th order rule, because the kernel is smooth
away from the singularity. It required 48 CPU sec. with ¢ = 10~7. The errors were
very reliably less than the estimate, and in fact very close to the estimate. Gaussian

QUADRATURE RULES FOR SINGULAR FUNCTIONS 23

quadrature, on the other hand, was most efficient with a 4-point 8th-order rule when
e = 1077. Tt required 11 CPU sec. with ¢ = 107, about four times faster than
DCUHRE. The errors from our Chebyshev error estimator were less reliable in the
sense that they were sometimes much less than the estimate and sometimes slightly
more.

On cosines, high-order rules were the most effective. For example, 20th order
Gaussian quadrature required 0.04 CPU sec. to achieve precision 10~7. DCUHRE
required 0.17 CPU sec. with the 13th order rule.

For skew exponentials, which are C° but are not C'!' along the randomly oriented
hyperplanes determined by A and z,, the 9th order rule of DCUHRE was more
efficient than 13th or 7th. This is a little surprising, because the 7th order rule is
recommended by its authors for problems —like this one— requiring great adaptivity.
The 9th order rule required 72 CPU sec. with ¢ = 107 and achieved error 10~7
reliably. Gaussian quadrature, on the other hand, got best results with a 6th-order
rule, requiring 73 CPU sec. with e = 1077,

=i
i
T

Fic. 4.1. Tree structure for adaptive Gaussian quadrature.

J. STRAIN

€q = €p Np T E
0.10E+00 188 0.03 0.63E-11
0.10E-01 188 0.03 0.63E-11
0.10E-02 188 0.04 0.63E-11
0.10E-03 188 0.03 0.63E-11
0.10E-04 183 0.04 0.63E-11
0.10E-05 188 0.03 0.63E-11
0.10E-06 188 0.03 0.63E-11
TABLE 4.1
Twentieth-order Gaussian quadrature on cosines.

€q = €p Ng T FE
0.10E+00 221 0.03 0.65E+00
0.10E-01 1115 0.13 0.97E-02
0.10E-02 4788 0.55 0.65E-03
0.10E-03 17736 2.01 0.29E-04
0.10E-04 59655 6.71 0.24E-05
0.10E-05 201884 22.62 0.69E-06
0.10E-06 651924 7297 0.86E-07
TABLE 4.2
Sixth-order Gaussian quadrature on skewed erponentials.

€q = €p Ng T FE
0.10E4-00 321 0.28 0.12E+01
0.10E-01 771 0.67 0.28E-01
0.10E-02 1536 1.33 0.11E-02
0.10E-03 2793 2.43 0.27E-03
0.10E-04 4649 4.04 0.66E-05
0.10E-05 7638 6.65 0.21E-05
0.10E-06 12651 11.01 0.33E-06
TABLE 4.3
Eighth-order Gaussian quadrature on the Biot-Savart kernel times polynomials.

€q = €p Ng T FE
0.10E+00 195 0.04 0.11E-03
0.10E-01 195 0.04 0.11E-03
0.10E-02 195 0.04 0.11E-03
0.10E-03 286 0.05 0.43E-04
0.10E-04 442 0.08 0.50E-05
0.10E-05 793 0.14 0.65E-06
0.10E-06 975 0.17 0.45E-07
TABLE 4.4
DCUHRE on cosines.

€a = €r Nr T E
0.10E+00 178 0.02 0.77E-01
0.10E-01 1069 0.12 0.90E-02
0.10E-02 4158 0.44 0.99E-03
0.10E-03 15886 1.65 0.10E-03
0.10E-04 58733 6.10 0.10E-04
0.10E-05 202989 21.12 0.10E-05
0.10E-06 685872 71.72 0.10E-06

TABLE 4.5
DCUHRE on skewed exponentials.

QUADRATURE RULES FOR SINGULAR FUNCTIONS

€q = €p Ng T FE
0.10E+00 2613 2.05 0.89E-01
0.10E-01 5473 4.30 0.93E-02
0.10E-02 10270 8.06 0.93E-03
0.10E-03 17147 13.50 0.97E-04
0.10E-04 26702 21.03 0.97E-05
0.10E-05 40742 32.12 0.98E-06
0.10E-06 61308 48.37 0.98E-07
TABLE 4.6
DCUHRE on the Biot-Savart kernel times polynomials.

26 J. STRAIN

5. Refinements and Generalizations. The above methods for constructing
smooth and singular quadrature rules can be refined and generalized in several ways.

The smooth rule can be made adaptive to reduce 2, and the order can be locally
varied to match the smoothness of the integrand. Chebyshev polynomials can replace
Legendre polynomials, allowing the use of non-equidistant FFT techniques to speed
up the least 2-norm calculations. For that matter, any other set of basis functions can
replace Legendre polynomials, yielding rules which are exact for that class of basis
functions.

Both singular and smooth rules can be derived for approximating linear function-
als other than integration over B. An important example, interpolation, is discussed
in detail below. This leads to a different approach to evaluating integrals of singular
functions; transfer the integrand values to nice points by interpolation, then use nice
rules on the nice points. This eliminates the necessity of computing singular moments
for every corrected point.

Both rules can also be used to integrate over more general domains than rectan-
gles, as discussed below. A particularly exciting prospect is the construction of rules
for integrating singular functions over curves and surfaces, for the boundary integral
solution of partial differential equations. This is of course another special case of the
approximation of other linear functionals mentioned in the previous paragraph.

We could equally well construct W7 to integrate exactly the k¢ monomials ' - - - z?
with product degree maxa; < k — 1, rather than integrating the m(k,d) = O(k?/d!)
monomials with standard degree a; +. . .+a4 < k—1. This choice is a nonstandard one
(see [6]), and would have several advantages and disadvantages. The first, and most
important, is the improved accuracy of such a rule (see [6]). Rules of product order k
have order & in the standard sense, as well, but they tend to have considerably smaller
errors than most rules of standard order k. They use more points than the minimum
necessary to achieve standard order k by a factor of d!, but this is not overwhelmingly
expensive in small dimensions like d = 2 or d = 3. Another reason is that we use
product Gaussian quadrature rules to evaluate the moments (see §4), so product order
is more convenient. And finally, it is easier to construct a general multidimensional
routine in which the dimension d is an input parameter when rules of product order
k are constructed, because it is easier to map a rectangle than a simplex onto an
interval. Such a rule is more efficient than standard rules in some ways, because we
are evaluating all necessary Legendre polynomials P,,(z;) with 0 < a; < k—1, so we
might as well multiply them together to get the remaining terms. Our experimental
implementation, however, revealed that product rules produce slightly larger errors
at greater expense, due to increased cell sizes. Hence our final code used rules which
integrate exactly monomials of standard degree < k — 1 exclusively.

Another refinement is as follows. The error analysis suggests that it might be
computationally useful to have two different orders of accuracy, for the smooth rule
and the singular rule. For example, we might construct a 16th-order smooth rule but
correct it locally only to 4th order. We have implemented this feature in our current
code but our experience is not yet sufficient to indicate its usefulness.

5.1. Scattered data interpolation. A common problem of computational
physics is to construct a globally defined “nice” function which takes given values
u(x;) at given points z;. The techniques developed above generalize immediately to
solve this problem.

The function we construct is a polynomial p(z) on each cell B; of the tree struc-
ture we constructed for the smooth rule. A polynomial p of degree < k — 1 can be

QUADRATURE RULES FOR SINGULAR FUNCTIONS 27

represented as a Legendre series

lal<k—1

where P, is a shifted and scaled Legendre polynomial on B; = [a,b] and p(a) are
the Legendre coefficients of p. Each p(a) is a linear functional of p, hence can be
approximated by

pla) = > wj(a)p(x;)

T;EB;

where w; are exact for p = P,, |a] < k —1. Thus w(a) = (wj(a) : z; € B;) can be
found as e.g. the least 2-norm solution of

Sop = Y wj(a)Ps(z;)

z;EB;

for |a| < k—1and || < k—1. The m by p or p+1 matrix (Ps(x;)) which appears need
be subjected to the singular value decomposition only once, and then each a requires
only two matrix-vector multiplies and a scaling by the singular values. Thus given
the m by p or p + 1 matrix (w;(«)), the Legendre coefficients of a nice polynomial
interpolating values p; at points z; can be computed by matrix multiplication:

pla) =Y wi(@)p;.

T;EB;

Then the Legendre series provides an interpolant to the scattered data p;.

This local interpolant on B; is not of course continuous between cells. However, it
is likely to be reasonably smooth since w; solves a least 2-norm problem. It will have
order of accuracy O(h*) where B; has sides of length < h and p; are values of a C*
function on B. An expansion in other basis functions on each B; can be constructed
in the same way, as can the derivative of scattered data values.

5.2. General B. The techniques developed in §2 and §3 extend to integrate over
curves and surfaces in R? and R?. Suppose we want to calculate

/Ff(x)dx

where f is singular at some point x5 which may be in or near the curve or surface
I'. We enclose I'' in a box B and construct the usual tree structure containing the N
given points x;, which may be either in or outside I'. Now we construct, e.g. for the
smooth rule, weights W satisfying

(5.1) > WiP.(x)) :/ P, (z)dx

z; c€B; I'nB;

on each cell B;. The global weights defined to be W; = W! if x; € B; can be
computed by the singular value decomposition if enough points are in B; and will
integrate smooth functions accurately over I'. The singular rule is produced from the
smooth rule in the usual way.

28 J. STRAIN

There are two new complications in this approach when I' is not a rectangle.
First, we need the moments

/ P, (z)dz
I'nB;

of polynomials over I' N B;. If T is a piecewise linear manifold these moments are
exactly computable. In general, however, and certainly when a singular rule is desired,
some form of adaptive numerical integration over I' will be needed. For general T’
this is a difficult problem; we expect approximation by piecewise polynomial I and
numerical integration as in the finite element method will work, but other techniques
may be faster. Note that the Gaussian integration code we have developed in §4
can easily be extended to integrate over polyhedra rather than rectangles, because
Gaussian rules can readily be mapped to polyhedra with 27 vertices in d dimensions.
Polyhedra can be subdivided into polyhedra with 2¢ vertices, with only the boundary
cells being non-rectangular.

Second, the equations (5.1) are more likely to be rank-deficient, in which case
no solution W; will exist. If I is a plane, for example, then polynomials in variables
perpendicular to the plane are superfluous and we cannot integrate them exactly
with any W. The singular value decomposition provides a natural treatment of this
difficulty; simply ignore all equations which cannot be satisfied. They will not affect
the accuracy of the rule W, because W only integrates over I' in any case.

The accuracy of the rule requires more machinery to analyze. The additional
ingredient is extension theorems; we need to extend functions on I" to smooth functions
on B; without increasing the size of derivatives. That this can be done is proved in
e.g. [8]. It follows that a rule constructed in this way will enjoy the same convergence
properties as in the case when I is a rectangle.

6. Acknowledgements . The author would like to thank Prof. V. Rokhlin
for helpful conversations. This research was supported by a NSF Young Investigator
Award, by Air Force Office of Scientific Research Grant 92-0165 and by the Applied
Mathematical Sciences Subprogram of the Office of Energy Research, U.S. Department
of Energy under Contract DE-AC03-76SF00098.

REFERENCES

[1] C. R. ANDERSON, A method of local corrections for computing the wvelocity field due to o
collection of vortex blobs, J. Comput. Phys., 62 (1986), pp. 111-127.
. BERNTSEN, T. O. ESPELID, AND A. GENZ, An adaptive algorithm for the approrimate cal-
culation of multiple integrals, ACM Trans. Math. Softw., 17 (1991), pp. 437-451.
[3] A.BRANDT AND A. A. LUBRECHT, Multilevel matriz multiplication and fast solution of integral
equations, J. Comput. Phys., 90 (1990), p. 348.
. CARRIER, L. GREENGARD, AND V. ROKHLIN, A fast adaptive multipole method for particle
stmulations, STAM J. Sci. Stat. Comput., 9 (1988), pp. 669-686.
. J. CHORIN, Numerical study of slightly viscous flow, J. Fluid Mech., 57 (1973), pp. 785-796.
. J. DAvIS AND P. RABINOWITZ, Methods of Numerical Integration, Computer science and
applied mathematics, Academic Press, second ed., 1984.
[7] T. O. ESPELID AND A. GENZ, eds., Numerical integration : recent developments, software, and
applications, Kluwer Academic, Dordrecht; Boston, 1992.
[8] D. GILBARG AND N. S. TRUDINGER, Elliptic partial differential equations of second order,
Springer-Verlag, 1983.
[9] G. H. GoLuB AND C. F. VAN LOAN, Matriz Computations, Johns Hopkins University Press,
Baltimore, second ed., 1989.
[10] L. GREENGARD AND J. STRAIN, A fast algorithm for the evaluation of heat potentials, Comm.
Pure Appl. Math., XLIII (1990), pp. 949-963.

N
<

=
<

o>

QUADRATURE RULES FOR SINGULAR FUNCTIONS 29

, The fast Gauss transform, SIAM J. Sci. Stat. Comput, 12 (1991), pp. 79-94.

W. HACKBUSCH AND Z. P. NOWAK, On the fast matriz multiplication in the boundary element
method by panel clustering, Numer. Math., 54 (1989), p. 463.

L. HORMANDER, The boundary problems of physical geodesy, Arch. Rational Mech. Analysis,
62 (1976), pp. 1-52.

M. A. JASWON AND G. T. Symum, Integral equation methods in potential theory and elastostatics,
Academic Press, 1977.

P. KEAST AND G. FAIRWEATHER, eds., Numerical integration : recent developments, software,
and applications, Kluwer Academic, Dordrecht; Boston, 1987.

J. N. LYNESS AND J. J. KAGANOVE, A technique for comparing automatic quadrature routines,
Comput. J., 20 (1977), pp. 170-177.

W. H. PrEss, W. T. VETTERLING, B. P. FLANNERY, AND S. A. TEUKOLSKY, Numerical recipes
in FORTRAN: the art of scientific computing, Cambridge University Press, second ed.,
1992.

V. ROKHLIN, Rapid solution of integral equations of classical potential theory, J. Comput. Phys.,
60 (1985), pp. 187-207.

, End-point corrected trapezoidal quadrature rules for singular functions, Research Report
YALEU/DCS/RR-441, Yale University Department of Computer Science, November 1985.

G. RUSSO AND J. STRAIN, Fast triangulated vortex methods for the 2-D FEuler equations, J.
Comput. Phys., 111 (1994), pp. 291-323.

H. SAMET, The design and analysis of spatial data structures, Addison-Wesley, Reading, Mass-
achusetts, 1990.

H. P. STARR, Rapid solution of one-dimensional integral and differential equations, PhD thesis,
Yale University Department of Computer Science, 1993.

J. STRAIN, A boundary integral approach to unstable solidification, J. Comput. Phys., 85 (1989),
pp. 342-389.

, The fast Gauss transform with variable scales, STAM J. Sci. Stat. Comput, 12 (1991),

pp. 1131-1139.

, Fast potential theory II: Layer potentials and discrete sums, J. Comput. Phys., 99

(1992), pp. 251-270.

, Fast adaptive methods for the free-space heat equation, STAM J. Sci. Comput., 15 (1994),

pp. 185-206.

, Efficient spectrally-accurate solution of variable-coefficient elliptic problems, Proc.
Amer. Math. Soc., 122 (1995), pp. 843-850.

R. E. TARJAN, Data structures and network algorithms, CBMS-NSF regional conference series
in applied mathematics, no. 44, STAM, Philadelphia, 1983.

L. VAN DOMMELEN AND E. A. RUNDENSTEINER, Fast adaptive summation of point forces in the
two-dimensional Poisson equation, J. Comput. Phys., 83 (1989), pp. 126-147.

