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1 Introdu
tionMany physi
al problems are naturally formulated as systems of nonlinearparaboli
 partial di�erential equations. Phase �eld models for 
rystal growth[1, 10℄ and alloy solidi�
ation [14℄, Ginzburg-Landau models for super
on-du
tivity [2, 3℄, rea
tion-di�usion systems for 
hemi
al pro
esses and theNavier-Stokes equations of 
uid me
hani
s are good examples. In some ofthese problems, periodi
 boundary 
onditions 
an be assumed for 
onve-nien
e.Solving these problems numeri
ally requires massive amounts of 
om-puter time and memory, making faster or more a

urate methods extremelyinteresting. However, there are well-known dilemmas in 
onstru
ting su
hmethods. Expli
it methods 
ost little per time step but require tiny timesteps for stability. Impli
it methods are less subje
t to stability restraints,but ea
h step requires solution of a large system of equations. Low-ordera

urate methods are easy to program but require many degrees of freedomand many time steps. Highly a

urate methods su
h as spe
tral methods
an use fewer degrees of freedom and fewer time steps but require smoothsolutions and are diÆ
ult to use eÆ
iently.This paper presents a numeri
al method for 
omputing smooth solutionsof the general se
ond-order nonlinear paraboli
 system of partial di�erentialequations �tu = F(t; x; u; �u; �2u) (1.1)in the box B = [0; 1℄d in Rd, with periodi
 boundary 
onditions on theboundary �B. Here the solution u : R�B!Rq is a smooth ve
tor fun
tionof time t and spa
e x, andF : R� B �Rq �Rdq �Rd2q!Rq (1.2)is a smooth ve
tor fun
tion of time, spa
e, u and the 
olle
tion of �rst andse
ond partial derivatives (�u; �2u). We assume F is periodi
 with period1 in x and satis�es a linearized ellipti
ity 
ondition. Sin
e this does notguarantee well-posedness, we assume (1.1) has a unique smooth solution onthe time interval of interest.Our method 
ombines an extrapolated linearly impli
it Euler time dis-
retization with a fast spe
trally-a

urate method for solving linear variable-
oeÆ
ient ellipti
 systems. This gives arbitrary order a

ura
y in time andspe
tral a

ura
y in spa
e at optimal 
ost. The theory of the method is de-s
ribed in x2 and we dis
uss our implementation in x3. In x4 we validate themethod with numeri
al results, in
luding mean 
urvature systems and phase�eld models of solidi�
ation. 3



2 The numeri
al methodEvolution problems are 
ommonly dis
retized �rst in the spatial variables,giving a large sti� set of ordinary di�erential equations (ODEs) to be solvedby a standard ODE pa
kage. We pro
eed in the opposite order. First, wedis
retize in time, treating the evolution problem as an in�nite-dimensionalarbitrarily sti� ODE. A linearly impli
it sti� ODE solver then redu
es theproblem to a sequen
e of linear variable-
oeÆ
ient ellipti
 systems. We solvethem by a generalization of the analyti
ally pre
onditioned spe
tral methodof [12℄, whi
h is simple, fast and spe
trally a

urate. In parti
ular, the errordue to spatial dis
retization with an Nd-point grid is O(N�p) as N!1 forany p if the solution u is smooth. The work per time step is O(Nd logN),essentially proportional to the number of degrees of freedom.2.1 Time dis
retizationThe standard methods for sti� ODEs are multistep, Runge-Kutta and extrap-olation [8℄. The usual multistep method for sti� problems is a Newton-BDFpredi
tor-
orre
tor pair, but the order of BDF is limited to 6. Runge-Kuttamethods 
an a
hieve arbitrary order but require solution of large linear sys-tems unless a diagonally impli
it method is used. The simplest arbitrary-order diagonally impli
it method is extrapolated impli
it Euler. Consideredas a Runge-Kutta method, this has more stages than ne
essary, but is ex-tremely 
onvenient in a variable-order 
ode.There are three 
avors of impli
it Euler for a sti� ODEy0 = f(t; y): (2.3)Impli
it Euler with stepsize k at times tn = nk readsyn+1 � yn = kf(tn+1; yn+1): (2.4)Linearly impli
it Euler reads(I � kDf(tn; yn))(yn+1 � yn) = kf(tn; yn); (2.5)where I is the identity matrix and Df is the Ja
obian of f with respe
t toy. Modi�ed linearly impli
it Euler reads(I � kDf(tn+1; yn))(yn+1 � yn) = kf(tn+1; yn): (2.6)Linearly impli
it methods involve only linear systems, and are therefore usu-ally superior to impli
it ones, be
ause it is diÆ
ult to solve nonlinear systemsof equations like (2.4) a

urately. At �rst glan
e, the time and spa
e argu-ments of f(tn+1; yn) in the modi�ed method appear mismat
hed. However,4



this leads to superior sti� a

ura
y properties [8℄: Consider the standardProthero-Robinson test problemy0 = �(y � '(t)) + '0(t) y(0) = '(0) (2.7)in the limit k!0, k�!1. The linearly impli
it method givesei+1 := yi+1 � '(ti+1) = (1� k�)�1ei � k'0(ti) +O(k2) +O(��1) (2.8)leading to a global error boundjeij � O(k) 0 � i <1 (2.9)as k!0 and k�!1. Both impli
it and modi�ed linearly impli
it Euler giveei+1 = (1� k�)�1 �ei + 12k2'00(ti) +O(k3)� (2.10)leading to a global error boundjeij � O(k2=k�) 0 � i <1 (2.11)as k!0 and k�!1. Our numeri
al experiments also indi
ate that the modi-�ed linearly impli
it method gives results 
onsiderably superior to the linearlyimpli
it method, so we adopt it as a base for extrapolation.Thus we begin by dis
retizing (1.1) in time, using (2.6) with time step k.This gives a sequen
e of linear ellipti
 systems(I � kDF(tn+1; un))(un+1 � un) = kF(tn+1; x; un) (2.12)for periodi
 ve
tor fun
tions un : B!Rq approximating u(tn; x). (We omitthe dependen
e of F on �u and �2u to simplify the notation.) DF(t; u) isthe Fr�e
het derivative of F : thus DF(t; u) takes a ve
tor fun
tion v : B!Rqto another ve
tor fun
tion w : B!Rq given bywi(x) := (DF(t; u)v(x))i = qXj=1 Xj�j�2 aij�(t; x; u)��vj(x): (2.13)Here � = (�1; �2; : : : ; �d) is a multiindex of nonnegative integers �i withorder j�j = �1 + �2 + � � � + �d. Partial derivatives are denoted by �� =��11 � � ���dd where �i = ��xi . The 
oeÆ
ients aij� are the partial derivatives ofthe 
omponents of F with respe
t to the derivatives of the 
omponents of u:aij�(t; x; u) = �F i(t; x; u)�(��uj) : (2.14)5



(We omit the dependen
e of aij�(t; x; u) on �u and �2u to simplify the nota-tion.) The next se
tion dis
usses solution of these linear ellipti
 systems.The modi�ed linearly impli
it Euler method is only �rst-order a

urate intime, insuÆ
ient for a

urate 
omputations at reasonable 
ost. However, ithas an asymptoti
 error expansion whi
h permits Ri
hardson extrapolationto higher order, as long as the solution remains smooth. Indeed, the dis
retenumeri
al solution un(x) extends to a smooth fun
tion uk(t; x) whi
h satis�esuk(t; x) = u(t; x) + ke1(t; x) + k2e2(t; x) + � � �+ kNeN (t; x) + o(kN) (2.15)as k!0. Here u(t; x) is the exa
t solution to the PDE and ej are smoothfun
tions obtained by solving variational equations. This expansion allowsus to 
ompute the solution to higher-order a

ura
y. For example, to se
ondorder we haveu(t+ k; x) = 2uk=2(t+ k; x)� uk(t + k; x) +O(k2): (2.16)We go from t to t+k in one step, then in two substeps of half the length, then
ombine the results to eliminate the �rst-order error term. More generally,we 
an go from t to t+k in n1 substeps, n2 substeps, . . . , nL substeps, giving�rst-order resultsUl1(t + k; x) = uk=nl(t + k; x) 1 � l � L= u(t+ k; x) + (k=nl)e1(t; x) + � � �+ (k=nl)NeN(t; x) + o(kN ):Then we 
an generate mth order results for m = 2, 3, . . . , L by the extrap-olation formulaUlm = Ul;m�1 + Ul;m�1 � Ul�1;m�1(nl=nl�m+1)� 1 m � l � L= u(t+ k; x) +O(km):The extrapolation table is lower triangular:U11 &U21 ! U22& &U31 ! U32 ! U33: : : : : : : : :& & &UL1 ! UL2 ! : : : ! ULL (2.17)
Extrapolated linearly impli
it Euler is a simple diagonally impli
it Runge-Kutta method with ex
ellent sti� stability properties; it is A(�)-stable [8℄with � � 89:77Æ if nl = l, and � � 89:82Æ if nl = l + 1. It is suboptimallyeÆ
ient but easy to 
hange order in a variable-step variable-order implemen-tation. 6



2.2 Spa
e dis
retizationAt ea
h time substep, we solve a linear variable-
oeÆ
ient ellipti
 system(Lv)i := qXj=1 Xj�j�2 bij�(x)��vj(x) = ri(x) (2.18)with operator L = I�kDF(tn+1; un), 
oeÆ
ients bij�(x) = ÆijÆ�0�kaij�(t; x; u),right-hand side r = kF(tn+1; x; un) and solution v = un+1 � un. We assumethat F is smooth and the 
oeÆ
ients aij�(x) of DF satisfy the uniformparaboli
ity 
ondition:qXi;j=1 Xj�j=2 aij�(x)��vivj � �Æjvj2j�j2 + Cjvj2 (2.19)for some 
onstants Æ > 0 and C � 0, any x 2 B and any ve
tors v; � 2 Rq.This 
ondition alone does not imply that the paraboli
 system (1.1) is well-posed unless it is linear [6, 4℄, but does guarantee that the ellipti
 system(2.18) is well-posed for small enough k [9℄. More pre
isely, it implies thatL is a bounded invertible operator from the H�older spa
e C2;�(B;Rq) toC�(B;Rq) for k suÆ
iently small.We solve these problems numeri
ally by analyti
 pre
onditioning, as in[12℄. We use the averaged operator to 
onvert Lv = r into an integralequation. Let �L be the ellipti
 operator with 
onstant 
oeÆ
ients�bij� := 1jBj ZB bij�(x)dx: (2.20)Sin
e �L satis�es (2.19), it is a bounded invertible operator from C2;�(B;Rq)to C�(B;Rq). Hen
e we 
an de�ne a new unknown density � = �Lv : B!Rq,so v is the volume potential due to �:v(x) = �L�1�(x) = ZB �G(x� y)�(y)dy (2.21)where �G(x�y) is the Green matrix for �L with periodi
 boundary 
onditions.Sin
e �L has 
onstant 
oeÆ
ients, Fourier analysis gives �G expli
itly:�G(x) = X�2Zd ��(�)�1e2����x (2.22)where ��(�) is the matrix symbol of �L:��ij(�) = X��2�bij�(2���)�: (2.23)7



Sin
e DF is ellipti
, ��(�) is invertible uniformly for small enough k, thoughthe Fourier series (2.22) for �G 
onverges only in the sense of distributions ingeneral.Remark: If we take vi = Æim for any �xed m in (2.19), it follows thatX�=2 amm�(x)�� � �Æj�j2 + C: (2.24)Thus an alternative de�nition of �L 
an be used to equal e�e
t:(�Lv)i =X� �bii���vi (2.25)is the diagonal part of the averaged operator. Inverting �� is unne
essary.Now � satis�es A� = r; (2.26)where A = L�L�1 is a bounded invertible operator on C�(B;Rq):A�(x) = X�2Zd �(x; �)��(�)�1�̂(�)e2����x= ZB 24X�2Zd �(x; �)��(�)�1e2����(x�y)35 �(y)dy: (2.27)Here �̂(�) = ZB e�2����y�(y)dy (2.28)and �(x; �) is the matrix symbol of L:�ij(x; �) = Xj�j�2 bij�(x)(2���)�: (2.29)The sum in (2.27) 
onverges only in the sense of distributions in general,sin
e A = I is not an integral operator when L has 
onstant 
oeÆ
ients.Sin
e A is bounded and invertible, we expe
t that we 
an dis
retize A� =r with bounded 
ondition numbers as the mesh size goes to zero. In otherwords, we have analyti
ally pre
onditioned Lv = r with �L�1 to produ
e anequation with a uniformly well-
onditioned dis
retization.The a
tual dis
retization is straightforward. We lay down a uniform gridwith spa
ing h and Nd points on B and approximate derivatives of �L�1�with the FFT: let �̂h(�) = hd X1��p�N e�2����y��(y�) (2.30)where y� = (�1h; : : : ; �dh). Then we de�ne the approximation Ah of A byAh�(x) = Xj�pj�N=2 �(x; �)��(�)�1�̂h(�)e2����x (2.31)8



Our approximate solution �h(x) is then the solution of the linear systemAh�h = rh (2.32)where rh is the ve
tor of fun
tion values r(y�).In pra
ti
e, (2.31) 
annot be evaluated eÆ
iently with the FFT for given�, be
ause �(x; �) depends on x. Thus we take advantage of the spe
ial formof �(x; �) to write(Ah�(x))i = qXj=1 Xj�j�2 aij�(x) Xj�pj�N=2(2���)� ���(�)�1�̂h(�)�j e2����x (2.33)where ea
h inner sum 
an now be done eÆ
iently with the FFT before mul-tiplying by the variable 
oeÆ
ients and summing over j and �.Sin
e the integral equation is uniformly well-
onditioned and the dis-
retization is a

urate, the dis
retization is also well-
onditioned, so anystandard iterative method for large nonsymmetri
 linear systems should solveAh�h = rh in a number of iterations bounded as h!0. Note that Ah is a largeNd � Nd full matrix, so forming and fa
toring Ah dire
tly is prohibitivelyexpensive.There are several standard iterative methods for su
h systems; General-ized Minimum Residual (GMRES) [11℄, Quasi-Minimum Residual (QMR) [5℄and Stabilized Bi
onjugate Gradients (BI-CGSTAB) [13℄ are the best-known.They have roughly similar 
onvergen
e properties. For GMRES applied toa N � N system Ax = f , for example, the residual rm = f � Axm after msteps satis�es [11℄ jjrmjj � �(X)�mjjr0jjwhere A = X�X�1 is diagonalizable, �(X) = jjXjj2jjX�1jj2, and�m � �Dd �� �RC�m�� :Here we assume that A has � eigenvalues �1; : : : ; �� in the left half plane andN � � in a 
ir
le jC � �j � R with C > R > 0, and we de�neD = max1�i��;�+1�j�N j�i � �jjand d = min1�i�� j�ij. An example is shown in Figure 1.Thus the restarted method GMRES(m) is guaranteed to 
onverge ifm > log �(X)logC=R + �  1 + logD=dlogC=R! ;and the 
onvergen
e rate depends on the problem size only through eigenvaluebounds and �(X). For solving A� = f , therefore, we expe
t the 
onvergen
erate of GMRES to be asymptoti
ally independent of mesh size.9
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3 ImplementationWe implemented our method in a FORTRAN 
ode for general q � q par-aboli
 systems in d = 2 spa
e dimensions. We dis
uss the following aspe
tsof our implementation: algorithm stru
ture, starting values and iterations,eÆ
ien
y, the user interfa
e and the 
onstru
tion of test 
ases.3.1 Algorithm stru
tureThe 
ode stru
ture is natural: Parameters are read, the equations are solvedone time step at a time, and results are written to output. One time step ofan extrapolation method 
onsists of several substeps followed by extrapola-tion. Ea
h substep 
onsists of iterative solution of a linear variable-
oeÆ
ientellipti
 system Lv = A� = r. Our 
ode solves this ellipti
 system with GM-RES [11℄, with all matrix-ve
tor produ
ts Ah�h 
omputed by an externalsubroutine. After solving Ah�h = rh, we obtain vh = �L�1h �h with anotherFFT. Finally, we extrapolate to obtain a higher-order a

urate solution. Anoutline of the 
ode follows. AlgorithmInput:Read input �le for parameters:Time step, initial and �nal times: k, ti, tfGrid size: NExtrapolation parameters: L, step sequen
e nlIteration parameters: Dimension, restarts, stopping toleran
e �.Starting method, iterationSystem parameters: q, equation, miExa
t solution parameters: �i Initialize:Set t = ti, level-l solution ul equal to exa
t solution at time ti, and �l = 0 forl = 1; 2; : : : ; L. Assign templates and workspa
e for 
oeÆ
ients and derivatives.Time stepping:Time loop: while t < tf dot = t+ kExtrapolation loop: do l = L;L� 1; : : : ; 1kl = k=nl ; t0 = tTime substepping: do j = 1; 2; : : : ; nl11



tj = t+ jklEvaluate F(tj ; ul) and 
oeÆ
ients bij� of I � klDF(tj ; ul).Compute 
oeÆ
ients �bij� of �L by averaging bij�.Set Ah = L�L�1.Compute starting value for �l:either �l = randomor �l = 0or (right-hand side) �l = klF(tj ; ul)or (previous substep) �l = �l(tj�1)or (forward Euler) �l = �l(tj�1) + klF(tj ; ul)or (interpolation if l < L)�l = (1� #)�(tj�1) + #�L(tj) where # = 1nl�j+1 .end either-orApply GMRES with toleran
e � and starting value �l to 
omputethe solution �l of Ah�l = kF(tj ; ul).Compute in
rement vl = �L�1�l using the FFT and ��(�)�1.In
rement ul = ul + vl.End of time substepping: end doEnd of extrapolation loop: end doExtrapolate solutions L� 1 times:do l = 1; : : : ; L� 1do j = L;L� 1; : : : ; l + 1uj = uj + 1(nj=nj�l�1) (uj � uj�1)end doend doCopy �nest-level solution to all levels in preparation for next time step:do l = 1; 2; : : : ; L� 1ul = uLend doEnd of time loop: end do3.2 Starting values and iterationsOf the several standard iterative methods for nonsymmetri
 linear systems,GMRES [11℄, QMR [5℄ and BI-CGSTAB [13℄ are the best-known. GMREShas been used for some time, while the others have been developed morere
ently. No theory suggests that one is superior, so we used GMRES. How-ever, we may in future test others, and therefore have designed our 
odeso that the iterative method sees only a subroutine for the matrix-ve
torprodu
t Ah�h, not the matrix elements.The starting value is important for any iteration. Our 
ode providesseveral options: � 
an be random (usually a very bad 
hoi
e), zero, equal tothe right-hand side kF(t; x; u), or 
omputed by three spe
ial methods. It 
anbe equal to the previous time step value, 
omputed by a forward Euler step12



(usually a good 
hoi
e, and inexpensive sin
e the F value is already known),or 
omputed by interpolation from a �ner 
al
ulation. In this last option,we do the 
al
ulation �rst with nL steps (using forward Euler for startingvalues), obtaining results �L(t+ k; x). Then we interpolate linearly between�l(t; x) and �L(t+ k; x). Thus at levels l < L we start substep j with�l = (1� #)�l + #�L(t+ k; x) (3.34)where # = 1=(nl � j + 1). Our experiments indi
ate that forward Euler isslightly better than interpolation, with the other options trailing.Sin
e we are solving this system from s
rat
h at ea
h time step, the te
h-niques suggested in [7℄ might speed up 
onvergen
e. We plan to investigatethis question further.3.3 EÆ
ien
yThis algorithm 
ould require a great deal of storage and CPU time if d or qis large, be
ause there are many possible derivatives of ea
h 
omponent of u.In d dimensions, there are qd(d + 3)=2 distin
t �rst and se
ond derivativesof a ve
tor fun
tion u : B!Rq, so a 3 � 3 system in 2 dimensions 
ouldrequire 15N2 storage and 16 N �N FFT's to apply Ah to �h. The variable
oeÆ
ients of the derivative terms in ea
h 
omponent of F 
ould require anadditional q2d(d+ 3)Nd=2 storage.Many systems 
ontain only a few of the possible derivatives, permitting
onsiderable savings. Rea
tion-di�usion equationsut = �u+ g(u); (3.35)for example, 
ontain only �u and u. Thus appli
ation of Ah requires onlyq + 1 FFT's instead of qd(d+ 3)=2.We take advantage of this phenomenon with the aid of templates deter-mined by the nonzero entries in F and L = I � kF . De�ne Cij� = 1 ifderivative ��uj appears in 
omponent i of F and 0 otherwise, and de�neDj� = 1 if derivative ��uj appears in any 
omponent of F and 0 otherwise.We assign storage only for 
oeÆ
ients bij� of L with Cij� > 0 and only forderivatives ��uj with Dj� > 0. When we apply Ah to �h, we apply FFT'sto 
ompute derivatives only when ne
essary. This use of templates 
an saveas mu
h as a fa
tor of 10 in storage and CPU time for many problems.Remark: It is useful to indi
ate non
onstant as well as nonzero 
oeÆ-
ients; then 
onstant-
oeÆ
ient terms 
an be grouped together and evaluatedwith only one FFT.
13



3.4 User interfa
eOur 
ode is designed to be robust, 
exible and easy to adapt to any paraboli
system. The user supplies a single external subroutine whi
h determines theparaboli
 system to be solved. The �rst 
all of this subroutine sets the tem-plates so workspa
e 
an be assigned for F and L. Subsequent 
alls a

eptt; x; u; �u; �2u as input and return F(t; x; u; �u; �2u) and the 
oeÆ
ients ofL as output. A di�erent paraboli
 system requires only a few dozen lines of
ode. An example of this subroutine for linear variable-
oeÆ
ient systems isshown in Figure 2 and Figure 3. An external fun
tion \
oeff" provides thevariable 
oeÆ
ients and arrays \map
f" and \mapder" represent the tem-plates C and D.
 Loop over derivatives 1 to 6 = (uxx,uxy,uyy,ux,uy,u).do 10 id=1,6
 Loop over equations.do 20 iq=1,nq
 Loop over 
omponents.do 30 jq=1,nqif(id.le.3)map
f(iq,jq,id)=0if(id.gt.3)map
f(iq,jq,id)=130 
ontinue
 Set all diagonal entries true.map
f(iq,iq,id)=120 
ontinue10 
ontinue
 Initialize mapder from map
f.do 50 jq=1,nqdo 60 id=1,ndmapder(jq,id)=-1do 70 iq=1,nqif(map
f(iq,jq,id).gt.0) mapder(jq,id)=170 
ontinue60 
ontinue50 
ontinueFigure 2: Code segment to evaluate templates map
f and mapder for a linearvariable-
oeÆ
ient paraboli
 system.
14



h=1.0/float(n)
 Loop over grid points.do 80 i1=1,ndo 80 i2=1,ndo 90 iq=1,nq
 Working on iq'th equation: zero f to start.fv(i1,i2,iq)=0.0
 Sum over 
omponents jq=1,...,nq.do 100 jq=1,nq
 Sum over derivatives 1 through 6.do 110 id=1,6jd=map
f(iq,jq,id)if(jd.gt.0)then
 Equation depends on derivative number id.
=
oeff(t,i1*h,i2*h,iq,jq,id)mder=mapder(jq,id)fv(i1,i2,iq)=fv(i1,i2,iq)+
*ud(i1,i2,mder)df(i1,i2,jd)=b*
if(iq.eq.jq.and.id.eq.6)df(i1,i2,jd)=df(i1,i2,jd)+aend if110 
ontinue100 
ontinue90 
ontinue80 
ontinueFigure 3: Code segment to evaluate F and the 
oeÆ
ients of aI + bL for alinear variable-
oeÆ
ient paraboli
 system.
15



3.5 Test 
asesWe tested this 
ode on several paraboli
 systems and exa
t solutions ofin
reasing 
omplexity. We used four 
lasses of systems; linear variable-
oeÆ
ient systems �tui = qXj=1 Xj�j�2 aij�(t; x)��uj + fi(t; x); (3.36)rea
tion-di�usion systems�tui = qXj=1 X1�j�j�2 aij�(t; x)��uj + ui(1 + u2i ) + fi(t; x); (3.37)mean 
urvature systems�tui = (1 + �2u2i )�21ui + 2�1ui�2ui�1�2ui + (1 + �1u2i )�22ui+ qXj=1 Xj�j�1 aij�(t; x)��uj + fi(t; x) (3.38)and phase �eld models for solidi�
ation [1, 10℄ut = a1�u+ a2(u� u3) + a3v + f1(t; x) (3.39)vt = �b1�u+ b2�v � b3(u� u3)� b4v + f2(t; x):Here the variable 
oeÆ
ients aij�(t; x) are generated from random Fourier
osine seriesFs(x) = m0Xj0=0 m1Xj1=0 m2Xj2=0 F̂s(j0; j1; j2) 
os(2�j0t) 
os(2�j1x1) 
os(2�j2x2)with 
oeÆ
ients F̂s(j0; j1; j2) distributed uniformly on [-1,1℄ for ea
h s. Toensure paraboli
ity, we set aii� = (I + F TF )� and aij� = 0 for i 6= j andj�j = 2, where I is the d by d identity matrix and F is a matrix of Fourierseries Fs. Thus aii(1;1) = 1 + F 21 , aii(1;2) = 2F1F2, aii(2;1) = 0, and aii(2;2) =1 + F 22 + F 23 . The �rst-order 
oeÆ
ients aij� for j�j = 1 were given by�Fs, where � determines the e�e
t of the �rst-order terms. Sin
e they arequadrati
 fun
tions of the Fi's, the se
ond-order 
oeÆ
ients vary on s
alestwi
e as small as the �rst-order ones.The inhomogeneous terms f play a spe
ial role. Given a system ut = Fand a potential exa
t solution v(t; x), we putf = �tv � F(t; x; v; �v; �2v): (3.40)16



Then v is the exa
t solution of ut = F + f . The following three-parameterfamily of exa
t solutions is useful:v(t; x1; x2) = exp [(a+ b 
os(2��0t))(a+ b 
os(2��1x1))(a + b 
os(2��2x2))℄ :(3.41)The 
onstants a = 3=4 and b = 1=4 ensure that the vanishing of one 
osinedoes not freeze the other variables. Thus �0 = 0 gives a time-independentsolution, while �1 = �2 = 0 gives a uniform solution.
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4 Numeri
al resultsWe ran three types of tests; �rst we measured the time dis
retization errorsand veri�ed that L levels gave a Lth-order time dis
retization, then we ver-i�ed spe
tral a

ura
y in spa
e, and �nally we solved a realisti
 phase �eldmodel for alloy solidi�
ation [14℄.4.1 Time dis
retization errorsWe solved test problems with L = 1 through 4, using a �xed 32 � 32 gridand exa
t solution (3.41) with �0 = �1 = �2 = 1. Variable 
oeÆ
ients were
onstru
ted from two-term Fourier series with m0 = m1 = m2 = 1. We ranfrom ti = 0 to tf = 1, one period in time and spa
e. Tables 1 through 4give maximum errors and CPU times for a single linear variable-
oeÆ
ientequation (3.36), a 2 � 2 mean 
urvature system (3.38), a 3 � 3 rea
tion-di�usion system (3.37) and the 2� 2 phase �eld system (3.40).The results 
learly show the expe
ted rate of 
onvergen
e. Pra
ti
ally,for a

ura
y of one to ten parts per thousand, the se
ond-order s
heme is themost eÆ
ient in most but not all 
ases. For high a

ura
y, third or fourthorder is faster. In all 
ases, the number of GMRES iterations required perstep de
reased slightly asNT in
reased, be
ause the starting values improved.We began with stopping toleran
es � = 10�3�L and de
reased � by 2�L ea
htime we doubled NT until we rea
hed roundo� level � = 10�12.NT E1 T1 E2 T2 E3 T3 E4 T44 .13-1 3.2 .56-2 10.8 .69-4 43.1 .81-4 80.38 .94-2 6.6 .21-3 21.3 .49-4 98.4 .96-5 17716 .46-2 13.8 .83-4 48.8 .14-4 187 .39-5 36232 .23-2 28.0 .50-4 102 .46-5 429 .11-5 81864 .11-2 58.0 .28-4 211 .32-5 906 .45-6 1700128 .56-3 114 .13-4 426 | | | |Table 1: Errors EL and Cray-2 CPU se
onds TL for NT time steps of orderL = 1 through L = 4 methods for the linear variable-
oeÆ
ient equation(3.36).
18



NT E1 T1 E2 T2 E3 T3 E4 T44 .16-0 11.4 .10-0 35.2 .57-1 208 .12-1 3778 .42-1 22.5 .25-1 74.4 .37-2 388 .16-2 76216 .91-2 44.2 .61-2 153 .59-3 910 .16-3 156432 .33-2 89.2 .15-2 301 .70-4 1760 .14-4 310064 .17-2 176 .37-3 599 .83-5 3420 .13-5 6470128 .95-3 333 .98-4 1170 | | | |Table 2: Errors EL and Cray-2 CPU se
onds TL for NT time steps of orderL = 1 through L = 4 methods for the 2� 2 mean 
urvature system (3.38).
NT E1 T1 E2 T2 E3 T3 E4 T44 .75-1 19.7 .12-0 67 .12-1 264 .12-2 5538 .35-1 40.4 .52-2 144 .20-2 579 .13-3 111016 .16-1 83.5 .12-2 307 .42-3 1290 .18-4 241032 .78-2 171 .30-3 646 .77-4 2840 .26-5 523064 .38-2 339 .85-4 1310 .14-4 5810 .55-6 10900128 .19-2 680 .26-4 2690 | | | |Table 3: Errors EL and Cray-2 CPU se
onds TL for NT time steps of orderL = 1 through L = 4 methods for the 3� 3 rea
tion-di�usion system (3.37).
NT E1 T1 E2 T2 E3 T3 E4 T44 .42-1 2.0 .74-2 6.1 .20-2 18.6 .29-3 28.78 .19-1 3.9 .24-2 12.2 .34-3 40.7 .31-4 65.416 .98-2 7.6 .75-3 24.9 .73-4 68.2 .47-5 14532 .52-2 14.9 .22-3 48.9 .14-4 165 .70-6 30564 .26-2 29.9 .61-4 97.4 .25-5 320 .88-7 560128 .13-2 60.2 .16-4 198 | | | |Table 4: Errors EL and Cray-2 CPU se
onds TL for NT time steps of orderL = 1 through L = 4 methods for the 2� 2 phase �eld system (3.40).
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4.2 Spa
e dis
retization errorsIt is expensive to verify spe
tral a

ura
y in spa
e, be
ause the time dis-
retization is not spe
trally a

urate. Thus we �xed L = 4 with 100 stepsfrom ti = 0 to tf = 0:1, for the exa
t solution (3.41) with �0 = 1 and�1 = �2 = 9. We solved the phase �eld model (3.40) with parametersai = bi = 0:1, using grid sizes N = 16; 32; 48; : : : ; 96. The resulting max-imum errors and CPU times are reported in Table 5. Spe
tral a

ura
y is
learly evident: When N in
reases by 16, the error de
reases by about a fa
-tor larger than 40, suggesting exponential de
ay E � 200e�N=4. The iteration
ount is 
ompletely independent of mesh size for this resolved 
al
ulation,leading to CPU times proportional to the number of unknowns. This agreeswith the theoreti
al predi
tions of x2.2 and shows the e�e
tiveness of analyti
pre
onditioning with �L. N E T16 .53-0 12332 .28-1 46048 .73-3 105064 .18-4 178080 .46-6 275096 .78-8 4040Table 5: Errors E and Cray-2 CPU se
onds T for the 2�2 phase �eld system(3.40) with �0 = 1 and �1 = �2 = 9 and a N �N grid.
4.3 Phase �eld modelsFinally, we tested our method on a phase �eld model for isothermal binaryalloy solidi�
ation proposed in [14℄: it reads�t' = M1(�2�'� f'(
; '))�t
 = r � (
(1� 
)rf
(
; '))where subs
ripts on f denote partial derivatives andf(
; ') = 
fB(') + (1� 
)fA(') + 
 log 
+ (1� 
) log(1� 
)fA(') = WA Z '0 p(p� 1)(p� �A)dpfB(') = WB Z '0 p(p� 1)(p� �B)dp:20



Expli
itly, this be
omes�t' = M1(�2�'� f 0A(')
� f 0B(')(1� 
))�t
 = �
 +r � (
(1� 
)'('� 1)(WB('� �B)�WA('� �A))r')= 
(1� 
)(f 0B(')� f 0A('))�' (4.42)+ (1� 2
)(f 0B(')� f 0A('))r
 � r'+ 
(1� 
)(f 00B(')� f 00A('))jr'j2As in the numeri
al experiment of [14℄, we took parameters �A = 0:4,�B = 0:6, WA = WB = 10, M1 = 40, � = 1=40, ti = 0 and tf = 1. We usedtwo di�erent initial values for ' and 
. First, we reprodu
ed the experimentof [14℄. This uses random initial grid values of ' and 
, uniformly andindependently distributed over the interval [0:5� 10�2; 0:5 + 10�2℄. Figure 4shows the resulting ' �eld, plotted in grays
ale: Ea
h square of the 96� 96grid is shaded with a value between 0 and 1, proportional to the averagevalue of '. Bla
k areas 
orrespond to minima of ', representing solid in thesolidi�
ation problem, and white areas are liquid. As in [14℄, we see a rapidbirth of interfa
es as ' be
omes almost ex
lusively bla
k or white, followedby a 
oarsening by mean 
urvature on a longer time s
ale.Random initial data, however, is impossible to resolve be
ause it dependson the grid. For example, the last frame of Figure 4 shows the result of thesame 
omputation, performed on a 64� 64 grid. There is only a qualitativeresemblan
e between the two results. Hen
e we also experimented with otherrandom initial values.We generated a m � m random Fourier series F (x; y), s
aled it by itsmaximum so that jF (x; y)j � 1, and set the initial values equal to'(x; y; 0) = C + SF (x; y)with 
onstants C and S 
hosen to make j' � 0:5j � 0:05. By varying thegrid size, while holding m �xed, we 
an obtain meaningful physi
al resultsand a 
onverged solution. A sample 
al
ulation is shown in Figure 5, withm = 24 and a 96�96 grid. We see qualitatively similar results to the previousexample, but now they are stable under mesh re�nement. The last frame ofFigure 5 shows the same solution at t = 0:32, 
al
ulated on a 64� 64 grid;there is no visible di�eren
e.While the random Fourier series is stable under mesh re�nement, it istied to the x and y axes by the tensor produ
t nature of the Fourier series.Thus the �nal results 
onsist of lines parallel to the x and y axes, whi
h isphysi
ally less interesting. Thus we also 
onstru
ted initial data by summingGaussians at random lo
ations with strengths �1, as shown in Figure 6. The21



initial �elds for these runs are given byKXk=1 aje��2((x�xj)2+(y�yj)2)with K = 25, aj = �1, �2 = 10K and (xj; yj) random points in the unitsquare [0; 1℄2, 
hosen subje
t to the requirement that the 
ir
les (x� xj)2 +(y� yj)2 � ��2 may not interse
t. This restri
tion is imposed to ensure thatthe maximum and minimum of the �elds be attained at several lo
ations.With this initial data, there is no bias along the 
oordinate axes, so a morephysi
ally interesting �nal state is rea
hed.These 
al
ulations required less than ten GMRES iterations per substepwith � = 10�6, for a total of ten to twenty minutes of Cray-2 CPU time ea
h,using the se
ond-order time dis
retization.
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              T =     0.0000                      
       0.4900  < P <   0.5100                     

              T =     0.0050                      
       0.4938  < P <   0.5060                     

              T =     0.0100                      
       0.4927  < P <   0.5065                     

              T =     0.0200                      
       0.4867  < P <   0.5113                     

              T =     0.0400                      
       0.4368  < P <   0.5484                     

              T =     0.0800                      
       0.0236  < P <   0.9602                     

              T =     0.1600                      
       0.0000  < P <   1.0000                     

              T =     0.3200                      
       0.0000  < P <   1.0000                     

              T =     0.3200                      
       0.0000  < P <   1.0000                     Figure 4: Gray s
ale plots of ' for the phase �eld model of binary alloysolidi�
ation (4.42) with random grid values for the initial data.23



              T =     0.0000                      
       0.4500  < P <   0.5500                     

              T =     0.0050                      
       0.4695  < P <   0.5305                     

              T =     0.0100                      
       0.4626  < P <   0.5374                     

              T =     0.0200                      
       0.4301  < P <   0.5699                     

              T =     0.0400                      
       0.2488  < P <   0.7512                     

              T =     0.0800                      
       0.0007  < P <   0.9993                     

              T =     0.1600                      
       0.0000  < P <   1.0000                     

              T =     0.3200                      
       0.0000  < P <   1.0000                     

              T =     0.3200                      
       0.0000  < P <   1.0000                     Figure 5: Gray s
ale plots of ' for the phase �eld model of binary alloysolidi�
ation (4.42) with random Fourier series initial data.24



              T =     0.0000                      
       0.4800  < P <   0.5200                     

              T =     0.0050                      
       0.4695  < P <   0.5305                     

              T =     0.0100                      
       0.4543  < P <   0.5459                     

              T =     0.0200                      
       0.3987  < P <   0.6020                     

              T =     0.0400                      
       0.1384  < P <   0.8642                     

              T =     0.0800                      
       0.0004  < P <   0.9997                     

              T =     0.1600                      
       0.0000  < P <   1.0000                     

              T =     0.3200                      
       0.0000  < P <   1.0000                     

              T =     0.3200                      
       0.0000  < P <   1.0000                     Figure 6: Gray s
ale plots of ' for the phase �eld model of binary alloysolidi�
ation (4.42) with random Gaussian initial data.25
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