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1 IntrodutionMany physial problems are naturally formulated as systems of nonlinearparaboli partial di�erential equations. Phase �eld models for rystal growth[1, 10℄ and alloy solidi�ation [14℄, Ginzburg-Landau models for superon-dutivity [2, 3℄, reation-di�usion systems for hemial proesses and theNavier-Stokes equations of uid mehanis are good examples. In some ofthese problems, periodi boundary onditions an be assumed for onve-niene.Solving these problems numerially requires massive amounts of om-puter time and memory, making faster or more aurate methods extremelyinteresting. However, there are well-known dilemmas in onstruting suhmethods. Expliit methods ost little per time step but require tiny timesteps for stability. Impliit methods are less subjet to stability restraints,but eah step requires solution of a large system of equations. Low-orderaurate methods are easy to program but require many degrees of freedomand many time steps. Highly aurate methods suh as spetral methodsan use fewer degrees of freedom and fewer time steps but require smoothsolutions and are diÆult to use eÆiently.This paper presents a numerial method for omputing smooth solutionsof the general seond-order nonlinear paraboli system of partial di�erentialequations �tu = F(t; x; u; �u; �2u) (1.1)in the box B = [0; 1℄d in Rd, with periodi boundary onditions on theboundary �B. Here the solution u : R�B!Rq is a smooth vetor funtionof time t and spae x, andF : R� B �Rq �Rdq �Rd2q!Rq (1.2)is a smooth vetor funtion of time, spae, u and the olletion of �rst andseond partial derivatives (�u; �2u). We assume F is periodi with period1 in x and satis�es a linearized elliptiity ondition. Sine this does notguarantee well-posedness, we assume (1.1) has a unique smooth solution onthe time interval of interest.Our method ombines an extrapolated linearly impliit Euler time dis-retization with a fast spetrally-aurate method for solving linear variable-oeÆient ellipti systems. This gives arbitrary order auray in time andspetral auray in spae at optimal ost. The theory of the method is de-sribed in x2 and we disuss our implementation in x3. In x4 we validate themethod with numerial results, inluding mean urvature systems and phase�eld models of solidi�ation. 3



2 The numerial methodEvolution problems are ommonly disretized �rst in the spatial variables,giving a large sti� set of ordinary di�erential equations (ODEs) to be solvedby a standard ODE pakage. We proeed in the opposite order. First, wedisretize in time, treating the evolution problem as an in�nite-dimensionalarbitrarily sti� ODE. A linearly impliit sti� ODE solver then redues theproblem to a sequene of linear variable-oeÆient ellipti systems. We solvethem by a generalization of the analytially preonditioned spetral methodof [12℄, whih is simple, fast and spetrally aurate. In partiular, the errordue to spatial disretization with an Nd-point grid is O(N�p) as N!1 forany p if the solution u is smooth. The work per time step is O(Nd logN),essentially proportional to the number of degrees of freedom.2.1 Time disretizationThe standard methods for sti� ODEs are multistep, Runge-Kutta and extrap-olation [8℄. The usual multistep method for sti� problems is a Newton-BDFpreditor-orretor pair, but the order of BDF is limited to 6. Runge-Kuttamethods an ahieve arbitrary order but require solution of large linear sys-tems unless a diagonally impliit method is used. The simplest arbitrary-order diagonally impliit method is extrapolated impliit Euler. Consideredas a Runge-Kutta method, this has more stages than neessary, but is ex-tremely onvenient in a variable-order ode.There are three avors of impliit Euler for a sti� ODEy0 = f(t; y): (2.3)Impliit Euler with stepsize k at times tn = nk readsyn+1 � yn = kf(tn+1; yn+1): (2.4)Linearly impliit Euler reads(I � kDf(tn; yn))(yn+1 � yn) = kf(tn; yn); (2.5)where I is the identity matrix and Df is the Jaobian of f with respet toy. Modi�ed linearly impliit Euler reads(I � kDf(tn+1; yn))(yn+1 � yn) = kf(tn+1; yn): (2.6)Linearly impliit methods involve only linear systems, and are therefore usu-ally superior to impliit ones, beause it is diÆult to solve nonlinear systemsof equations like (2.4) aurately. At �rst glane, the time and spae argu-ments of f(tn+1; yn) in the modi�ed method appear mismathed. However,4



this leads to superior sti� auray properties [8℄: Consider the standardProthero-Robinson test problemy0 = �(y � '(t)) + '0(t) y(0) = '(0) (2.7)in the limit k!0, k�!1. The linearly impliit method givesei+1 := yi+1 � '(ti+1) = (1� k�)�1ei � k'0(ti) +O(k2) +O(��1) (2.8)leading to a global error boundjeij � O(k) 0 � i <1 (2.9)as k!0 and k�!1. Both impliit and modi�ed linearly impliit Euler giveei+1 = (1� k�)�1 �ei + 12k2'00(ti) +O(k3)� (2.10)leading to a global error boundjeij � O(k2=k�) 0 � i <1 (2.11)as k!0 and k�!1. Our numerial experiments also indiate that the modi-�ed linearly impliit method gives results onsiderably superior to the linearlyimpliit method, so we adopt it as a base for extrapolation.Thus we begin by disretizing (1.1) in time, using (2.6) with time step k.This gives a sequene of linear ellipti systems(I � kDF(tn+1; un))(un+1 � un) = kF(tn+1; x; un) (2.12)for periodi vetor funtions un : B!Rq approximating u(tn; x). (We omitthe dependene of F on �u and �2u to simplify the notation.) DF(t; u) isthe Fr�ehet derivative of F : thus DF(t; u) takes a vetor funtion v : B!Rqto another vetor funtion w : B!Rq given bywi(x) := (DF(t; u)v(x))i = qXj=1 Xj�j�2 aij�(t; x; u)��vj(x): (2.13)Here � = (�1; �2; : : : ; �d) is a multiindex of nonnegative integers �i withorder j�j = �1 + �2 + � � � + �d. Partial derivatives are denoted by �� =��11 � � ���dd where �i = ��xi . The oeÆients aij� are the partial derivatives ofthe omponents of F with respet to the derivatives of the omponents of u:aij�(t; x; u) = �F i(t; x; u)�(��uj) : (2.14)5



(We omit the dependene of aij�(t; x; u) on �u and �2u to simplify the nota-tion.) The next setion disusses solution of these linear ellipti systems.The modi�ed linearly impliit Euler method is only �rst-order aurate intime, insuÆient for aurate omputations at reasonable ost. However, ithas an asymptoti error expansion whih permits Rihardson extrapolationto higher order, as long as the solution remains smooth. Indeed, the disretenumerial solution un(x) extends to a smooth funtion uk(t; x) whih satis�esuk(t; x) = u(t; x) + ke1(t; x) + k2e2(t; x) + � � �+ kNeN (t; x) + o(kN) (2.15)as k!0. Here u(t; x) is the exat solution to the PDE and ej are smoothfuntions obtained by solving variational equations. This expansion allowsus to ompute the solution to higher-order auray. For example, to seondorder we haveu(t+ k; x) = 2uk=2(t+ k; x)� uk(t + k; x) +O(k2): (2.16)We go from t to t+k in one step, then in two substeps of half the length, thenombine the results to eliminate the �rst-order error term. More generally,we an go from t to t+k in n1 substeps, n2 substeps, . . . , nL substeps, giving�rst-order resultsUl1(t + k; x) = uk=nl(t + k; x) 1 � l � L= u(t+ k; x) + (k=nl)e1(t; x) + � � �+ (k=nl)NeN(t; x) + o(kN ):Then we an generate mth order results for m = 2, 3, . . . , L by the extrap-olation formulaUlm = Ul;m�1 + Ul;m�1 � Ul�1;m�1(nl=nl�m+1)� 1 m � l � L= u(t+ k; x) +O(km):The extrapolation table is lower triangular:U11 &U21 ! U22& &U31 ! U32 ! U33: : : : : : : : :& & &UL1 ! UL2 ! : : : ! ULL (2.17)
Extrapolated linearly impliit Euler is a simple diagonally impliit Runge-Kutta method with exellent sti� stability properties; it is A(�)-stable [8℄with � � 89:77Æ if nl = l, and � � 89:82Æ if nl = l + 1. It is suboptimallyeÆient but easy to hange order in a variable-step variable-order implemen-tation. 6



2.2 Spae disretizationAt eah time substep, we solve a linear variable-oeÆient ellipti system(Lv)i := qXj=1 Xj�j�2 bij�(x)��vj(x) = ri(x) (2.18)with operator L = I�kDF(tn+1; un), oeÆients bij�(x) = ÆijÆ�0�kaij�(t; x; u),right-hand side r = kF(tn+1; x; un) and solution v = un+1 � un. We assumethat F is smooth and the oeÆients aij�(x) of DF satisfy the uniformparaboliity ondition:qXi;j=1 Xj�j=2 aij�(x)��vivj � �Æjvj2j�j2 + Cjvj2 (2.19)for some onstants Æ > 0 and C � 0, any x 2 B and any vetors v; � 2 Rq.This ondition alone does not imply that the paraboli system (1.1) is well-posed unless it is linear [6, 4℄, but does guarantee that the ellipti system(2.18) is well-posed for small enough k [9℄. More preisely, it implies thatL is a bounded invertible operator from the H�older spae C2;�(B;Rq) toC�(B;Rq) for k suÆiently small.We solve these problems numerially by analyti preonditioning, as in[12℄. We use the averaged operator to onvert Lv = r into an integralequation. Let �L be the ellipti operator with onstant oeÆients�bij� := 1jBj ZB bij�(x)dx: (2.20)Sine �L satis�es (2.19), it is a bounded invertible operator from C2;�(B;Rq)to C�(B;Rq). Hene we an de�ne a new unknown density � = �Lv : B!Rq,so v is the volume potential due to �:v(x) = �L�1�(x) = ZB �G(x� y)�(y)dy (2.21)where �G(x�y) is the Green matrix for �L with periodi boundary onditions.Sine �L has onstant oeÆients, Fourier analysis gives �G expliitly:�G(x) = X�2Zd ��(�)�1e2����x (2.22)where ��(�) is the matrix symbol of �L:��ij(�) = X��2�bij�(2���)�: (2.23)7



Sine DF is ellipti, ��(�) is invertible uniformly for small enough k, thoughthe Fourier series (2.22) for �G onverges only in the sense of distributions ingeneral.Remark: If we take vi = Æim for any �xed m in (2.19), it follows thatX�=2 amm�(x)�� � �Æj�j2 + C: (2.24)Thus an alternative de�nition of �L an be used to equal e�et:(�Lv)i =X� �bii���vi (2.25)is the diagonal part of the averaged operator. Inverting �� is unneessary.Now � satis�es A� = r; (2.26)where A = L�L�1 is a bounded invertible operator on C�(B;Rq):A�(x) = X�2Zd �(x; �)��(�)�1�̂(�)e2����x= ZB 24X�2Zd �(x; �)��(�)�1e2����(x�y)35 �(y)dy: (2.27)Here �̂(�) = ZB e�2����y�(y)dy (2.28)and �(x; �) is the matrix symbol of L:�ij(x; �) = Xj�j�2 bij�(x)(2���)�: (2.29)The sum in (2.27) onverges only in the sense of distributions in general,sine A = I is not an integral operator when L has onstant oeÆients.Sine A is bounded and invertible, we expet that we an disretize A� =r with bounded ondition numbers as the mesh size goes to zero. In otherwords, we have analytially preonditioned Lv = r with �L�1 to produe anequation with a uniformly well-onditioned disretization.The atual disretization is straightforward. We lay down a uniform gridwith spaing h and Nd points on B and approximate derivatives of �L�1�with the FFT: let �̂h(�) = hd X1��p�N e�2����y��(y�) (2.30)where y� = (�1h; : : : ; �dh). Then we de�ne the approximation Ah of A byAh�(x) = Xj�pj�N=2 �(x; �)��(�)�1�̂h(�)e2����x (2.31)8



Our approximate solution �h(x) is then the solution of the linear systemAh�h = rh (2.32)where rh is the vetor of funtion values r(y�).In pratie, (2.31) annot be evaluated eÆiently with the FFT for given�, beause �(x; �) depends on x. Thus we take advantage of the speial formof �(x; �) to write(Ah�(x))i = qXj=1 Xj�j�2 aij�(x) Xj�pj�N=2(2���)� ���(�)�1�̂h(�)�j e2����x (2.33)where eah inner sum an now be done eÆiently with the FFT before mul-tiplying by the variable oeÆients and summing over j and �.Sine the integral equation is uniformly well-onditioned and the dis-retization is aurate, the disretization is also well-onditioned, so anystandard iterative method for large nonsymmetri linear systems should solveAh�h = rh in a number of iterations bounded as h!0. Note that Ah is a largeNd � Nd full matrix, so forming and fatoring Ah diretly is prohibitivelyexpensive.There are several standard iterative methods for suh systems; General-ized Minimum Residual (GMRES) [11℄, Quasi-Minimum Residual (QMR) [5℄and Stabilized Bionjugate Gradients (BI-CGSTAB) [13℄ are the best-known.They have roughly similar onvergene properties. For GMRES applied toa N � N system Ax = f , for example, the residual rm = f � Axm after msteps satis�es [11℄ jjrmjj � �(X)�mjjr0jjwhere A = X�X�1 is diagonalizable, �(X) = jjXjj2jjX�1jj2, and�m � �Dd �� �RC�m�� :Here we assume that A has � eigenvalues �1; : : : ; �� in the left half plane andN � � in a irle jC � �j � R with C > R > 0, and we de�neD = max1�i��;�+1�j�N j�i � �jjand d = min1�i�� j�ij. An example is shown in Figure 1.Thus the restarted method GMRES(m) is guaranteed to onverge ifm > log �(X)logC=R + �  1 + logD=dlogC=R! ;and the onvergene rate depends on the problem size only through eigenvaluebounds and �(X). For solving A� = f , therefore, we expet the onvergenerate of GMRES to be asymptotially independent of mesh size.9



-�
6

?
0 s

s s s ss ss sssss s 6
?R���= ���>d � -C� -D

Figure 1: GMRES onvergene theory.
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3 ImplementationWe implemented our method in a FORTRAN ode for general q � q par-aboli systems in d = 2 spae dimensions. We disuss the following aspetsof our implementation: algorithm struture, starting values and iterations,eÆieny, the user interfae and the onstrution of test ases.3.1 Algorithm strutureThe ode struture is natural: Parameters are read, the equations are solvedone time step at a time, and results are written to output. One time step ofan extrapolation method onsists of several substeps followed by extrapola-tion. Eah substep onsists of iterative solution of a linear variable-oeÆientellipti system Lv = A� = r. Our ode solves this ellipti system with GM-RES [11℄, with all matrix-vetor produts Ah�h omputed by an externalsubroutine. After solving Ah�h = rh, we obtain vh = �L�1h �h with anotherFFT. Finally, we extrapolate to obtain a higher-order aurate solution. Anoutline of the ode follows. AlgorithmInput:Read input �le for parameters:Time step, initial and �nal times: k, ti, tfGrid size: NExtrapolation parameters: L, step sequene nlIteration parameters: Dimension, restarts, stopping tolerane �.Starting method, iterationSystem parameters: q, equation, miExat solution parameters: �i Initialize:Set t = ti, level-l solution ul equal to exat solution at time ti, and �l = 0 forl = 1; 2; : : : ; L. Assign templates and workspae for oeÆients and derivatives.Time stepping:Time loop: while t < tf dot = t+ kExtrapolation loop: do l = L;L� 1; : : : ; 1kl = k=nl ; t0 = tTime substepping: do j = 1; 2; : : : ; nl11



tj = t+ jklEvaluate F(tj ; ul) and oeÆients bij� of I � klDF(tj ; ul).Compute oeÆients �bij� of �L by averaging bij�.Set Ah = L�L�1.Compute starting value for �l:either �l = randomor �l = 0or (right-hand side) �l = klF(tj ; ul)or (previous substep) �l = �l(tj�1)or (forward Euler) �l = �l(tj�1) + klF(tj ; ul)or (interpolation if l < L)�l = (1� #)�(tj�1) + #�L(tj) where # = 1nl�j+1 .end either-orApply GMRES with tolerane � and starting value �l to omputethe solution �l of Ah�l = kF(tj ; ul).Compute inrement vl = �L�1�l using the FFT and ��(�)�1.Inrement ul = ul + vl.End of time substepping: end doEnd of extrapolation loop: end doExtrapolate solutions L� 1 times:do l = 1; : : : ; L� 1do j = L;L� 1; : : : ; l + 1uj = uj + 1(nj=nj�l�1) (uj � uj�1)end doend doCopy �nest-level solution to all levels in preparation for next time step:do l = 1; 2; : : : ; L� 1ul = uLend doEnd of time loop: end do3.2 Starting values and iterationsOf the several standard iterative methods for nonsymmetri linear systems,GMRES [11℄, QMR [5℄ and BI-CGSTAB [13℄ are the best-known. GMREShas been used for some time, while the others have been developed morereently. No theory suggests that one is superior, so we used GMRES. How-ever, we may in future test others, and therefore have designed our odeso that the iterative method sees only a subroutine for the matrix-vetorprodut Ah�h, not the matrix elements.The starting value is important for any iteration. Our ode providesseveral options: � an be random (usually a very bad hoie), zero, equal tothe right-hand side kF(t; x; u), or omputed by three speial methods. It anbe equal to the previous time step value, omputed by a forward Euler step12



(usually a good hoie, and inexpensive sine the F value is already known),or omputed by interpolation from a �ner alulation. In this last option,we do the alulation �rst with nL steps (using forward Euler for startingvalues), obtaining results �L(t+ k; x). Then we interpolate linearly between�l(t; x) and �L(t+ k; x). Thus at levels l < L we start substep j with�l = (1� #)�l + #�L(t+ k; x) (3.34)where # = 1=(nl � j + 1). Our experiments indiate that forward Euler isslightly better than interpolation, with the other options trailing.Sine we are solving this system from srath at eah time step, the teh-niques suggested in [7℄ might speed up onvergene. We plan to investigatethis question further.3.3 EÆienyThis algorithm ould require a great deal of storage and CPU time if d or qis large, beause there are many possible derivatives of eah omponent of u.In d dimensions, there are qd(d + 3)=2 distint �rst and seond derivativesof a vetor funtion u : B!Rq, so a 3 � 3 system in 2 dimensions ouldrequire 15N2 storage and 16 N �N FFT's to apply Ah to �h. The variableoeÆients of the derivative terms in eah omponent of F ould require anadditional q2d(d+ 3)Nd=2 storage.Many systems ontain only a few of the possible derivatives, permittingonsiderable savings. Reation-di�usion equationsut = �u+ g(u); (3.35)for example, ontain only �u and u. Thus appliation of Ah requires onlyq + 1 FFT's instead of qd(d+ 3)=2.We take advantage of this phenomenon with the aid of templates deter-mined by the nonzero entries in F and L = I � kF . De�ne Cij� = 1 ifderivative ��uj appears in omponent i of F and 0 otherwise, and de�neDj� = 1 if derivative ��uj appears in any omponent of F and 0 otherwise.We assign storage only for oeÆients bij� of L with Cij� > 0 and only forderivatives ��uj with Dj� > 0. When we apply Ah to �h, we apply FFT'sto ompute derivatives only when neessary. This use of templates an saveas muh as a fator of 10 in storage and CPU time for many problems.Remark: It is useful to indiate nononstant as well as nonzero oeÆ-ients; then onstant-oeÆient terms an be grouped together and evaluatedwith only one FFT.
13



3.4 User interfaeOur ode is designed to be robust, exible and easy to adapt to any parabolisystem. The user supplies a single external subroutine whih determines theparaboli system to be solved. The �rst all of this subroutine sets the tem-plates so workspae an be assigned for F and L. Subsequent alls aeptt; x; u; �u; �2u as input and return F(t; x; u; �u; �2u) and the oeÆients ofL as output. A di�erent paraboli system requires only a few dozen lines ofode. An example of this subroutine for linear variable-oeÆient systems isshown in Figure 2 and Figure 3. An external funtion \oeff" provides thevariable oeÆients and arrays \mapf" and \mapder" represent the tem-plates C and D. Loop over derivatives 1 to 6 = (uxx,uxy,uyy,ux,uy,u).do 10 id=1,6 Loop over equations.do 20 iq=1,nq Loop over omponents.do 30 jq=1,nqif(id.le.3)mapf(iq,jq,id)=0if(id.gt.3)mapf(iq,jq,id)=130 ontinue Set all diagonal entries true.mapf(iq,iq,id)=120 ontinue10 ontinue Initialize mapder from mapf.do 50 jq=1,nqdo 60 id=1,ndmapder(jq,id)=-1do 70 iq=1,nqif(mapf(iq,jq,id).gt.0) mapder(jq,id)=170 ontinue60 ontinue50 ontinueFigure 2: Code segment to evaluate templates mapf and mapder for a linearvariable-oeÆient paraboli system.
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h=1.0/float(n) Loop over grid points.do 80 i1=1,ndo 80 i2=1,ndo 90 iq=1,nq Working on iq'th equation: zero f to start.fv(i1,i2,iq)=0.0 Sum over omponents jq=1,...,nq.do 100 jq=1,nq Sum over derivatives 1 through 6.do 110 id=1,6jd=mapf(iq,jq,id)if(jd.gt.0)then Equation depends on derivative number id.=oeff(t,i1*h,i2*h,iq,jq,id)mder=mapder(jq,id)fv(i1,i2,iq)=fv(i1,i2,iq)+*ud(i1,i2,mder)df(i1,i2,jd)=b*if(iq.eq.jq.and.id.eq.6)df(i1,i2,jd)=df(i1,i2,jd)+aend if110 ontinue100 ontinue90 ontinue80 ontinueFigure 3: Code segment to evaluate F and the oeÆients of aI + bL for alinear variable-oeÆient paraboli system.
15



3.5 Test asesWe tested this ode on several paraboli systems and exat solutions ofinreasing omplexity. We used four lasses of systems; linear variable-oeÆient systems �tui = qXj=1 Xj�j�2 aij�(t; x)��uj + fi(t; x); (3.36)reation-di�usion systems�tui = qXj=1 X1�j�j�2 aij�(t; x)��uj + ui(1 + u2i ) + fi(t; x); (3.37)mean urvature systems�tui = (1 + �2u2i )�21ui + 2�1ui�2ui�1�2ui + (1 + �1u2i )�22ui+ qXj=1 Xj�j�1 aij�(t; x)��uj + fi(t; x) (3.38)and phase �eld models for solidi�ation [1, 10℄ut = a1�u+ a2(u� u3) + a3v + f1(t; x) (3.39)vt = �b1�u+ b2�v � b3(u� u3)� b4v + f2(t; x):Here the variable oeÆients aij�(t; x) are generated from random Fourierosine seriesFs(x) = m0Xj0=0 m1Xj1=0 m2Xj2=0 F̂s(j0; j1; j2) os(2�j0t) os(2�j1x1) os(2�j2x2)with oeÆients F̂s(j0; j1; j2) distributed uniformly on [-1,1℄ for eah s. Toensure paraboliity, we set aii� = (I + F TF )� and aij� = 0 for i 6= j andj�j = 2, where I is the d by d identity matrix and F is a matrix of Fourierseries Fs. Thus aii(1;1) = 1 + F 21 , aii(1;2) = 2F1F2, aii(2;1) = 0, and aii(2;2) =1 + F 22 + F 23 . The �rst-order oeÆients aij� for j�j = 1 were given by�Fs, where � determines the e�et of the �rst-order terms. Sine they arequadrati funtions of the Fi's, the seond-order oeÆients vary on salestwie as small as the �rst-order ones.The inhomogeneous terms f play a speial role. Given a system ut = Fand a potential exat solution v(t; x), we putf = �tv � F(t; x; v; �v; �2v): (3.40)16



Then v is the exat solution of ut = F + f . The following three-parameterfamily of exat solutions is useful:v(t; x1; x2) = exp [(a+ b os(2��0t))(a+ b os(2��1x1))(a + b os(2��2x2))℄ :(3.41)The onstants a = 3=4 and b = 1=4 ensure that the vanishing of one osinedoes not freeze the other variables. Thus �0 = 0 gives a time-independentsolution, while �1 = �2 = 0 gives a uniform solution.
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4 Numerial resultsWe ran three types of tests; �rst we measured the time disretization errorsand veri�ed that L levels gave a Lth-order time disretization, then we ver-i�ed spetral auray in spae, and �nally we solved a realisti phase �eldmodel for alloy solidi�ation [14℄.4.1 Time disretization errorsWe solved test problems with L = 1 through 4, using a �xed 32 � 32 gridand exat solution (3.41) with �0 = �1 = �2 = 1. Variable oeÆients wereonstruted from two-term Fourier series with m0 = m1 = m2 = 1. We ranfrom ti = 0 to tf = 1, one period in time and spae. Tables 1 through 4give maximum errors and CPU times for a single linear variable-oeÆientequation (3.36), a 2 � 2 mean urvature system (3.38), a 3 � 3 reation-di�usion system (3.37) and the 2� 2 phase �eld system (3.40).The results learly show the expeted rate of onvergene. Pratially,for auray of one to ten parts per thousand, the seond-order sheme is themost eÆient in most but not all ases. For high auray, third or fourthorder is faster. In all ases, the number of GMRES iterations required perstep dereased slightly asNT inreased, beause the starting values improved.We began with stopping toleranes � = 10�3�L and dereased � by 2�L eahtime we doubled NT until we reahed roundo� level � = 10�12.NT E1 T1 E2 T2 E3 T3 E4 T44 .13-1 3.2 .56-2 10.8 .69-4 43.1 .81-4 80.38 .94-2 6.6 .21-3 21.3 .49-4 98.4 .96-5 17716 .46-2 13.8 .83-4 48.8 .14-4 187 .39-5 36232 .23-2 28.0 .50-4 102 .46-5 429 .11-5 81864 .11-2 58.0 .28-4 211 .32-5 906 .45-6 1700128 .56-3 114 .13-4 426 | | | |Table 1: Errors EL and Cray-2 CPU seonds TL for NT time steps of orderL = 1 through L = 4 methods for the linear variable-oeÆient equation(3.36).
18



NT E1 T1 E2 T2 E3 T3 E4 T44 .16-0 11.4 .10-0 35.2 .57-1 208 .12-1 3778 .42-1 22.5 .25-1 74.4 .37-2 388 .16-2 76216 .91-2 44.2 .61-2 153 .59-3 910 .16-3 156432 .33-2 89.2 .15-2 301 .70-4 1760 .14-4 310064 .17-2 176 .37-3 599 .83-5 3420 .13-5 6470128 .95-3 333 .98-4 1170 | | | |Table 2: Errors EL and Cray-2 CPU seonds TL for NT time steps of orderL = 1 through L = 4 methods for the 2� 2 mean urvature system (3.38).
NT E1 T1 E2 T2 E3 T3 E4 T44 .75-1 19.7 .12-0 67 .12-1 264 .12-2 5538 .35-1 40.4 .52-2 144 .20-2 579 .13-3 111016 .16-1 83.5 .12-2 307 .42-3 1290 .18-4 241032 .78-2 171 .30-3 646 .77-4 2840 .26-5 523064 .38-2 339 .85-4 1310 .14-4 5810 .55-6 10900128 .19-2 680 .26-4 2690 | | | |Table 3: Errors EL and Cray-2 CPU seonds TL for NT time steps of orderL = 1 through L = 4 methods for the 3� 3 reation-di�usion system (3.37).
NT E1 T1 E2 T2 E3 T3 E4 T44 .42-1 2.0 .74-2 6.1 .20-2 18.6 .29-3 28.78 .19-1 3.9 .24-2 12.2 .34-3 40.7 .31-4 65.416 .98-2 7.6 .75-3 24.9 .73-4 68.2 .47-5 14532 .52-2 14.9 .22-3 48.9 .14-4 165 .70-6 30564 .26-2 29.9 .61-4 97.4 .25-5 320 .88-7 560128 .13-2 60.2 .16-4 198 | | | |Table 4: Errors EL and Cray-2 CPU seonds TL for NT time steps of orderL = 1 through L = 4 methods for the 2� 2 phase �eld system (3.40).
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4.2 Spae disretization errorsIt is expensive to verify spetral auray in spae, beause the time dis-retization is not spetrally aurate. Thus we �xed L = 4 with 100 stepsfrom ti = 0 to tf = 0:1, for the exat solution (3.41) with �0 = 1 and�1 = �2 = 9. We solved the phase �eld model (3.40) with parametersai = bi = 0:1, using grid sizes N = 16; 32; 48; : : : ; 96. The resulting max-imum errors and CPU times are reported in Table 5. Spetral auray islearly evident: When N inreases by 16, the error dereases by about a fa-tor larger than 40, suggesting exponential deay E � 200e�N=4. The iterationount is ompletely independent of mesh size for this resolved alulation,leading to CPU times proportional to the number of unknowns. This agreeswith the theoretial preditions of x2.2 and shows the e�etiveness of analytipreonditioning with �L. N E T16 .53-0 12332 .28-1 46048 .73-3 105064 .18-4 178080 .46-6 275096 .78-8 4040Table 5: Errors E and Cray-2 CPU seonds T for the 2�2 phase �eld system(3.40) with �0 = 1 and �1 = �2 = 9 and a N �N grid.
4.3 Phase �eld modelsFinally, we tested our method on a phase �eld model for isothermal binaryalloy solidi�ation proposed in [14℄: it reads�t' = M1(�2�'� f'(; '))�t = r � ((1� )rf(; '))where subsripts on f denote partial derivatives andf(; ') = fB(') + (1� )fA(') +  log + (1� ) log(1� )fA(') = WA Z '0 p(p� 1)(p� �A)dpfB(') = WB Z '0 p(p� 1)(p� �B)dp:20



Expliitly, this beomes�t' = M1(�2�'� f 0A(')� f 0B(')(1� ))�t = � +r � ((1� )'('� 1)(WB('� �B)�WA('� �A))r')= (1� )(f 0B(')� f 0A('))�' (4.42)+ (1� 2)(f 0B(')� f 0A('))r � r'+ (1� )(f 00B(')� f 00A('))jr'j2As in the numerial experiment of [14℄, we took parameters �A = 0:4,�B = 0:6, WA = WB = 10, M1 = 40, � = 1=40, ti = 0 and tf = 1. We usedtwo di�erent initial values for ' and . First, we reprodued the experimentof [14℄. This uses random initial grid values of ' and , uniformly andindependently distributed over the interval [0:5� 10�2; 0:5 + 10�2℄. Figure 4shows the resulting ' �eld, plotted in graysale: Eah square of the 96� 96grid is shaded with a value between 0 and 1, proportional to the averagevalue of '. Blak areas orrespond to minima of ', representing solid in thesolidi�ation problem, and white areas are liquid. As in [14℄, we see a rapidbirth of interfaes as ' beomes almost exlusively blak or white, followedby a oarsening by mean urvature on a longer time sale.Random initial data, however, is impossible to resolve beause it dependson the grid. For example, the last frame of Figure 4 shows the result of thesame omputation, performed on a 64� 64 grid. There is only a qualitativeresemblane between the two results. Hene we also experimented with otherrandom initial values.We generated a m � m random Fourier series F (x; y), saled it by itsmaximum so that jF (x; y)j � 1, and set the initial values equal to'(x; y; 0) = C + SF (x; y)with onstants C and S hosen to make j' � 0:5j � 0:05. By varying thegrid size, while holding m �xed, we an obtain meaningful physial resultsand a onverged solution. A sample alulation is shown in Figure 5, withm = 24 and a 96�96 grid. We see qualitatively similar results to the previousexample, but now they are stable under mesh re�nement. The last frame ofFigure 5 shows the same solution at t = 0:32, alulated on a 64� 64 grid;there is no visible di�erene.While the random Fourier series is stable under mesh re�nement, it istied to the x and y axes by the tensor produt nature of the Fourier series.Thus the �nal results onsist of lines parallel to the x and y axes, whih isphysially less interesting. Thus we also onstruted initial data by summingGaussians at random loations with strengths �1, as shown in Figure 6. The21



initial �elds for these runs are given byKXk=1 aje��2((x�xj)2+(y�yj)2)with K = 25, aj = �1, �2 = 10K and (xj; yj) random points in the unitsquare [0; 1℄2, hosen subjet to the requirement that the irles (x� xj)2 +(y� yj)2 � ��2 may not interset. This restrition is imposed to ensure thatthe maximum and minimum of the �elds be attained at several loations.With this initial data, there is no bias along the oordinate axes, so a morephysially interesting �nal state is reahed.These alulations required less than ten GMRES iterations per substepwith � = 10�6, for a total of ten to twenty minutes of Cray-2 CPU time eah,using the seond-order time disretization.
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              T =     0.0000                      
       0.4900  < P <   0.5100                     

              T =     0.0050                      
       0.4938  < P <   0.5060                     

              T =     0.0100                      
       0.4927  < P <   0.5065                     

              T =     0.0200                      
       0.4867  < P <   0.5113                     

              T =     0.0400                      
       0.4368  < P <   0.5484                     

              T =     0.0800                      
       0.0236  < P <   0.9602                     

              T =     0.1600                      
       0.0000  < P <   1.0000                     

              T =     0.3200                      
       0.0000  < P <   1.0000                     

              T =     0.3200                      
       0.0000  < P <   1.0000                     Figure 4: Gray sale plots of ' for the phase �eld model of binary alloysolidi�ation (4.42) with random grid values for the initial data.23



              T =     0.0000                      
       0.4500  < P <   0.5500                     

              T =     0.0050                      
       0.4695  < P <   0.5305                     

              T =     0.0100                      
       0.4626  < P <   0.5374                     

              T =     0.0200                      
       0.4301  < P <   0.5699                     

              T =     0.0400                      
       0.2488  < P <   0.7512                     

              T =     0.0800                      
       0.0007  < P <   0.9993                     

              T =     0.1600                      
       0.0000  < P <   1.0000                     

              T =     0.3200                      
       0.0000  < P <   1.0000                     

              T =     0.3200                      
       0.0000  < P <   1.0000                     Figure 5: Gray sale plots of ' for the phase �eld model of binary alloysolidi�ation (4.42) with random Fourier series initial data.24



              T =     0.0000                      
       0.4800  < P <   0.5200                     

              T =     0.0050                      
       0.4695  < P <   0.5305                     

              T =     0.0100                      
       0.4543  < P <   0.5459                     

              T =     0.0200                      
       0.3987  < P <   0.6020                     

              T =     0.0400                      
       0.1384  < P <   0.8642                     

              T =     0.0800                      
       0.0004  < P <   0.9997                     

              T =     0.1600                      
       0.0000  < P <   1.0000                     

              T =     0.3200                      
       0.0000  < P <   1.0000                     

              T =     0.3200                      
       0.0000  < P <   1.0000                     Figure 6: Gray sale plots of ' for the phase �eld model of binary alloysolidi�ation (4.42) with random Gaussian initial data.25
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