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Abstract 

The solution of the KdV equation with single-minimum initial data has a zero-dispersion limit 
characterized by Lax and Levermore as the solution of an infinite-dimensional constrained quadratic 
minimization problem. An adaptive numerical method for computing the weak limit from this charac- 
terization is constructed and validated. The method is then used to study the weak limit. Initial simple 
experiments confirm theoretical predictions, while experiments with more complicated data display 
multiphase behavior considerably beyond the scope of current theoretical analyses. The method com- 
putes accurate weak limits with multiphase structures sufficiently complex to provide useful test cases 
for the calibration of numerical averaging algorithms. @ 1994 John Wiley & Sons, Inc. 

1. Introduction 

The Korteweg-de Vries equation 

2 (1.1) - ~ U U ,  + E uxXx = 0 x E Iw 

(1 .a U ( X , O )  = V(X) 

appears as an asymptotic model in physical systems ranging from water waves 
to plasma physics. This ubiquity is partly explained by the fact that it is the 
simplest model for dispersive regularization of nonlinear hyperbolic conservation 
laws. In the absence of the regularizing term (E  = O) ,  equation (1.1) reduces to a 
scalar conservation law, whose solutions steepen and develop infinite derivatives 
in finite time. Regularizing terms, such as E*u,,, prevent the development of such 
singularities. The most common regularization is Burgers’s equation 

(1.3) ut - ~ U U ,  - E U ~ ,  = 0 , 

in which dissipation is modeled by the EM,, term. This term smooths the shock into 
a transition front of spatial width O(E). In the limit as E-0, this front converges 
strongly to the discontinuous shock profile which itself is a weak solution of the 
conservation law. 

When the physical situation is dispersive rather than dissipative, the simplest 
regularization is the KdV equation (l.l), with its third-order term E~u,,,. This 
dispersive term also prevents the development of singularities, but in an entirely 
different manner than the dissipation in Burgers’s equation. In the KdV situation, 
the steepening profile is smoothed by the onset of short wavelength [O(sl)] finite 
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amplitude [O(E')] oscillations; see [9] and [7]. The front becomes a rapidly oscil- 
lating wave train, which converges weakly but not strongly to a limit ii. This limit 
is not a weak solution of the scalar conservation law; rather, ii and the local wave 
numbers and frequencies of the oscillating wave train solve a coupled system of 
several hyperbolic conservation laws. 

To contrast these different regularizations, we have used a numerical method 
described in Section 3.9 to solve both the Burgers and KdV equations at moder- 
ately small values of E. Figure 1 compares the short wavelength, finite amplitude 
oscillations of the KdV case to the smooth profile of the Burgers solution. Figure 
1 also exhibits the weak limit ii of KdV as E-0, as computed by the methods of 
this paper. 

Oscillations make KdV difficult to solve numerically when E is small, and 
computing the weak limit ii via numerical averaging seems even more difficult. 

This paper is devoted to the numerical study of the structure of ii. Our basic 
tool is the characterization of ii due to Lax and Levermore; see [13]. They used the 
inverse scattering solution of KdV due to Gardner, Greene, Kruskal, and Miura 
(see [S]) to solve equation (1.1) almost exactly, then took the limit E-0 analyt- 
ically. This produced an infinite-dimensional constrained quadratic minimization 
problem, for each (x, t ) ,  for a function f ( k ;  x, t )  which mediates between ii(x, t )  
and the spectral parameter k E [0,1] of the Schrodinger operator with potential 
v. The coefficients and constraints of the minimization problem are computable 
functions of v; this data fixes the minimization problem which has a unique so- 
lution f * (k;  x, t); the weak limit ii(x, t) is then calculated from f * (k; x, t). These 
results are summarized in Section 2. 

This suggests a natural numerical method for computing ii at any point ( x , t )  
in space-time: simply solve the minimization problem numerically. This method 
is attractively direct and parallel. It offers insight into the folding structure and 
spectral information associated with ii, information which would be difficult if not 
impossible to obtain by computing u and letting 8-0. It eliminates the oscillations 
analytically, rather than averaging over them numerically. 

We have designed and implemented such a method, using a finite element 
Rayleigh-Ritz method with an adaptive grid. Singular quadrature methods, fast 
adaptive tabulation, and numerical smoothing and differentiation also play roles in 
our method. It is described in Section 3, where we also describe how we construct 
initial data v and a simple method for computing solutions of equations (1.1) and 
(1.3) with E > 0. 

In Section 4 we validate the numerical method by presenting numerical results 
which demonstrate its accuracy and efficiency. It turns out to be highly and con- 
trollably accurate, and surprisingly efficient for large-scale computation. It would 
also be an extremely natural candidate for parallel implementation. 

In Section 5 we present large-scale calculations which probe the structure of 
the weak limit. First, with simple cases, our experiments confirm analytical predic- 
tions of the Lax-Levermore theory. Turning to data with several inflection points, 
we then compute multiphase behavior beyond the scope of current theoretical 
analyses. In particular, several phases separated by sharp space-time boundaries 
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Figure I .  Weak limit, KdV solution and Burgers profile with E = 0.08. The interval is 
[-2, lo] and each plot is scaled to fit the solution. The break time for this solution is 
fb = 1/12 = 0.08666.. . . 
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develop and interact in interesting fashion. In these cases, the weak limit has visi- 
ble macroscopic structure associated with the multiphase regions. In these regions, 
our simulations of KdV with small dispersion show wave trains with oscillatory 
microstructure, presenting a challenge to numerical averaging methods for disper- 
sive limit problems. 

The paper is arranged so that the non-numerical reader need not follow Sections 
3 and 4 in order to understand Sections 5 and 6, while the reader familiar with 
the Lax-Levermore method need study Section 2 only for the notation. 

2. The Lax-Levermore Method 

We now summarize the results of [13], in notation convenient for our purposes. 
A recent survey is provided in [14]. We begin by stating the minimization problem 
which forms the main analytical tool of this paper; we then discuss its derivation 
and meaning. 

2.1. The Minimization Problem 

We consider the KdV equation (1.1) with initial condition (1.2), under the 
following assumptions on v: 

(a) v is smooth; 
(b) v(x) 5 0;  
(c) 
(d) v has compact support. 

This last requirement eliminates an additional numerical error due to truncating 
the support of v without significantly decreasing generality. 

Under these assumptions, Lax and Levermore constructed v, converging 
strongly to v in L2(R) such that the solution u, of equation (1.1) with initial 
data v, has a weak limit ii. Note that since nonlinear semigroups are not weakly 
continuous, this leaves a gap in the characterization of ii which has not yet been 
filled. We proceed, however, under the assumption that the Lax-Levermore schema 
is correct. Furthermore, ii is computable from 

(2.1) 

where Q* (x, t )  is the minimum value of the quadratic functional 

v has a single strict minimum at x = 0, where v = - 1 and v” > 0 ; 

U(x, t )  = @Q* (x, t )  , 

1 
Q ( f ;  X ,  t )  = (a, f) + : (f, Kf) 

taken over integrable f subject to the constraints 
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Here K, q, and Q are given by 

(2.4) 

K ( k , k ’ )  = - ;; log (;;;JZ - 

4 
Q ( ~ ; x ,  t )  = - ( x k  - 4k3t - 6 ( k ) )  

IT 
(2.5) 

and the “turning” points x- 5 x+ are the solutions of v(x) = -k2,  defined on the 
interval 0 5 k 5 1. Note that Q is linear in x and r, though of course Q* is not. 
This infinite-dimensional minimization problem has a unique solution f * ( k ; x ,  t )  
for each (x ,r) ,  because K defines a compact positive definite operator, and thus 
Q is convex. The minimizer f* satisfies the Euler-Lagrange conditions corre- 
sponding to Q. 

2.2. Inverse Scattering and WKB 

This characterization of fi is derived by using the exact solution of KdV by 
inverse scattering (see [8]), which relates the solution u of KdV to the spectrum 
of the Schrodinger equation 

(2.7) - &’a:$ + u$ = E$ , x E R . 

The zero-dispersion limit of KdV becomes the semiclassical limit E-0 of the 
Schrodinger equation, in which the WKB theory (see [15]) applies. In the WKB 
limit, the reflection coefficient vanishes to all orders, because v zs 0. Thus Lax and 
Levermore construct reflectionless potentials v, converging strongly to v in L* as 
E-O, for which the Kay-Moses explicit solution of the inverse scattering problem 
(see [ 121) applies, and the continuous spectrum can be ignored. Then u, becomes 
a large sum, the analogue of a partition function in statistical mechanics, and the 
leading behavior of the sum as E-+O is dominated by its largest term, via a kind of 
Laplace’s method in function space. This largest term leads to the minimization 
problem. 

Lax and Levermore go on to transform the minimization problem into a 
Riemann-Hilbert problem, under further assumptions on the solution, and solve 
the Riemann-Hilbert problem in the long time limit. Thus they find, for example, 
that 

(2.8) 
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when 0 < x / t  < 4. This fixes the speed of the leading edge of the oscillatory 
region at 4. We do not make use of the Riemann-Hilbert problem, nor any further 
assumptions on the solution. 

2.3. Structure of the Minimizer 

The structure of the minimizer is interesting. Because of the constraint 0 5 
f 5 cp. the interval [0, I ]  can be divided into two sets: the “active set” A where 
f = 0 or f = cp (a constraint is “active”) and the inactive set I where 0 < f < cp. 
On the inactive set, only Q matters and f satisfies the Euler-Lagrange equation 
for Q. On the active set, the gradient of Q points out of the admissible region 
0 5 f 5 cp, and f touches a constraint. The active set corresponds to a “gap” in 
the spectrum of the Schrodinger equation (2.7), or to a “phase” in the Whitham 
or Flaschka-Forrest-McLaughlin (FFM) theories; see I231 and [51. 

The structure of the minimizer changes dramatically at the “break time” 

(2.9) 
I 

6 max, v’(x) 
tb = 

where the classical solution of the dispersionless equation 

(2.10) ut - ~ U U ,  = 0 

becomes multivalued (“breaks”). Before the break time, the weak limit is actually 
strong and the active set is a single k-interval [Ja, 11. This corresponds to a 
spectrum [-,/-, +m] in the energy variable E = -k2 .  After tb, oscillations 
in u prevent strong convergence and the active set splits into two or more intervals. 
In the FFM theory, the gaps in the spectrum are occupied by “phases” which 
describe the oscillations in u. The number of dynamical variables in the FFM 
theory thus increases at each breaking. The number of gaps is the genus of the 
problem. Weak limits are no longer solutions of equation (2.10) when the genus 
is nonzero; Lax and Levermore show that as t- 00, the genus becomes unity over 
large areas of space, so single-phase behavior dominates at large times. 

2.4. Generalizations 

Finally, we remark that the Lax-Levermore theory and our numerical method 
can be extended to more general initial data v. The restriction of nonpositivity has 
been removed by Venakides (see [21]), while Lax and Levermore sketched how 
to handle v with several minima. Instead of a single function f ,  we get a function 
f and a constraint ‘pi for each potential well in v. Again a minimization problem 
can be found, but now Q is a functional of f l , f * , .  . . , f n :  

with 
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and the constraints are 0 S f j  S 'pi for j = 1,2,. . . , n. Here cpj is the 'p func- 
tion corresponding to the j-th potential well. This seems at first glance to greatly 
increase the complexity of the problem. This functional, however, is linear in all 
but one variable. So if we introduce f as a new variable, then we can compute the 
minimizing ( f j ,  . . . , f n )  by solving n - 1 simple constrained linear minimization 
problems and only one truly quadratic problem. Numerically, this is a straightfor- 
ward generalization of the numerical method presented in this paper. 

3. The Numerical Method 

We now develop a numerical method based on Lax-Levermore theory; thus we 
solve the minimization problem to calculate Q* and differentiate numerically to 
obtain ii. This approach to ii avoids the difficulty of calculating u and letting E-0; 
the oscillations have already been eliminated analytically. Many other technical 
complications arise, however; singularities, singular integrals, numerical differen- 
tiation, and efficiency are major concerns. We describe how to overcome each 
difficulty in turn. We also discuss the selection of initial data v and the solution 
of KdV and Burgers with E > 0. 

3.1. A Useful Example 

First, we develop intuition by writing down a function 

v(x) = min(0,x2 - 1) 

for which the coefficients and constraints can be evaluated analytically. A routine 
calculation shows that 

(3.1) cp(k) = r k  

and 

(3.2) k + ( 1  - k 2 )  log ~ 

with d(1) = i. Note that cp(0) = 0; thus we must seek our minimum among 
functions f with f (0)  = 0. The logarithmic singularity in 19 for this example is 
typical. This cp, however, is untypically smooth; later examples will involve much 
more singular cp's. At f = 0, the exact minimizer f can be computed analytically; 

I r k  x 5-Ji-77 

(3.3) f * ( k ; x , O )  = { k (I - sin-' (e)) 1x1 S 

x z m .  

Note that f * has a square root singularity at x = ? m. This singular behavior 
occurs whenever k enters or leaves the active set, which in this example is A = 
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{k E [0,1] I k > m} for 1x1 5 1 and A = [0,1] for 1x1 > 1. Thus there 
can be several moving singularities in f * , occurring at unpredictable locations in 
[0,1]. This difficulty must be handled with care in designing numerical methods 
for minimizing Q. 

The weak limit ii itself is also singular; it develops a jump discontinuity at the 
break time. Pictures of v, cp, 6,  f * ,  and ii will be found in Figure 2 below. 

3.2. Discretization 

Now we consider our central task, the minimization of Q over the set S of 
functions f E L’(0,l) with 0 5 f 5 cp and f(0) = 0. This problem is infinite- 
dimensional, so we approximate it by a finite-dimensional problem using the 
Rayleigh-Ritz method; we choose an N-dimensional subset S N - S  as N - m ,  and 
approximate f* by the minimizer f N  of Q over S N .  This approach is particularly 
effective because we want Q* as well as f * ;  since f N  minimizes Q exactly over a 
subspace, the error Q ( f * )  - Q ( f N )  is O(f* - f N ) ’ ,  because the gradient of Q van- 
ishes at f* . The choice of SN is made on a balance of computational convenience 
and good approximation properties. Let 

be a grid and let SN be the space of functions f which are continuous, linear 
between grid points, and satisfy 0 5 fj 5 cp, and f o  = 0. Here f, = f ( k , )  and 
‘pi = cp(k,). (Note that f (0 )  = 0 since cp(0) = 0.) This choice is computationally 
convenient because (f, K f )  can be evaluated exactly for f E S N ,  and it has ex- 
cellent approximation properties if the grid is chosen with proper regard to the 
singularities of f *  . 

Given this grid, we can compute matrix elements K i j  such that 

N N  

exactly, for every f E S N .  Moreover, we can find a E RN such that 

N 

(a, f) = c U i f i  = aT f , 
i= I 

up to an arbitrarily small error depending on the numerical evaluation of 19. The 
computation of (a,f) is discussed further in Section 3.7, since it depends on our 
method for evaluating 6. 
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3.3. Quadratic Programming 

Given a grid G and the associated values of K,  p, and a, we now have a 
finite-dimensional “quadratic program” to solve: 

1 
2 minimize Q ( f )  = a T f  + - f T K f  

subject to 0 4 f i  I pi , 1 S i 5 N .  i (3:4) 

The matrix K is positive definite since it is just the positive operator K restricted 
to S,, so the solution fN of (3.4) is completely determined by the feasibiliry 
requirement 

and the variational conditions 

0 5 f j  5 pj 

f .  I = O  3 V Q ( f ) j  > O  

f .  I = p .  I 3 VQ(f  ) j  < 0 

0 < f j  < p i  3 V Q ( f ) j  = O .  

The “active set method” (see [6]) for solving (3.4) is based on these two condi- 
tions. If we knew the active sets A and B of indices j where f ,  = 0 (if j E A )  or 
f j  = pi (if j E B), then f solves the “equality constraint” problem of minimizing 
Q subject to fj = 0 for j E A and f j  = pi for j E B. Since Q is quadratic, f can 
be found by solving a linear system 

(3.5) K f + C i = O  

and setting 

(3.6) 
0 j € A  

f j  otherwise, 

Here K and Ci are obtained from K and a by striking out every row and column 
with an index in A or B. 

We do not know the active set, however, so we find it iteratively. Given an 
iterate g and the corresponding A and B, we solve equation (3.5) for the inactive 
component f of a new iterate f .  There are now two cases to consider. First, f 
may be feasible: 0 5 f ,  4 pi for j $?! A U B. If this happens, then we must 
check whether the active components of V Q  have the right signs. If they do, then 
we are done and (3.6) gives us the minimizer. Otherwise, we remove from the 
active set the index j for which V Q ( f ) j  is furthest from correct, and repeat the 
iteration. Second, f may not be feasible. In this case, we start from the previous 
iterate g and proceed as far as we can in the direction of f until a constraint is 
reached. Then we add the newly active constraint or constraints to the active set 
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and repeat the iteration. Eventually, the iteration terminates at the minimizer. It 
costs O(N3)  work per step, if we solve equation (3.5) by the standard technique of 
LU-decomposition (see [ 17]), and in the worst possible case it takes N steps; thus 
its worst-case time requirement is O(N4). There exist, however, O ( N 2 )  techniques 
for solving equation (3.5) when only a few indices are added to the active set, and 
a good initial guess can result in a solution after only a few steps. Thus it can be as 
little as O(N2)  in general to solve a quadratic program. This is still superlinear, so 
it is clearly a good idea to keep the number N of grid points as small as possible 
by choosing SN appropriately. 

3.4. Grid Construction 

We can now compute the minimizer associated to a given grid G. The next 
question is how to determine G. We construct G to fit f' iteratively, by solving 
a sequence of problems on finer and finer grids. The iteration involves two ideas; 
first, we speed up the determination of the active set by recursively constructing 
a finer and finer grid, and second, we reduce the number of degrees of freedom 
tremendously by refining the grid only selectively where it needs it. 

We begin with the error bound for linear interpolation: 

(3.7) 

Here 7 is the linear interpolant of f on an interval of length h containing both k 
and H. For our minimizer f * , we know that there will be square root singularities, 
so we want to choose h small near the singularities where f" is large, to maintain 
uniformly small error with the smallest possible number of grid points. 

We don't know f * , so we construct the grid iteratively. Starting with a uniform 
grid of, say, N points, we compute a minimizer f N .  Then we can use f N  to 
approximate the error on each grid interval and bisect those intervals where the 
approximate error is large. This gives a finer grid, selectively refined near the 
singularities, on which we solve (3.4) again. The process is repeated until the grid 
is as fine as desired. 

One further step must be added to this process in practice; smoothing the mesh 
between refinements. After intervals are bisected, the mesh size varies dramatically 
from one interval to the next. The computed minimizer f N  tends to reflect this 
with numerical kinks and irregularities where the mesh size jumps. To smooth 
over this difficulty, we smooth the mesh between each refinement with several 
steps of the following process: Take each grid point and move it to the midpoint 
of its two neighbors. This produces a smooth mesh, with no extraneous kinks in 
f N ,  at the price of slightly increasing the refined area of each grid. 

This process is far more efficient than using a fine uniform grid, for two reasons. 
First, the adaptive grid concentrates the N degrees of freedom where they do the 
most good, near the singularities. Second, the iterative structure gives us a highly 
accurate starting point for each new quadratic program, and this reduces the cost of 



COMPUTING THE WEAK LIMIT OF KDV 1329 

solving the quadratic program by a factor of N. Numerical results demonstrating 
a large speedup are given in Section 4.3. 

3.5. Computation of (c and 9 
Now we can solve the minimization problem; to formulate it, however, we need 

to evaluate the constraint function 

and the coefficient 

(3.9) d ( k )  = kx+(k) + JW k - I/=& . 
x+W) 

If v has compact support, then the integral in d is actually over a finite interval 
[x+(k), RI and 

(3.10) 

The integral defining ‘p is difficult to evaluate when k is close to 1, because x- 
and x +  coalesce around a singularity in the integrand. As k-1, the roots x?-O 
since x = 0 is a strict minimum of v and v(0) = - 1. Thus we can Taylor expand 
v about x = 0. A routine calculation then gives 

recall that we assumed ~ “ ( 0 )  > 0. In particular, ‘p(1) = f i n / m .  
For other values of k, we calculate ‘p and d by numerical quadrature. We 

use bisection (see [17]) to find x? to the desired precision, then integrate using 
adaptive singular quadrature rules from Quadpack (see [ 161) to handle the square 
root singularities of the integrands in equations (3.8) and (3.10). This procedure 
is expensive, but produces excellent and controllable accuracy. 

3.6. Adaptive Tabulation 

We need many values of ‘p and 8 in the course of a calculation; for example, 
if we use 200 points in x and 50 steps in t ,  and it takes 100 points in k for each 
evaluation of U ,  then we need well over one million p and 19 evaluations. This 
could well be the major expense in a large calculation. ’p and 29 depend only on 
the initial data and not on x and t ,  so it seems unnecessary to reevaluate them 
constantly, but we need their values at unpredictable k-grid locations for each x 
and f, so they cannot simply be evaluated once and for all. 

A standard method (see [17]) for dealing with this situation is tabulation and 
interpolation: we lay down a uniform grid on [0,1], evaluate ‘p and 29 at the grid 
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points, and store the resulting table of values. When we need cp(k), we approximate 
it by interpolating between tabulated values. In the present case, however, it turns 
out that cp and 19 have singularities, so uniform tabulation fails to work. Millions 
of points are needed to get even uniform three-digit accuracy. 

We overcome this difficulty by adaptive tabulation; we tabulate cp and 19 on a 
nonuniform grid of points such that linear interpolation between grid points gives 
their values to any user-specified tolerance ET. Of course, ET must be larger than 
the error in numerical evaluation of cp and 6 to begin with, or we will just be 
resolving numerical noise. 

To construct such a grid, say, for cp, we begin with a coarse grid of, say, twenty 
points and cp values at each grid point. We form a stack storing all the intervals 
of the grid, and process each interval in the stack by comparing cp and its linear 
interpolant at the midpoint. If the error exceeds ET. we split the interval in half 
and store each of the two new half-intervals at the end of the stack. Otherwise, 
we proceed to the next interval in the stack. When we reach the end of the stack, 
we have a grid on which cp is very likely to be approximated within E by linear 
interpolation. The grid for 19 is constructed in precisely the same way. 

This adaptive tabulation scheme reduces the CPU time required for large cal- 
culations by orders of magnitude, at a very modest expense in storage and initial- 
ization. Figure 2 shows the tabulation constructed for the example of Section 3.1, 
with the adaptive tabulation points shown as tick marks, with tolerance ET = 
This example is discussed further in Section 4.3. 

Note that with this piecewise linear approximation for 6, we can compute (a, f )  
with error S ET by piecewise Gaussian quadrature. In other words, we interleave 
the grids where a (given by equation (2.5)) and f are piecewise polynomial func- 
tions of k (within E T )  to get a single grid on [0, 11 on which af is a piecewise quartic 
function of k (within ET) ;  on each interval of this grid, three-point Gauss-Legendre 
quadrature integrates a f exactly since q-point Gauss-Legendre quadrature is exact 
for polynomials up to degree 2q - 1. 

u (t = 0.000)  

Figure 2. Initial data v(x) and spectral functions ‘p and 8 for Example A, with the adaptive 
tabulation points indicated by tick marks and E,  = The interval for v(x) is [-1,1] 
and for the others is [O, 11; all plots are scaled to the maximum of the function plotted. 
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3.7. Numerical Differentiation 

We can now evaluate Q * ( x , t )  at any point with user-specified accuracy. The 
final challenge is now to compute 

(3.1 1) U = a&* (x ,  t )  

by numerically differentiating Q* twice. This is difficult for two reasons; U is 
not smooth in general, so neither is Q*, and also the values of Q * ( x , t )  are com- 
puted independently at different space-time points and therefore have uncorrelated 
errors. Hence, a standard difference formula like 

(3.12) 

will produce noisy results; the numerical errors effectively get divided by h2.  We 
experimented with many methods, and eventually settled, at least for the time be- 
ing, on removal of noise with cosine smoothing (see below) in real space and then 
differencing with either widely-spaced centered differencing or EN0 (Essentially 
Non-Oscillatory) method. 

Cosine smoothing filters noise by computing averaged values 

(3.13) 

on an N-point uniform mesh. The process can be repeated several times if neces- 
sary; it can be carried out with the FFT, but works better in real space when the 
data are not periodic. After smoothing, the standard centered difference formula 
(3.12) works well if h = f is not too small. Otherwise, we use EN0 differencing; 
see [ 101. The idea of EN0 is to approximate f ” ( x )  by P’’(x),  where P is a d-th de- 
gree polynomial interpolating f at a stencil of d + 1 uniformly spaced grid points 
containing x in its interior. The distinguishing feature of EN0 is that it slides the 
stencil left or right based on higher differences o f f ,  in order to avoid the catas- 
trophic loss of accuracy that goes with differencing across discontinuities. Thus it 
produces better results than centered differencing when jumps are present. 

We found that d passes of cosine smoothing combined well with d-th degree 
EN0 differencing, presumably because the stencils match. 

Another promising method which we have not yet implemented is LSENO 
(Least Squares ENO). Here, we adopt the EN0 sliding stencil but rather than 
interpolating, we fit a least squares polynomial through the stencil. This smooths 
and differentiates simultaneously. 

Remark. The Lax-Levermore theory offers an alternative formula for li, 
namely 

where f: is the derivative of f *  with respect to x. Given the active set, f: can 
be computed directly without iteration and ii can be evaluated by integration, 
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so this seems more attractive than equation (3.11) at first glance. However, fx* 
is more singular than f*, as (3.3) shows, hence it is harder to compute to high 
accuracy. The minimum value Q* is much easier to compute accurately, because 
it is a minimum value. Hence the first variation of Q vanishes, so f* computed 
with error E in L' gives Q* with error 0(.s2), much smaller than O(E). This helps 
overcome the noise introduced by numerical differentiation. 

3.8. Initial Data 

Our algorithm as formulated above and as coded works for essentially arbitrary 
single-well initial data v(x).  We want v negative, vanishing outside a compact set, 
with a single strict minimum at x = 0, where v(0) = -1 and v"(0) > 0. For 
purposes of exploring this infinite-dimensional space of experimental inputs, we 
must construct control parameters for a fairly broad class of initial data. The 
formula (2.9) for the break time suggests that we can produce interesting and 
complicated weak limits if we can control the inflection points of the solution; we 
can produce more interesting weak limits by adding more inflection points. 

We adopt the following strategy for controlling v. We take v to be a quintic 
polynomial on each of a succession of intervals [xi, xi+ 1 I, for j = 1,2, . . . , M - 1. 
At each breakpoint x j ,  we specify v(x;) = v;, v'(x;) = vj, and v"(x;) = vy, with 
v~ = v,+, = 0 for continuity. Then we set v = 0 for x 5 XI and x 1 x ~ .  This 
structure is easy to control and gives a C2 function, except possibly at the ends 
where we may allow v to be merely continuous. Furthermore, any continuous 
function can be uniformly well approximated by a function of this class. (The 
special data v(x) = min(0,x2 - 1) of Example A falls conveniently into this class 
as well.) It is easy to evaluate v and its derivatives since it is locally a polynomial. 
The integrals of v, which we need to measure the error in Q* at t = 0, can 
be computed exactly using q-point Gauss-Legendre quadrature on each interval 
[ x ; , x j + ~ ] .  We need q = 3 for the first integral, since q-point Gauss-Legendre 
quadrature integrates polynomials of degree 2q - 1 exactly, and q = 4 for the 
second integral. 

3.9. An Algorithm for KdV with E > 0 

At several points in this paper, we display the solutions of KdV and Burgers 
with E > 0, computed numerically. We now describe the algorithm we use for 
integrating the initial value problem 

(3.14) ur - f ( u l x  + E2UX, = 0 x E R 

(3.15) u(x,O) = v(x) 

with given f and a moderate to small dispersion coefficient E .  Other methods for 
solving this problem are described, for example, in [l], [2], and [7]. Our basic 
approach is to integrate out the linear constant-coefficient third-order term by 
variation of parameters, then to solve the remaining first-order hyperbolic problem 
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numerically by a pseudospectral method. This approach allows us to use an explicit 
time stepping method without an unnecessarily restrictive Courant condition. 

This method is most conveniently implemented for periodic data v; since our 
data is compactly supported, we extend it to periodic data with a period sufficiently 
large that the imposed periodicity does not affect the results. 

To integrate out the third-order term, we let A be the operator -e2& with 
periodic boundary conditions. We introduce a new variable w by 

u ( . , t )  = &w(.,t). 

Then w satisfies the integrodifferential equation 
- e-fA 

f - f ( e f A 4 ,  . 
To discretize the w equation, we used Fourier collocation in space and fourth- 

order Runge-Kutta in time. (A Fourier method is natural since erA is most naturally 
computed by Fourier series. We experimented with several other explicit time 
stepping methods, and settled on fourth-order Runge-Kutta because of its accuracy 
and stability properties.) 

We validated our computations by testing the method on the soliton solution 
given in equation (5.4) with k = 1 and E = 0.08. These parameter values were 
chosen to make the soliton width comparable to the microscale in our numerical 
experiments in Section 5. Using 512 grid points on the interval [-2,2] and 5000 
time steps, we achieved pointwise four-digit accuracy at t = 1, when the soliton 
has moved through a full period, indicating that our calculations are reliable. The 
L2 norm and the energy 

of u (which are conserved for exact solutions), were conserved to at least four 
digits. The computation required about fifty minutes on a Sparcstation 1. A con- 
vergence study was carried out for each of the calculations presented in Section 
5, and the solutions shown have converged to at least graphical accuracy. The L2 
norm and energy were conserved to several digits. 

An exactly similar approach allows us to solve the Burgers equation (1.3) by 
defining the operator A differently. This is an easier calculation, because diffusion 
smoothes the solution where dispersion produces oscillations. 

4. Validation 

We now describe the numerical parameters of the method and demonstrate its 
accuracy and efficiency. Thus we validate the extensive computations presented in 
Section 5. 

4.1. Parameters 

The method requires several numerical parameters. First, there are the toler- 
ances which control the accuracy of the ‘p and 6 evaluation: 
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E ~ :  

ci: 
ET:  

the tolerance for root finding in the evaluation of x+- ,  
the tolerance for numerical quadrature of cp and 6, 
the tolerance for tabulation of cp and 6. 

These parameters cannot be varied independently. The tabulation tolerance must 
be substantially larger than the quadrature error, or else we are making an accurate 
table of the quadrature error rather than the function. Thus we set ET = l O ~ i  once 
and for all. The singularity in the integrand means that the roots x? must be 
found to much higher accuracy than ~i and must be inside rather than outside the 
singularity. Thus we fixed E,  = This tiny tolerance does not cost too much, 
for two reasons. Bisection costs log E work to get accuracy E ,  so a few more digits 
cost only a little bit more CPU time, and also we evaluate cp and 6 by root finding 
and quadrature only when we construct the initial tabulation. 

Thus the error in cp and 19 is controlled by the single parameter ET,  the tabulation 
tolerance. We were able to achieve up to seven digit accuracy with reasonable table 
sizes and running times. It turns out that cp and 6 need to be evaluated to several 
more digits than f *  , or else f *  develops kinks. Thus our runs were mostly made 
with ET between and lo-*. 

Next, there are the parameters which control the k-grid on which f* is 
computed: 

N: 
Ek:  

L: 
n,: 

the number of points in the initial k-grid for each point (x,  t), 
the refinement tolerance for the k-grid, 
the number of levels of refinement permitted in the k-grid, 
the number of smoothings between k-grid refinements. 

Clearly we shall achieve, at best, error Ek in f *  . This will lead, however, to error 
in Q*.  which is on the order of E: + ET, much smaller than Ek,  because Q* is a 
minimum so the first variation vanishes. (The constraints contribute an additional 
ET because f *  is accurate, at best, of order ET where it touches 9.) The error in 
f *  can be reduced by increasing N or L, or by decreasing Ek or eT.  

Finally, there is the grid spacing h, in the x variable, which controls the ac- 
curacy of 12 given Q * .  We also need to specify the type of differencing (EN0 or 
centered) and the number of smoothing passes. 

We study the performance of the method on two examples with different initial 
data v(x): 

1. Example A has v(x) = min(x2 - 1, O) ,  so we know exact analytical formulas 
(Equations (3.11, (3.2), and (3.3)) for f * ( k ; x , O ) ,  cp(k), and 6(k ) ,  in addition 
to Q*(x,O)  and ii(x,O) = v(x), which we know for any v(x). Figure 2 shows 
v, cp, and 6, with the tabulation points shown as tick marks for IT = lop4; 

2. Example B has a more complicated piecewise quintic, v(x),  for which we do 
not know f*, cp, and 6 analytically, and we study only Q* and a at t = 0. 
Figure 3 shows v and the corresponding functions cp and 6;  note the spike in 
cp and the clustering of the tick marks at the spike. The breakpoints, values, 
and first two derivatives of v(x)  are given in Table 1. 
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u(t=0.000) cp I9 

/ 

/ 
/ 

Figure 3. Initial data v(x) and spectral functions ’p and 19 for Example B, with the adaptive 
tabulation points indicated by tick marks and E, = 

j x, V(Xj) V ‘ ( X j )  Y ” ( X j )  
~~ ~~ ~ 

1 - 1  0 -2 2 
2 0 - 1  0 2 
3 0.1 -0.99 0.2 2 
4 0.7 -0.2 0.3 1 
5 1 0 2 2 

Table 1. Breakpoints, values, and derivatives for the piecewise quintic v(x )  of 
Example B. 

4.2. Accuracy 

errors in Q* and C for Example B at t = 0. 
We now discuss the errors in cp, 6, and f * for Example A at t = 0, and the 

The errors in ‘p and 29, measured in the max-norm 

IeI, = max le(kj) l l  

over the set of midpoints k j  of intervals in the tabulation, are less than the tolerance 
ET by construction. Errors measured at random points typically are no larger than 
3eT even near a singularity. Hence we omit detailed discussions of these points. 

I 

For Example A, we show the relative errors in f“ in the norms 

and 
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and the maximum errors in Q* defined by 

maxi I Q* (xi, 0) - @(xi, 0) I E ,  = 
maxi I Q * (xi, 0)  I 

Here, k j  are the points of the adaptive k-grid, xi  are the points of the uniform 
x-grid, f *  is the exact minimizer, and fN is the computed approximation to f*. 
Similarly, Q* is the exact minimum and @ the computed minimum. Table 3 gives 
results from several refinement strategies. Case (a) shows the result of uniform 
refinement with N = 5,10,20,. . . ,320 points. The maximum L' errors, em,], 
show a rough first-order convergence, while is more erratic, as we would 
expect. By contrast, the error in Q* is clearly second-order, in accordance with 
the variational structure of the problem. Cases (b) through (c) show similar errors, 
and will be discussed in the next section. In these examples, we took ET = lo-' 
and h, = 0.1 on the interval -1 5 x 5 1. 

Figure 4 shows the computed and exact minimizers for an adaptive grid solu- 
tion, the fifth line of Case (c), from x = -1 to x = 1 in steps of 0.2. The grid 
points are indicated by tick marks along the lower edge, and the constraint 'p is 
shown dashed. To graphical accuracy, the errors are almost invisible. 

Next we study the results of various differencing techniques; centered and 
E N 0  with and without smoothing. Table 4 shows the errors in ii(x, 0) computed by 
various methods for Example B. Here we used enough points in the adaptive k-grid 
to get six-figure accuracy in Q*, so we are looking almost entirely at differencing 
error. The subscripts denote relative L' and L" errors in ii. As the number n, of 
grid points increases, the errors decrease at first, then the noise in the Q* values 
takes over and the errors increase again. Thus there is an optimum grid size for a 
given accuracy in Q* . 

4.3. Efficiency 

There are three areas in which our method attempts to be more efficient than 
a straightforward implementation. These are adaptive tabulation, recursive grid 
construction, and selective refinement. The latter two are the main elements of 
our adaptive grid strategy. 

First, we consider the efficiency of adaptive tabulation. Table 2 shows the 
number of points n, the mesh ratio m (largest grid interval divided by smallest), 
and the construction time t in seconds for cp and 29 for Examples A and B. 

If 'p and 29 were smooth functions, the error in linear interpolation on a uniform 
n-point grid would be O(n-2),  so error cT could be achieved with n = O(eT 
points. The purpose of adaptive tabulation is to maintain this relationship even 
for non-smooth functions. Table 2 shows that decreasing ET by a factor of 10 
increases ncp and nd by a factor of roughly = 3.2, even though 'p and 29 
are both singular. (The first column for Example A is anomalous because 'p is 
actually linear, so linear interpolation is exact.) The CPU time increases slightly 
faster than this, because we are evaluating the functions to greater precision as 

- 1 9  
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100 20 1 0.26 20 1 0.16 
10-1 20 1 0.28 20 1 0.18 
10-2 20 1 0.31 21 2 0.24 

A 10-3 20 1 0.28 33 16 0.44 
10-4 20 1 0.31 97 256 1.66 
10-5 20 1 0.29 303 1024 5.63 
10-6 20 1 0.28 955 4096 18.69 

1 00 20 1 0.26 20 1 0.16 
10-1 20 1 0.30 20 1 0.19 
10-2 31 32 0.68 22 4 0.23 

B 10-3 74 128 2.50 34 32 0.54 
10-4 216 512 11.12 105 256 2.37 
10-5 683 1024 51.35 323 2048 9.27 
10-6 2165 1024 200.47 1031 8192 34.83 

Table 2. Number of grid points n, mesh ratio m = max h/  min h, and CPU time I required 
for the adaptive tabulation of singular functions 'p and 6 to accuracy E T .  

well as at more points. The large mesh ratios inp and rno show that millions of 
points would be needed to achieve the same accuracy with a uniform mesh. 

Adaptive tabulation requires some initial investment of time to form the table 
of values for each function, but pays off in dramatically reducing the cost of each 
later evaluation. With six-figure accuracy, for example, we have to spend three 
minutes of CPU time to form the 'p table for Example B, but each evaluation by 
table lookup instead of by numerical integration costs O.oooO11 seconds instead of 
0.046 seconds, a speedup of order 4000. In a large calculation with, say, a million 
evaluations, this would save eleven hours of CPU time. 

Next, we demonstrate the savings in CPU time produced by recursive grid 
construction. For this, we compare Case (a) of Table 3 to Case (b). In Case (a), f *  
is computed with a single uniform grid, and the time required grows like O(N') or 
worse for large N .  In Case (b) we use the same grid, but we construct it recursively 
starting with a five-point grid and bisecting each interval. This is much faster for 
large N ,  because we use each active set to start the next iteration. Hence we need 
only a few solves of the linear system (3.5) to solve the quadratic program. The 
time required now increases only like O(N2)  for large N ,  and the code runs about 
twenty times faster for N = 320, obtaining six-figure accuracy in fifteen minutes 
rather than five hours per space-time point. 

The other half of our grid refinement strategy, selective refinement, is demon- 
strated in Case (c) of Table 3. With selective refinement, only intervals where the 
error estimate is larger than Ek are bisected. Now the CPU time required to attain 
error &k is a more reasonable measure of efficiency than the time versus N ,  since 
N varies from one point to another. The combined effect is to produce six-figure 
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accuracy in ninety seconds rather than five hours, a speedup of more than two 
orders of magnitude. 

The combined effect of these three speedups is a factor of several thousand for 
six-figure accuracy in Q*, reducing the time required for evaluating Q* at many 
points from months to hours. 

5. Structure of the Weak Limit 

We now present large-scale computations which probe the detailed structure 
of the weak limit ii. 

5.1. Parameters 

We experimented with various combinations of the numerical parameters, seek- 
ing maximum accuracy in Q* for a given time investment. We tried various tol- 
erances for the computation of 'p and d,  and eventually settled on E, = 10-l2, 
~i = and ET = l O ~ i  as compromises between accuracy and speed. Values 
of ~i much larger than this tended to produce spurious kinks in f*, while smaller 

Case N Ek L em,I em.m ECU t 

5 0  1 0.51 0.37 0.43E-03 11.88 
10 0 1 0.15 0.27 0.12E-03 12.51 
20 0 1 0.54E-01 0.24 0.24E-04 14.64 

a 40 0 1 0.22E-01 0.25 0.93E-05 26.49 
80 0 1 0.59E-02 0.13 0.1 1E-05 122.65 

160 0 1 0.47E-02 0.21 0.62E-06 1238.18 
320 0 1 O.llE-02 0.10 0.80E-07 171 79.04 

5 0  1 0.5 1 0.37 0.43E-03 11.85 
5 0  2 0.15 0.27 0.12E-03 23.68 
5 0  3 0.54E-01 0.24 0.24E-04 37.02 

b 5 0  4 0.22E-01 0.25 0.93E-05 55.89 
5 0  5 0.59E-02 0.13 0.1 1 E-05 97.65 
5 0  6 0.47E-02 0.21 0.62E-06 247.05 
5 0  7 O.llE-02 0.10 0.79E-07 879.71 

5 0.01 
5 0.01 
5 0.01 

C 5 0.01 
5 0.01 
5 0.01 
5 0.01 

1 0.5 1 0.37 0.43E-03 11.83 
2 0.15 0.27 0.14E-03 22.36 
3 0.54E-01 0.24 0.24E-04 33.53 
4 0.41E-01 0.25 0.93E-05 45.67 
5 0.19E-01 0.16 0.1 1 E-05 58.96 
6 0.91E-02 0.21 0.68E-06 73.71 
7 0.47E-02 0.91E-01 0.74E-07 89.24 

Table 3. Scaled errors in f* and Q* in discrete L' and Lm norms, as functions of the 
initial grid size N, refinement tolerance E k ,  and maximum level of refinement L. The last 
column gives the computation time in seconds on a Sun Sparc-2 workstation. 
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Figure 4. Exact and computed minimizers f' for Example A at t = 0, computed with 
- 1  5 x d I ,  N = 5, L = 6 and &k = 



1340 D. W. McLAUGHLIN AND J. A. STRAIN 

tolerances resulted in excessive CPU time requirements without improving 
accuracy. 

We took N = 20 points equispaced on [0,1] as an initial grid for f* , and set a 
refinement tolerance of &k = lop3. Thus we expect to get at best one part in one 
thousand accuracy in f * and at best one part in a million in Q * .  We found that 
four or five levels of grid refinement, with an equal number of grid smoothings 
between each refinement, produce sufficiently accurate results. The k-grid mesh 
ratio m for the more complex cases ranged as high as 20, indicating that the 
adaptive mesh strategy speeds up the calculation by several orders of magnitude 
for a fixed accuracy. 

These computations were carried out on a Cray X-MP, more because of the 
large data files generated than because of the modest increase in speed obtain- 
able with this not very vectorizable code. We emphasize again, however, that the 
method is completely natural for coarse-grained parallel computing, because each 
value of Q * solves a completely independent minimization problem. 

Method Order n, U l  urn 

2 10 0.42E - 01 0.77E - 01 
2 20 0.15E - 01 0.97E - 01 

Centered 2 40 0.28E - 02 0.29E - 01 
2 80 0.53E - 03 0.56E - 02 
2 160 0.31E-03 0.16E-02 
2 320 0.66E - 0 3  0.42E - 0 2  

3 
3 

EN0 3 
3 
3 
3 

10 
20 
40 
80 

160 
320 

2 
2 

Smoothed 2 
Centered 2 

2 
2 

10 
20 
40 
80 

160 
320 

0.60E - 01 
0.17E - 01 
0.14E - 02 
0.36E - 03 
0.28E - 03 
0.73E - 03 

0.73E - 01 
0.26E - 01 
0.67E - 02 
0.15E - 02 
0.38E - 03 
0.29E - 03 

0.27E + 00 
0.77E - 01 
0.83E - 02 
0.24E - 02 
0.18E - 02 
0.35E - 02 

0.93E - 01 
0.54E - 01 
0.23E - 01 
0.49E - 02 
0.84E - 03 
0.13E - 02 

3 10 0.12E+00 0.17E+00 
3 20 0.40E - 01 0.60E - 01 

Smoothed 3 40 0.12E - 01 0.22E - 01 
EN0 3 80 0.31E - 02 0.68E - 02 

3 160 0.76E-03 0.17E-02 
3 320 0.28E-03 0.79E-03 

Table 4. Errors in ii for Example B at t = 0, with various differencing methods and step 
sizes. The maximum error in any computed value of Q* was less than 2 x 
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Data for the first two examples, A and B, were described in Section 4.1, while 
Example C is somewhat more complicated. 

5.2. Example A Single-Phase Data 

In Example A we consider extremely simple initial data: 

(5.1) v(x) = min(0, x2 - 1) . 

The corresponding spectral functions cp and 19 are given in equations (3.1) and 
(3.2), and shown in Figure 2. 

5.2.1. Orientation 

For purposes of orientation, we first summarize some features of the zero 
dispersion limit which are known theoretically-emphasizing properties which 
are directly related to the quadratic data (5.1). Before the “break time” given by 
equation (2.9), the solution of KdV converges strongly to the classical solution u 
of the conservation law: 

(5.2) 
U Y  - ~ U U ,  = 0 ,  

u(x ,0 )  = v(x)  . 
Thus, initially u steepens to the right until it “breaks” by developing an infinite 
derivative. Prior to breaking, all of the features of ii can be deduced directly from 
the method of characteristics: 

(5.3) 

In particular, the minimum value of ii moves to the right at speed 6; break time 
and position are given by ( t b  = & , x b  = 1). The point of first breaking can be 
traced back to x = 1, the location at which the quadratic initial data abruptly 
changes concavity. 

Breaking occurs when a tall, fast moving trailing wave in the left of the profile 
overtakes a shorter, slower moving component to the right. The manner in which 
the third-order derivative in the KdV equation prevents the onset of a singularity 
in this conservative dispersive equation is very different from a dissipative situa- 
tion in which a small diffusive term eventually saturates steepening and produces 
a shock discontinuity in the zero-diffusion limit; see Figure 1. Here the third-order 
dispersive term generates rapid oscillations, with O(E) wavelengths and O( 1) am- 
plitudes. These oscillations prevent the existence of a strong limit; after break 
time, the limit is only weak. This weak limit is described by a multisheeted sur- 
face over the x - t plane which arises because, at and beyond break time, the 
overtaking process causes the function ii to “fold,” initially into a three-sheeted 
surface. The projection of the folds onto the x - t plane defines two curves which 
emanate from the breakpoint (Xb, tb)  and which separate that region of the x - t 
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plane in which the solution of KdV is oscillatory from that region in which os- 
cillations are absent. These curves in the x - t plane are analogous to caustics 
in the theory of linear dispersive waves; see [ 111. In that theory, a three-sheeted 
surface also arises in the description of the weak limit, which, in the linear case, 
can be viewed as a multivalued solution of the conservation law (5.2). Here, in the 
nonlinear case, the evolving three-sheeted surface does not solve the conservation 
law (5.2); rather, it solves a coupled system of three conservation laws known as 
“Whitham’s equations”; see [23] and [22]. The three state variables for this hy- 
perbolic system are the three heights of the three-sheeted surface or equivalently, 
and more physically, the amplitude, local wave number, and local frequency of 
the oscillatory wave train. Formulas exist which map this three-sheeted surface to 
the weak limit a. 

Lax and Levermore prove that, after break time, the weak limit is indeed de- 
scribed by a three-sheeted surface which evolves according to Whitham’s equa- 
tions. For quadratic data (5. l), the x - t  plane splits into one region supporting rapid 
oscillations of the field and a region of quiescent behavior. The space-time curve 
(caustic) which separates these two regions emanates ‘from a ‘‘cusp79 at (Xb,  t b ) .  
Asymptotically for large time, Lax and Levermore show that the leading caustic 
travels at speed 4. More detailed information about behavior near these caustic 
curves has recently been obtained by Tsarev (see [20]), Tian (see [ 19]), and Wright; 
see [241. Detailed surveys describing this general situation may be found in [14] 
and in the conference proceedings, [4]. 

The speed 4 of the leading edge of the oscillatory region can be understood 
intuitively as follows: The oscillatory region is composed of densely packed soli- 
tons, and the leading edge is moving with the speed of the fastest moving soliton 
in the wave packet. Each of these solitons is of the form 

(5.4) 
( kj  ( x  - x; - 4k;t) 

uj(x, t )  = -2kj’ sech2 

where -k; is one of the bound state eigenvalues of the Schrodinger equation with 
potential v(x), 

(5.5) - E ~ J / ~ ~  + v ( x ) J I  = -k2$ . 

The largest eigenvalue is associated with the fastest moving soliton, and, for the 
data we study here and E small, this largest eigenvalue will lie at the bottom 
of the potential v(x) with spectral parameter k = 1 = ,/-. Thus, the speed 
of the leading edge of the oscillatory region is expected to be 4k2 = 4, as the 
Lax-Levermore theory predicts and our numerical results confirm. 

5.2.2. Results 

We now compute the minimizer f * , the minimum value Q* , and the weak limit 
ii. In the calculation of the minimizer f * , we keep track of the number of intervals 
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in the active set, and thus count the number of phases at each space-time point. 
In this manner, we can depict the caustics bordering the oscillatory region. This 
information for the quadratic data (5.1) of Example A is depicted in the space-time 
diagram of Figure 5. Here the numerals at each point indicate the number of free 
endpoints of the active set, a slightly more informative quantity than the number 
of phases. The numerics clearly confirm the breakpoint at (xb = 1, tb = A), the 
single-phase nature of the oscillatory region, and the asymptotic speed of 4 for 
the leading edge of the oscillatory region. 

Figure 6 shows the spatial profiles of the minimizer Q* and the weak limit 
ii(x, t )  for times before, shortly after, and long after breaking. Notice that it is dif- 
ficult to detect the effects of oscillatory microstructure in the wave itself directly 
from the weak limit, as the profile of ii appears rather insensitive to these un- 
derlying microscopic oscillations. (Of course, this oscillatory structure does affect 
the temporal evolution of ii through the Whitham equations.) While continuous, 
ii does lose smoothness at the location of the caustics, as Figure 6 shows. 

For purposes of comparison, we have solved the KdV equation itself with 
E = 0.16, 0.08, and 0.04, using the method described in Section 3.9. In Figure 7 
we show profiles of u, at the three times shown in Figure 6. Note in particular the 
regular structure in the oscillatory region, and the leading solitary wave at its front. 
This leading solitary wave has height 2, as is consistent with the soliton formula 
(5.4). On the other hand, this tall soliton is very narrow. In the weak limit, the 
height of ii drops to 1 as is clear from the maximum principle for the weak limit; 
see [13]. Note also that before the break time, the oscillations vanish as E-0, while 
after ib  they remain O( 1)  in amplitude, independent of E .  Also, Figure 1 displays a 
numerical solution of Burgers’s equation (1.3) with the same quadratic initial data 
and E = 0.08, in order to illustrate the striking differences between conservative 
and dissipative regularizations. Note that E in Burgers’s equation corresponds to 
c2 in KdV. 

The PDE space-time information contained in ii is calculated from the min- 
imizer f *  of the quadratic variational problem, which depends primarily upon 
spectral information. To understand the behavior of the minimizer and its con- 
nection to the weak limit, one must learn to interpret this spectral information. 
In Figure 8 we display the minimizer as a function of k at various space-time 
locations. In the figures, the “active” set of k values where f *  touches the con- 
straints is the set of “gaps” in the spectrum of the local Schrijdinger operator used 
for modulation theory; see [5 ] .  Prior to breaking, this local spectrum contains no 
gaps, and consists of one band of spectrum filling the k-interval [ O , J a ] .  
Clearly, the right-hand endpoint of this interval moves as a function of x and r .  
(In this picture, the continuous spectrum extends from k = -m to k = 0 and a 
gap running from k > 0 to +m doesn’t count.) 

After break time, in the oscillatory region, a gap [O,ko]  opens in this local 
spectrum. This gap consists of the leftmost interval of the “active set” of k values, 
for which the constraint is active; thus, over the gap, the minimizer is locked to 
one of the two constraints f *  = 0 or f *  = cp. (One additional feature for this 
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Figure 5. Space-time diagram for Example A. The domain is [-2,101 x [0,2]. 

data with compact support is that one of the endpoints of the gap remains locked 
to zero, as is predicted in [13]. In essence, this means that only two of the three 
sheets of the surface are free to evolve.) For large times, in the oscillatory region, 
the gap gets very large and pinches the band of spectrum to become very narrow. 
This narrow band of spectrum indicates the presence of spatially localized solitons 
in the wave. As one moves toward the leading edge of the oscillatory region, this 
narrow band of spectrum moves toward k = 1, which indicates the presence of a 
soliton at the leading edge which moves at speed 4 in space-time. 

5.2.3. Summary of Example A 

In this first example, the Lax-Levermore predictions are certainly confirmed 
for simple quadratic data. At the leading edge of the oscillatory region, numerics 
and theory agree very well. The example also shows interesting algebraic behavior 
in the location of the trailing caustic. This algebraic behavior has been confirmed 
theoretically; see [181. Finally, from this first example, one learns to interpret the 
spectral representation of the minimizer. 
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u(t=0.075) 

Q' ( t = O .  100) Q' (t=1.000) 

u(t=0.100) 

/ 
I 

u(t=1.000) 

Figure 6. The minimum value Q' and the weak limit ii of Example A for selected 
values oft .  The top row shows Q*, while the second row is ii computed with centered 
differencing on a 300-point grid on [-2, lo]. 

5.3. Example B: Two-Phase Data 

In this second example, we initialize data with several inflection points, a piece- 
wise quintic function with breakpoints and values given in Table 1. Figure 3 shows 
v, 9, and 6 for this example. This data was chosen to generate a second breaking, 
with its associated two-phase behavior. In the two-phase regime, the weak limit ii 
is analytically described by a five-sheeted surface. 

First, we display the space-time diagram; see Figure 9. Here we have printed 
the number of free endpoints of the active set at each point in space-time; blank 
(0) is no phases, 1 is one-phase and 2 and 3 correspond to two-phase regions. Note 
that asymptotically in time, the oscillations relax to single-phase behavior, with 
the leading edge of the oscillatory region traveling to the right at speed 4. Each of 
these features confirms theoretical results in [ 131. Also, note the extremely sharp 
phase boundaries, even in the transitions between one- and two-phase behavior. 
The "island" of 3's toward the top is probably connected to the rest, but the 
connector is skipped over by our uniform grid. For even longer time periods, it 
vanishes entirely as predicted. 
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Next, we display in Figure 10 the minimizer f * .  The “gaps” in the spectrum 
of the local Schrodinger operator corresponds to the active set of k E [0,1] where 
f * is touching a constraint. Note that in the single-phase regions the active set 
sometimes arises because of the constraint f* = 0, and sometimes because f *  = 
9. Also note that in some cases the endpoints of the gaps in the local spectrum 
(i.e., the heights of the surface) are locked to either 0 or 1. In these cases, the 
surface is more rigid than it is usually, with one or more of its heights locked and 
not free to move as a function of x and t. Also, note the minimizer associated with 
the five-sheeted, two-phase behavior, as displayed in the last row of Figure 10. 
Finally, for large time, the asymptotic behavior reduces to the single-phase case, 
with a minimizer as in the preceding Example A. 

This example nicely illustrates an interesting feature connecting the structure 
of the minimizer f * ( k )  with inflection points in the initial data, a feature which 
may be viewed as a generalization to the multiphase case of a well-known fact 
about breaking of a scalar conservation law. For the conservation law, breakpoints 
may be traced directly back to inflection points in the initial data. Here, inflection 
points in the initial data generate very sharp peaks in its Abel transform cp, that 
is, in its WKB constraints. These sharp peaks are clearly visible in the data of 
Figure 3; their existence can be confirmed analytically by Taylor-expanding v 
about the inflection point and integrating the Abel transform (2.4) analytically. As 
the minimizer evolves, the presence of these sharp peaks in the constraints forces 
gaps to form; see Figure 10. 

Next, we turn to the weak limit ii itself, as displayed in Figure 11 at several 
times. Comparison with Figure 9 shows that an initial breaking occurs at the 
front of the wave and generates single-phase behavior. For this data, a two-phase 
component later emerges, surrounded by two single-phase components. As time 
increases, these oscillatory components slide toward the back of the wave. As it 
slides, the two-phase component diminishes in spatial extent and finally disappears, 
leaving only a single-phase component. While there is change in smoothness at the 
transition boundary curves, these changes are difficult to detect from observations 
of ii(x, t )  as a function of x for fixed t. 

The subtle but apparent structure that the two-phase data produces in the weak 
limit (see Figure 11) is a challenge to more generally applicable numerical meth- 
ods such as averaging small-s solutions of KdV. To quickly illustrate the effect of 
oscillations on the weak limit, we next compute the solution of KdV for E = 0.05, 
display the spatial profiles (see Figure 12) and consider locally averaging over 
the oscillations to obtain the weak limit. The behavior of the weak limit i i (x , t )  
should be contrasted with the actual oscillatory structure which is present in the 
wave at small, but positive, values of E. We note that the expected multiphase mi- 
crostructure in the spatial profile of u is not apparent at this value of E ,  because the 
oscillations are certainly not fine enough to resolve the local two-soliton structure. 
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u ( t  = 0.07 5) 

u(t=O. 100) 

u(t=O. 100) r 
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u(t= 1.000) 

u(t=0.100) c = 1.000) 

Figure 7. Solutions of KdV equation for Example A, with E = 0.16, 0.08 and 0.04 (from 
top to bottom). The domain of each plot is [-2,lO]. 
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f ' (t = 0 . 0 5 0 , ~ =  - 0.400) 

f '  (t=O. 150,~=-0.400) 

f' (t=0.500,~=-0.600) 
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Figure 8. The minimizer f' for Example A, shown for t < f b  = 1/12, t > tb  and 
t >> rb on the interval 0 s k s 1. 
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I 

Figure 10. The minimizer f' for Example B, shown for t = 0 to 0.5 in steps of 0.1 and 
for several x values at each t ,  from left to right and top to bottom. 
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f '  (t=0.000,~=-0.575) f '  ( t=O.OOO,x= 0.125) f' ( t = O . O O O , x =  0.725) 

f' ( t = O . l O O , x =  0.525) 

f '  ( t=0 .400 ,~=  0.425) 

f '  (t=O.lOO,x= 0.725 

/ / '  A /J 

....----'I 
f '  (t=O.lOO,x= 0.825) 

f '  ( t=0 .400,~= 0.925) 

I , /" 
/ 

/ 
/ 

Figure 10. (continued) Selected minimizers from Example B, with the constraint shown 
dashed. 
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u(t=0.000) 
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u(t=O. 120) 
I 

1 t=0.160) 

u(t=0.280) 
\ 

u( t = 0.200) 

Figure 11.  The weak limit ii for selected values of t in Example B, computed with 
third-order smoothed EN0 differencing on [- 1.5.5.51. 
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I I 

u(t=0.480) 

I 

u(  t =0.600) u(t=0.640) 

Figure 11.  (continued) 

u(t=0.560) 
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r 

u(t=0.080) 

u(t=0.240) u( t =o.zso) 

u( t = 0.200)  

u (t = 0.320) 

Figure 12. Solution of KdV equation for Example B with E = 0.05, computed on 
[-1.5,5.5]. 
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5.4. Example C: Three-Phase Data 

Example B described phase boundaries between one-phase and two-phase com- 
ponents, phenomena which are just beyond current theoretical studies; see [19] and 
[24]. In Example C we proceed further, with data chosen to generate three-phase 
behavior. Specifically, we choose piecewise quintic data with breakpoints, values 
and derivatives given in Table 5. Figure 13 shows v ,  p, and d for this example. 

We first display the space-time diagram in Figure 14. The phase structure of 
this example is rather complicated, reaching three phases (a seven-sheeted surface 
marked with 4 and 5 in the figure). Still, one notes very sharp phase boundaries. 
Also, for this example, some of the phase regions are quite narrow in spatial extent, 
but last for long durations of time. Again, the long time behavior is single-phase. 

u( t =O.OOO) 

/ 
(D 

I 

Figure 13. The initial data v(x) and spectral functions 'p and 8 for Example C, with the 
adaptive tabulation points indicated by tick marks and et = 

i x ;  4 x 1 )  v ' (x ; )  v" (x ; )  

1 - 1  0 
2 0 - 1  
3 0.1 -0.99 
4 0.2 -0.96 
5 0.3 -0.91 
6 0.4 -0.84 
7 0.5 -0.69 
8 0.6 -0.64 
9 0.7 -0.25 

10 0.8 -0.18 
11 0.9 -0.08 
12 1 0 

-2 2 
0 2 
0.2 2 
0.4 2 
0.7 2 
0.8 2 
0.2 0 
1.3 2 
1 0 
1.8 2 
1.2 0 
2 2 

Table 5 .  Breakpoints, values and derivatives for the piecewise quintic v(x)  of Example 
C. 
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We organize the presentation of this example in the same order as in Example 
B: ( 1 )  representative minimizers and local spectrum in Figure 15; (2) spatial pro- 
files of the weak limit in Figure 16; (3) direct numerical simulations of KdV with 
E = 0.05 in Figure 17. 

Figure 14. Space-time diagram for Example C. The domain is [- 1.21 X [0,0.5]. 
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Figure 15. The minimizer f' for Example C, shown for t = 0 to 0.3 in steps of 0.05 and 
for t = 0.3 to t = 0.5 in steps of 0.1, from left to right and top to bottom. The domain 
of each plot is [ - 1,2]. 
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f '  ( t=0.000,~=-0.480) 

I ' /  

f' ( t = O .  1 0 0 . ~ =  0.640) 

f '  ( t=0.275,x= 0.320.) 

f' (t=0.000,x= 0.120) f '  ( t=O.OOO,x= 0.640) 

f' ( t = O . l O O , x =  0.760) f' (t=O.lOO,x= 0.880) 

f '  (t=0.275,x= 0.400) .:v 
/ I / 

/ 
/ / 

Figure 15. (continued) Selected minimizers from Example C. Note particularly the mul- 
tiple breaking sequence in the bottom row. 
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uo (t=0.000) v 

un (t=0.18( 
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uo (t=0.360) 

;;;\ 

u,, (t=0.060) 

i 

un (t=0.240) 

uo (t=0.420) 

ug (t=0.120) r 

uo (t=0.300) 

\ 

u,, (t=0.480) 

F i i u ~  16. The weak limit fi for selected values of r in Example C, computed with 
third-order smoothed EN0 differencing. The domain of each plot is [- 1.21. 
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u ( t  = 0.000) 

u(t=O. 180) 

I 

u ( t  =0.360) 

I 

u(t=0.060) 

u(t=0.240) 

I 

u (  t-0.120) 

T 
I 

I 

u(t=0.480) 

Figure 17. Solution of KdV equation for Example C with B = 0.05, on [-1,2]. 
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6. Conclusion 

The generation and propagation of oscillations is an important natural phe- 
nomenon for nonlinear conservative waves. In the presence of small dispersion, 
these oscillations can be sufficiently intense to prevent the existence of a strong 
limit as the dispersion vanishes. In general nonlinear wave situations, it is difficult 
to develop a numerical procedure which accurately captures the weak limit by 
averaging over these oscillations; see [3]. On the other hand, for special integrable 
nonlinear waves, the Lax-Levermore formulation provides a natural characteriza- 
tion of the weak limit which reveals detailed structure far beyond that currently 
accessible to direct computational methods. Analytically, it is somewhat difficult 
to extract detailed quantitative information from the Lax-Levermore characteri- 
zation. As a quadratic minimization problem, however, the Lax-Levermore char- 
acterization of the weak limit is amenable to numerical study. In this article we 
have developed an algorithm for this study for the KdV equation. This algorithm 
should be useful, first, for understanding the structure of the weak limit of the 
special integrable KdV problem, and second, as a means to calibrate algorithms 
which compute the weak limit for more general problems. 

The algorithm, as described in the text, is surprisingly efficient when properly 
programmed. In addition, since the quadratic minimization problem has no cou- 
pling between different space-time points, it is natural for coarse-grained parallel 
computation. 

Even in these initial studies of the weak limit of the KdV equation, the algo- 
rithm enables us to investigate phenomena beyond those currently accessible to 
analytical methods. In particular, we mention multiple breaking and the associated 
structure of ii in this regard. Our numerical experiments clearly demonstrate that 
different phases, which live in sharply defined regions of space-time, evolve and 
interact in interesting ways. Thus distinct phases, which result from microscopic 
oscillations, have observable macroscopic consequences in the profile of ii. For 
such KdV studies, the quadratic minimization problem seems more efficient than 
a direct study of Whitham’s equations, particularly in transition regions where 
the number of phases changes. Computing the weak limit by numerical averaging 
seems even more difficult, especially if one wishes to resolve the macroscopic 
consequences of the multiphase microstructure. 

The algorithm is sufficiently efficient to consider a study of more interesting 
initial data-data with many minima and even random data. For such studies, one 
would presumably need to implement the algorithm on a parallel machine and 
consider ways to further improve its efficiency as well. 

The variational methods implemented here can certainly be adapted to other 
soliton equations such as the Toda lattice and the (defocusing) nonlinear Schrod- 
inger equation. They seem, however, intrinsically restricted to integrable equations. 
It would be really exciting if a similar variational approach could be invented for 
the numerical study of oscillations in more general nonlinear waves! 
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