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1. Introduction

Deferred correction methods for the numerical solution of the initial value problem

y′(t) = f
(
t, y(t)

)
, y(a) = ya ∈ R

d, t ∈ [a,b] (1.1)

have been developed and analyzed for many years [3]. There are two important features of such methods: firstly, the ability
to easily estimate the global error and secondly the ability to easily create high-order methods from low-order schemes.
The combination of these powerful qualities opens up the possibility for sophisticated codes with adaptive step-sizes and
also adaptive order. Two interesting new techniques of deferred correction were introduced in [6]. The first method (with
the slightly misleading name) “classical” Deferred Correction is a method that is similar to Zadunaisky’s Iterated Defect
Correction (IDeC) [16]. It is based on a previously numerically computed solution to (1.1) where, after deriving and solving
an ODE (numerically) for the global error of the computed solution, the numerical estimate of the error is added to the
previously computed solution. The second method named Spectral Deferred Correction is based on the same ideas, however,
the ODE for the error is turned into an integral equation. The extensive previous convergence theory of deferred correction
methods does not apply to these new techniques (and thus there are no formal proofs justifying the convergence of these
new methods), however, in this paper, we extend and apply previous technical tools to prove high-order convergence for
the first (“classical”) deferred correction scheme of [6]. Convergence of spectral deferred correction is proved in [10], and
the method has been successfully implemented and tested in [6,13,11].

Previous convergence proofs [12,7,8] for deferred correction methods often assume a global asymptotic error expan-
sion, which Runge–Kutta methods usually possess (but multistep methods usually lack). Our proof relies instead on the
smoothness of the global error in discrete Sobolev norms, defined via divided differences as in [14], and adjusted to fit
our situation. Our approach is modeled on the abstract Stetter–Lindberg–Skeel error analysis [15,12,14], which treats the
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initial value problem (IVP) as an operator equation approximated by a discrete operator equation. Lindberg and Skeel used
this approach to develop new methods and show convergence of new and existing methods. Skeel extended it into a very
general framework for the analysis of accuracy and convergence, which permits the analysis of many deferred correction
methods. We extend it further to prove convergence for the new classical scheme of [6]. One should note that our conver-
gence analysis only covers one-step methods, however, the numerical examples in Section 5 suggest that multistep methods
will also work, although with some restrictions. We hope that our “global asymptotic error” free framework can (in the
future) be adapted to include multistep methods.

2. The DGR scheme

The first method introduced in [6] is referred to as “classical deferred correction”. We believe that this name is a little
misleading as the method is not classical at all. It is quite similar to Zadunaisky’s iterated deferred correction (IDeC) [16],
however, a different method. We will therefore refer to this method as the DGR method (or scheme) after its inventors Dutt,
Greengard and Rokhlin.

The idea of the method is as follows. One constructs a new IVP for the error, solves it numerically, and thus obtains
an approximation to the global error which is added to the previous numerical solution. The process is repeated on each
subinterval separately, and can be viewed as a technique for generating high-order Runge–Kutta–Fehlberg schemes, without
the laborious algebra required to solve large nonlinear systems of order conditions.

2.1. Description of the algorithm

Suppose a numerical solution u = (u0, . . . , un) is given at (equidistant) grid points {t0, . . . , tn} with step size h on the
current subinterval [a,b] of time integration, with error

y(tk) − uk = O
(
hp)

, k = 0, . . . ,n.

We can view u as a continuous approximate solution satisfying the IVP with error

δ̃(t) = y(t) − ∇nu(t), t ∈ [a,b] (2.1)

by employing the Lagrange interpolation operator ∇n : R
n+1 → C[a,b] based on the grid points. Differentiating the error

formula (2.1) and using the IVP for y gives the error equation

δ̃′(t) = f̃
(
t, δ̃(t)

)
, δ̃(a) = δ̃a = y(a) − u0,

f̃
(
t, δ̃(t)

) = f
(
t, δ̃(t) + ∇nu(t)

) − d

dt
∇nu(t). (2.2)

Solving (2.2) with an order-p accurate numerical method gives a numerical error

δk = y(tk) − uk + O
(
h2p)

, k = 0, . . . ,n.

The procedure can be iterated, using the same order-p method at each iteration, or more generally we may use one of r
different one-step methods of orders p1, . . . , pr at each correction. We refer to this approach as the DGR algorithm:

Algorithm 2.1. For j = 1 : r

• Interpolate u[ j−1] → ∇nu[ j−1](t) on the current subinterval
• Solve the following IVP by p j th-order method:

δ̃′(t) = f
(
t, δ̃(t) + ∇nu[ j−1](t)

) − d

dt
∇nu[ j−1](t), δ̃(a) = y(a) − ∇nu[ j−1](a),

to get a numerical approximation δ to the current error δ̃

• Update u[ j] = u[ j−1] + δ

end

The similarity with the IDeC methods is obvious, however, it is clear that the DGR method is different from the
IDeC scheme. This can be seen in the following way. The IDeC method is based on a computed numerical solution
u = (u0, . . . , un). One then forms the defect d(t) = d

dt ∇nu(t) − f (t,∇nu(t)), solves

ρ̃ ′(t) = f
(
t, ρ̃(t)

) + d(t), ρ̃(a) = ya

numerically and obtain an approximation ρ = {ρ0, . . . , ρn}. The update is defined by
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unew
ν = uν − (

ρν − ∇nu(tν)
)
, ν = 0, . . . ,n.

We observe that in the DGR method the error equation (2.2) is approximated in a more direct way, without explicit use of
the defect, which makes a real difference especially for nonlinear problems. It is therefore clear that when f is nonlinear,
the methods are very different. It appears that the DGR scheme allows for some extra freedom when constructing high-
order methods compared to the IDeC method. In particular, one can mix one-step methods of completely arbitrary orders
and, as suggested in Section 5.4, one can even combine multistep methods with one-step methods. The proof of this rather
striking phenomenon is not covered in this paper however, and this is left for future research.

The reader will observe, both in the proof and the numerical examples, that the requirement of an equidistant grid is
crucial, and this is also the case for IDeC. Improved variants of IDeC that do not require equidistant grid have been invented
and analyzed in [1,2], and it is an open question whether one can apply these ideas to the DGR method. If so, it appears
that one may have a very general way of creating high-order methods from lower-order one-step and multistep methods
that allow for variable step sizes.

3. Theoretical framework

We employ Stetter’s abstract formalism for analyzing numerical solutions of the IVP [15], as do most previous analyses
of deferred correction [14,12]. Thus we write the IVP (1.1) as an operator equation

F y = 0 (3.1)

where F : Y → Z is an operator between normed linear spaces Y and Z . A numerical method φ for the IVP approximates
(3.1) by a family of operator equations

φn(F )u = 0, n ∈ N,

where φn(F ) : Yn → Zn is an operator between finite-dimensional normed linear spaces Zn and Yn with dimensions propor-
tional to n. Euler’s method, for example (applied to a one-dimensional IVP), has Yn = Zn = R

n+1 and

φn(F )(u)ν =
{−u0 + ya, ν = 0,

− uν−uν−1
tν−tν−1

+ f (tν−1, uν−1), ν = 1, . . . ,n,

where {t0, . . . , tn} is a grid on [a,b] and ya is the initial value (we will be more rigorous with the definitions below). Stetter
requires Y and Z to be Banach spaces. It turns out that completeness is not usually necessary for analyzing the convergence
of most numerical methods φn(F ), so normed linear spaces suffice. (Since Example 1.1 of [15] is not a Banach space, it is
fortunate that normed linear spaces suffice.) Following Skeel [14], we convert the IVP (1.1) to an operator equation with the
norm

‖z‖Y m := max

{
‖z‖∞,

1

2!
∥∥z′∥∥∞, . . . ,

1

m!
∥∥z[m]∥∥∞

}
(3.2)

on the normed linear space Y m := Cm[a,b] × · · · × Cm[a,b] (d times). Here we use the standard maximum norm

‖z‖∞ := max
t∈[a,b],1� j�d

∣∣z j(t)
∣∣, z j ∈ Cm[a,b].

The operator F is defined so that F y = 0 is equivalent to the IVP: Thus, for z ∈ Y m

F z(t) := (−z(a) + ya,−z′(t) + f
(
t, z(t)

))
, t ∈ [a,b], (3.3)

where f : [a,b] × R
d → R

d is assumed smooth with bounded derivatives. Then the initial value ya in F guarantees that y
is the unique solution of the IVP. The range of F is then naturally defined to be Zm := R

d × Cm−1[a,b] × · · · × Cm−1[a,b]
(d times), and for g = (ga, g̃) ∈ Zm we define the norm by

‖g‖Zm := ‖Lg‖Y m , Lg(t) = ga +
t∫

a

g̃(s)ds. (3.4)

3.1. The discrete problem

Finite-dimensional spaces for the numerical method are built on a grid on the interval [a,b]. In particular, for n ∈ N, we
let

Gn = {t0, . . . , tn: a = t0 < · · · < tν−1 < tν < tn = b}, (3.5)
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with step sizes hν := tν − tν−1 > 0 for ν = 1, . . . ,n, and mesh size h := maxν{hν}. Given a grid Gn , we define finite-
dimensional spaces Y m

n = Zm
n := R

d × R
d × · · · × R

d (n + 1 times). We will interpret u ∈ Y m
n , Zm

n as a column vector in
R

d(n+1) , where (with a slight abuse of notation) uν ∈ R
d is interpreted as the vector corresponding to tν . In particular,

u = (
(u0)1, (u0)2, . . . , (u0)d, (u1)1, (u1)2, . . . , (u1)d, . . . , (un)1, (un)2, . . . , (un)d

)T
.

The definition of the point evaluation operators (or grid mappings, as we will also call them) should make this clear. In
particular, �n : Y m → Y m

n and Λn : Zm → Zm
n are defined by

(�nz)ν := z(tν), z ∈ Y m, 0 � ν � n, (3.6)

and

(Λn g)ν :=
{

ga, ν = 0,

g(tν−1), 1 � ν � n,
g ∈ Zm, (3.7)

where tν, tν−1 ∈ Gn. The norms on Y m and Zm suggest natural norms on Y m
n and Zm

n , with backward divided differences
replacing derivatives. For u ∈ Y m

n let

‖u‖Y m
n

:= max
{‖u‖∞,‖D̃u‖∞, . . . ,

∥∥D̃mu
∥∥∞

}
, (3.8)

where

‖u‖∞ = max
0�ν�n,1� j�d

∣∣(uν) j
∣∣,

and

D̃mu = (
u0, Du1, D2u2, . . . , Dmum, . . . , Dmun

)T

is an array of divided differences and initial values. Here Dm denotes the backward divided difference defined by

D0uν = uν,

Dmuν = Dm−1uν − Dm−1uν−1

tν − tν−m
, m = 1,2, . . . , m � ν.

For z ∈ Zm
n we define

‖z‖Zm
n

:= ∥∥(Lh ⊗ Id)z
∥∥

Y m
n
, (3.9)

where

Lh :=

⎡
⎢⎢⎢⎢⎢⎢⎣

1

1 h1

1 h1 h2

...
...

...

1 h1 h2 . . . hn

⎤
⎥⎥⎥⎥⎥⎥⎦

, Idx = x, x ∈ R
d.

Thus, Lh works as a discrete integral operator. In particular,

‖z‖Z 0
n

= max
0�l�n,1� j�d

∣∣∣∣∣
(

z0 +
l∑

k=1

hkzk

)
j

∣∣∣∣∣
is often called the Spijker norm, while

‖z‖Z 1
n

= max
1� j�d

{∣∣(z0) j
∣∣, ∣∣(z1) j

∣∣, ∣∣(z2) j
∣∣, . . . , ∣∣(zn) j

∣∣}
is the usual maximum norm. These spaces and mappings are related by the following “asymptotically commutative” dia-
gram:

Y m F

�n

Zm

Λn

Y m
n

φn(F )
Zm

n .

In the sequel we will need the following presumably well-known lemma, whose proof we include for completeness.
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Lemma 3.1. Let n,m ∈ N with n � m. For an equidistant grid Gn on [a,b], the Lagrange interpolation operator ∇n : Y m
n → Y m satisfies

a norm bound ‖∇n‖ � Cn where Cn depends only on n and [a,b]. Moreover, the statement is valid (with the same Cn) for any interval
[ã, b̃] ⊂ [a,b].

Proof. Let ζ ∈ Y m
n . By Newton’s interpolation formula, we have

∇nζ(t) =
n∑

μ=0

Dμζμπμ(t), πμ(t) =
μ−1∏
l=0

(t − tl), μ � 1, π0(t) = 1,

which gives

‖∇nζ‖Y m � (n + 1) max
0�μ�n

{∥∥Dμζμ
∥∥

Rd ‖πμ‖Y m
}
,

where the norm ‖ · ‖
Rd is chosen to be the max norm. Since Gn is equidistant, it follows that

‖πm+k‖Y m � Ĉnhk, k = 0, . . . ,n − m, h = tl − tl−1,

where Ĉn depends only on n and [a,b], however, the bound is valid for any interval [ã, b̃] ⊂ [a,b]. Also, ‖Dm+kζm+k‖Rd �
Kn‖ζ‖Y m

n
/hk for some Kn > 0 depending on n and independent of [a,b]. Hence,∥∥Dμζm+k

∥∥
Rd‖πm+k‖Y m � C̃n‖ζ‖Y m

n
, k = 1, . . . ,n − m, (3.10)

for some C̃n > 0 depending on n and [a,b], however still true for any [ã, b̃] ⊂ [a,b]. Now, if K̃n bounds ‖πμ‖Y m
n

, we obviously
have

max
0�μ�m

{∥∥Dμζμ
∥∥

Rd‖πμ‖Y m
n

}
� K̃n‖ζ‖Y m

n
, (3.11)

where the latter equation would be true for any [ã, b̃] ⊂ [a,b]. Thus, (3.10) and (3.11) yield the existence of Cn > 0 as
asserted in the lemma such that ‖∇nζ‖Y m

n
� Cn‖ζ‖Y m

n
. �

We plan to prove convergence of deferred correction schemes indirectly, by using stability and consistency in the usual
manner. However, the following convenient and effective definitions from [15] may differ from the many other definitions
of consistency and stability in the literature.

Definition 3.2. The sequence

λn = φn(F )�n y ∈ Zm
n , n ∈ N,

where y is the solution of the IVP F y = 0, where F is defined in (3.3), is called the local discretization error.

Definition 3.3. A discretization method φ is called stable if there exist a positive constant S , independent of n, such that

‖v − w‖Y m
n

� S
∥∥φn(F )v − φn(F )w

∥∥
Zm

n
(3.12)

for all v, w ∈ Y m
n .

3.2. Local error for one-step methods

Runge–Kutta methods have been widely used in deferred correction algorithms [7,8]. While we do not restrict our anal-
ysis to Runge–Kutta methods we assume that the method φ is of the form

φn(F )(u)ν =
{−u0 + ya, ν = 0,

− uν−uν−1
h + Ψ (h, uν−1, f ), ν = 1, . . . ,n,

where F is defined in (3.3), ya = y(a), where F y = 0, f comes from (1.1) and Ψ is the normally referred to as the incre-
ment function of the method. Our approach appears to require the existence of an asymptotic error expansion: the local
discretization error λ of any solution y to F y = 0 must satisfy

λν = φn(F )(�n y)ν =
μ∑

(Λnek)νhk + (Λn g)νhμ+1, ν = 1, . . . ,n, (3.13)

k=1
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where ek ∈ Zμ, g ∈ Z 0 and μ will depend on the smoothness of f (note that there is a slight abuse of notation here, λν

should actually be (λn)ν , however we allow this to simplify notation). If ek = 0 for all k < p then the numerical method
φ is said to be consistent of order p. For one-step methods (such as Runge–Kutta methods) where the local error can be
expressed as a Butcher series, after autonomizing the original equation, there is a (formal) tree expansion

φn(F )(�n y)ν =
∑
τ∈LT

a(τ )F (τ )
(
(�n y)ν−1

) hρ(τ )

ρ(τ )! , ν = 1, . . . ,n. (3.14)

Here a(τ ) are computable error coefficients, F (τ )((�n y)ν−1) are computable elementary differentials of f evaluated at
(�n y)ν−1, and LT is the set of all labeled trees [9]. (Note that F used in the elementary differentials is not the same F as
in the operator version of the IVP, however, this will be clear from the context.) In this case the existence of the expansion
(3.13) follows easily when the grid mappings �n and Λn correspond to an equidistant grid Gn . It is straightforward to show
that when Gn is equidistant (this is crucial, see Section 4.2) and if the tree expansion (3.14) holds, we have

max
(‖ek‖Zμ−k ,‖g‖Z 0

)
� Cμ max

(‖y‖Y μ,‖y‖μ
Y μ

)
, k = 1, . . . ,μ − 1, (3.15)

where

Cμ � K sup
{∣∣F (τ )(z)

∣∣: z ∈ [a,b] × R
d, τ ∈ LTμ

}
, (3.16)

LTμ is the set of all labeled trees of order � μ, and K is an integer depending on μ. We assume below that our numerical
method satisfies (3.14) and that f is smooth with bounded derivatives, and hence (3.13) with (3.15) and (3.16) apply.

3.3. Stability of one-step methods

Convergence of a numerical method is usually proven in two steps. First, one proves consistency λ = O (hp) at each
smooth solution y. Then, if the stability inequality is satisfied, one deduces convergence. Thus we seek a stability inequality

‖v − w‖Y m
n

� S
∥∥φn(F )v − φn(F )w

∥∥
Zm

n
, v, w ∈ Y m

n . (3.17)

Obviously S will depend on the norms on Y m
n and Zm

n , and since our norms include divided differences, it is not a surprise
that S may include derivatives of f . For Runge–Kutta methods, it can be shown (see Example 4.2 of [14]) that (3.17) is valid
with S = S(θ) where θ is a bound on all the partial derivatives of f of orders up to and including m and S is a nonnegative
increasing function of θ . We assume below that S has this form.

4. Abstraction of the DGR scheme

The goal is to put Algorithm 2.1 into the abstract framework. Given a previously calculated solution u ∈ Y m
n , the DGR

scheme builds a continuous approximation g(t) = ∇nu(t) to the exact solution y. The error equation for δ̃

δ̃′(t) = f̃
(
t, δ̃(t)

)
, δ̃(a) = δ̃a = y(a) − u0,

f̃
(
t, δ̃(t)

) = f
(
t, δ̃(t) + g(t)

) − g′(t), (4.1)

can be put in operator form by defining F g : Y m → Zm , for any interpolated numerical solution g , via

F g z(t) := (−z(a) + δ̃a,−z′(t) + f
(
t, z(t) + g(t)

) − g′(t)
)
. (4.2)

The numerical scheme for δ̃ is then

φn(F g)δ = 0, g = ∇nu(t).

In particular, if φ is the implicit midpoint rule we get that

φn(F g)(u)ν =
{

−u0 + δ̃a, ν = 0,

− uν−uν−1
h + f

(
t̂ν,

uν+uν−1
2 + g(t̂ν)

) + g′(t̂ν), ν = 1, . . . ,n,

where t̂ν = (tν−1 + tν)/2. Before we can prove the desired convergence of the DGR method we need to make some adjust-
ments. In particular the spaces Y m

n and Zm
n must be altered slightly before we can start proving any theorems, and that is

the theme of the next section.
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4.1. Theoretical adjustments

We now adjust the previous theoretical framework so that convergence can be proven for the DGR scheme. In this section
we consider the IVP (1.1) on the interval [0, T ]. The previously defined spaces and norms interfere with the boundedness
of the Lagrange interpolation operator ∇n : Y m

n → Y m . Recall that we are considering the sequence {un}n∈N for un ∈ Y m
n .

Obtaining a polynomial g(t) = ∇nun(t) of arbitrarily high degree as h → 0 does not make any sense, so computationally we
only interpolate a fixed finite number of points. But piecewise interpolation may introduce unsmoothness so boundedness
of ∇n is impossible in spaces Y m with m > 0. Thus we consider each correction interval as a separate IVP. In other words
split the interval [0, T ] into N subintervals [Tk−1, Tk], k = 1, . . . , N , where T0 = 0, T N = T and [0, T ] = ⋃N

k=1[Tk−1, Tk]. Let
n ∈ N and for each k let G

k
n be an equidistant grid on [Tk−1, Tk] with hk = (Tk − Tk−1)/n. Letting h = maxk(Tk − Tk−1) we

require that there is a constant C (independent of N) such that

h � C min
1�k�N

hk. (4.3)

Now define the grid GNn on [0, T ] by GNn = ⋃N
k=1 G

k
n such that Tk = tkn ∈ GNn. We can now define the vector space Y m

Nn
according to GNn . In particular, let

Y m
Nn := R

d(Nn+1),

where we interpret u ∈ Y m
Nn as

u = (u0, . . . , uNn)
T , uν ∈ R

d,

where uν corresponds to tν ∈ GNn. Also, for k = 1, . . . , N , let uk ∈ R
d(n+1) be defined by

uk := (u(k−1)n, . . . , ukn)
T .

We will for simplicity use the notation uk = (uk
0, . . . , uk

n)T below. We can now define the norm on Y m
Nn by

‖u‖Y m
Nn

:= max
1�k�N

{∥∥uk
∥∥

Y m
n

}
.

Similarly let

Zm
Nn := R

d(Nn+1), ‖z‖Zm
Nn

:= max
1�k�N

{∥∥zk
∥∥

Zm
n

}
.

These norms do not require smoothness across subgrid boundaries, and are therefore convenient for the analysis of deferred
correction schemes which work on one subinterval at a time. We now split the IVP into N IVPs. In particular, we have the
IVPs

Fk y = 0, k = 1, . . . , N,

Fkz(t) := (−z(t(k−1)n) + y(t(k−1)n),−z′(t) + f
(
t, z(t)

))
, t ∈ [Tk−1, Tk], (4.4)

where y satisfy F y = 0 and F is defined in (3.3). Suppose u ∈ Y m
Nn is an approximation to the discretization �Nn y of the

exact solution y to the IVP F y = 0. Let gk = ∇nuk be the local Lagrange interpolant to the grid values on the k-th subgrid.
The correction equations require δ ∈ Y m

Nn to satisfy

φn(F gk )
(
δk)

ν
=

⎧⎨
⎩

−δk
0 + δk−1

n , k = 1, . . . , N,

− δk
ν−δk

ν−1
h + Ψ (h, δk

ν−1, f̃ gk ), ν = 1, . . . ,n, k = 1, . . . , N,

= 0 (4.5)

where, for δ̃ ∈ Y m , f̃ gk (t, δ̃) = f (t, δ̃ + gk(t)) + g′
k(t) and δ1

0 = 0, assuming exact starting value. With this framework, we can
state the main lemma of the convergence proof:

Lemma 4.1. Let y satisfy F y = 0, where F is defined in (3.3) and f ∈ C∞(Rd+1) with bounded derivatives. Let n ∈ N and Gn be an
equidistant grid on [a,b] with stepsize h. Suppose that the numerical method φ is stable (with stability properties as in Section 3.3)
and consistent of order p with the local discretization error satisfying (3.13) and (3.15). Suppose also that for integers m, p, r with
n � m + p + r, a numerical solution u ∈ Y m+p

n satisfies the error bound ‖u − �n y‖Y m+p
n

� Chr (for some C > 0). Then the correction

δ satisfies the order-(r + p) error bound

‖δ + u − �n y‖Y m � Cn max
{∥∥δ0 + u0 − (�n y)0

∥∥
d ,hr+p}
n R
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(where ‖ · ‖
Rd denotes the max norm) for some Cn depending on n, [a,b] and f (and its derivatives). Here δ is the correction satisfying

φn(F∇nu)δ = 0 with initial value δ0 and where F∇nu is defined in (4.2). Moreover, the statement is valid (with the same Cn) for any
interval [ã, b̃] ⊂ [a,b].

Proof. Throughout the proof C may represent various constants. Let g(t) = ∇nu(t). By the stability assumption, the assump-
tion that f has bounded derivatives and the definition of δ we have

‖δ + u − �n y‖Y m
n

� S(θ)
∥∥φn(F g)δ − φn(F g)(�n y − u)

∥∥
Zm

n

= S(θ)
∥∥φn(F g)(�n y − u)

∥∥
Zm

n
, (4.6)

for some S(θ) > 0 independent of n, where S is an increasing function of θ and θ is a bound on the partial derivatives
of [a,b] × R

d � (t, z) �→ f (t, z + ∇nu(t)) − ∇nu′(t) up to order m. Also, recall that F g is defined in (4.2). We will discuss
the dependency on θ below. Since the exact solution of the correction equation is δ̃ = y − ∇nu and �n∇n is the identity,
it follows that φn(F g)(�n δ̃) = φn(F g)(�n y − u) is the local discretization error of the correction IVP F g δ̃ = 0. Since φ is a
scheme that is consistent of order p, with an asymptotic error expansion as in (3.13), it follows that

φn(F g)(�n y − u)ν =
{

δ0 + u0 − (�n y)0, ν = 0,∑m
j=0 hp+ j(Λnep+ j)ν + hm+p+1(Λn g)ν, ν = 1, . . . ,n.

(4.7)

Thus, the local discretization error of the corrected solution satisfies

∥∥φn(F g)(�n y − u)
∥∥

Zm
n

� max

(∥∥δ0 + u0 − (�n y)0
∥∥

Rd ,

m∑
j=0

hp+ j‖Λnep+ j‖Zm
n

+ hm+p+1‖Λn g‖Zm
n

)
,

where the norm ‖ · ‖
Rd is the max norm. We will now consider the last part of this bound in the following claim.

Claim. There is a C depending on n and [a,b] such that

m∑
j=0

hp+ j‖Λnep+ j‖Zm
n

+ hm+p+1‖Λn g‖Zm
n

� Chr+p.

Moreover, the claim is valid (with the same C ) for any interval [ã, b̃] ⊂ [a,b]. To prove the claim, note that by the ex-
tended mean value theorem for higher-order derivatives and divided differences, the operator norm of the point evaluation
Λn satisfies ‖Λn‖Zk→Zk+l

n
� Mh−l for any positive integers k, l and a constant M > 0 depending on l, n and [a,b], however

independent of any [ã, b̃] ⊂ [a,b]. Thus

m∑
j=0

hp+ j ‖Λnep+ j‖Zm
n

+ hm+p+1‖Λn g‖Zm
n

� hp
m∑

j=0

M j‖ep+ j‖Zm− j + hp+1Mm‖g‖Z 0

where the constants M j may depend on n and [a,b], however are independent of any [ã, b̃] ⊂ [a,b]. By the asymptotic error
expansion assumptions (3.15) and (3.16), ‖ep+ j‖Zm− j (for 0 � j � m) and ‖g‖Z 0 are bounded by

C̃ max
(‖∇nu − y‖Y m+p ,‖∇nu − y‖m+p

Y m+p

)
where

C̃ � K sup
{∣∣F (τ )(z)

∣∣: z ∈ [a,b] × R
N , τ ∈ LTm+p

}
,

with F (τ )(z) an elementary differential of the autonomized correction equation

δ̃′(t) = f
(
t, δ̃(t) + ∇nu(t)

) − ∇nu′(t), t ∈ [a,b],
and K is an integer depending on m + p. Thus, our claim will follow if we can bound C̃ and show that there is a C > 0 such
that ‖∇nu − y‖Y m+p � Chr . Let us start with the latter. Note that the triangle inequality gives

‖∇nu − y‖Y m+p � C‖u − �n y‖Y m+p
n

+ ‖∇n�n y − y‖Y m+p ,

where C (depending on n and [a,b], however independent of any [ã, b̃] ⊂ [a,b]) is a bound on the operator norm of Lagrange
interpolation ‖∇n‖ (recall Lemma 3.1). Interpolation and point evaluation are related by ‖∇n�n y − y‖Y m+p � Chn−m+p (C
may depend on n and [a,b], however is independent of any [ã, b̃] ⊂ [a,b]). Thus, by the assumption that ‖u − �n y‖ m+p �
Yn
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Chr and the choice of n (recall that n � m + p + r), it follows that ‖∇nu − y‖Y m+p � Chr . Where C depends on n and [a,b],
however is independent of any [ã, b̃] ⊂ [a,b].

Now returning to the bound on C̃ . By the definition of elementary differentials, C̃ will depend only on f (and its
derivatives) and n if ‖∇nu‖Y k is bounded for k = p + m + 1. To bound ‖∇nu‖Y k we observe that, for any positive integer l
the identity operator I is bounded by Mlh−l (for some Ml > 0) from Y m

n to Y m+l
n . Thus

‖u − �n y‖Y k
n
� Ch−1‖u − �n y‖Y m+p

n
.

Hence, it follows that

‖∇nu‖Y k � ‖∇nu − y‖Y k + ‖y‖Y k

� Chr−1 + ‖y‖Y k , (4.8)

by the assumption that ‖u − �n y‖Y m+p
n

� Chr , and the claim is proved.
Note that the lemma will follow by (4.6) and the claim if we can control θ from (4.6). Recall that θ is a bound on the

partial derivatives of [a,b] × R
d � (t, z) �→ f (t, z + ∇nu(t)) − ∇nu′(t) up to order m. Since all partial derivatives of f are

bounded, it suffices to bound ‖∇nu‖Y m+1 which follows from (4.8). �
Our main theorem follows immediately from the main lemma:

Theorem 4.2. Let y satisfy F y = 0 (where F is as in Lemma 4.1 except with the interval [0, T ]) and suppose that φ satisfies the
assumptions in Lemma 4.1. Let, for n, N ∈ N, GNn be a grid on [0, T ] with properties as in Section 4.1. Suppose that a numerical
solution u ∈ Y m+p

Nn satisfies ‖u − �Nn y‖Y m+p
Nn

� Chr and ‖u0 − (�Nn y)0‖Rd � Chr+p (the max norm) for some C > 0 then the

corrected solution u + δ satisfies

‖δ + u − �Nn y‖Y m
Nn

� Cnhp+r

(where Cn depends only on n and not on N) whenever δ is determined by (4.5).

Proof. Apply Lemma 4.1 to the subproblem Fk y = 0 defined in (4.4) and the subgrid correction δk satisfying (4.5) to get for
1 < k � N that∥∥δk + uk − (�n y)k

∥∥
Y m

n
� Cn max

(∣∣(δk−1
0 + uk−1

0 − (�n y)k−1
0

)∣∣,hp+r
k

)
(recall the notation from Section 4.1) and∥∥δ1 + u1 − (�n y)1

∥∥
Y m

n
� Cn max

(∥∥u0 − (�Nn y)0
∥∥

Rd ,hp+r
1

)
where Cn depends only on n (and not on N). The theorem follows by the definition of the global norm ‖ · ‖Y m

Nn
, the

assumption (4.3) that

h � C min
1�k�N

hk,

the assumption that ‖u0 − (�Nn y)0‖Rd � Chr+p and induction on k. �
Remark 4.3. The assumption that f is smooth with bounded derivatives may seem like a strong assumption. We do this
simply to simplify the exposition. The assumption that f has bounded derivatives may just as easily be replaced with the
assumption that f has bounded derivatives on compact sets. Also, the assumption that f is infinitely smooth can easily be
replaced by the assumption that f is sufficiently smooth (i.e. having enough derivatives required in the proof).

4.2. Error expansions and equidistant grids

Note that the assumption in Theorem 4.2 that GNn = ⋃N
k=1 G

k
n, where G

k
n is equidistant is absolutely crucial. We use

this fact already in Lemma 3.1, however, this is really only for convenience. In fact, one could actually carry out the proof
of Theorem 4.2 without the assumption of equidistant subgrids. However, the increase in order when correcting may not
happen with nonequidistant subgrids (see Section 5). Thus, one may ask: where is the requirement of equidistant subgrids
hidden? The answer is: it is hidden in the assumption in Lemma 4.1 that there exists an expansion of the local error of the
following form

φn(F )(�n y)ν =
μ∑

(Λnek)νhk + (Λn g)νhμ+1, ν = 1, . . . ,n, (4.9)

k=1
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where ek ∈ Zμ, g ∈ Z 0 and μ will depend on the smoothness of f . And also that we have

max
(‖ek‖Zμ−k ,‖g‖Z 0

)
� Cμ max

(‖y‖Y μ,‖y‖μ
Y μ

)
, k = 1, . . . ,μ − 1. (4.10)

The problem is that (4.9) with (4.10) may not be true (even Euler’s method will not work) on a nonequidistant grid. In
particular, the functions {ek}μk=1 may not exist. To see this consider the following example: Suppose we want to solve the
equation

y′(t) = y(t), y(0) = y0 = 1, t ∈ [0,2h], (4.11)

for some h > 0. Let us, for a ∈ (0,1], define the grid G2 = {0,ah, (2 − a)h} on [0,2h] (with corresponding grid maps �2 and
Λ2). Let φ denote Euler’s method. (If we use Euler’s method twice in the DGR method with G2 and solve (4.11) we get
order one when a 
= 1 and order two when a = 1.) Note that

φ2(F )(�2 y)ν =
⎧⎨
⎩

− eah−1
ah + 1, ν = 1,

− e2h−eah

(2−a)h + eah, ν = 2.

Thus, after applying some easy calculation with series expansions of the exponential function we obtain that

φ2(F )(�2 y)ν =
{−( ah

2! + O(h2)
)
, ν = 1,

−(
(2−a)h

2! + O(h2)
)
, ν = 2.

Now let μ = 3 in (4.9) (this is the value we need if we were to use the DGR scheme and Euler’s method to obtain a second-
order numerical solution). Now suppose that e1 ∈ Z 2 exists as in the expansion (4.9) with the property (4.10). By (4.9) we
get that

e1(0) = −a

2
, e1(ah) = a − 2

2
.

Thus, by the mean value theorem, we have that

‖e1‖Z 2 � 1 − a

ah
→ ∞, h → 0, ∀a ∈ (0,1).

In particular, such an e1 satisfying (4.10) can only exist when a = 1, namely, when the grid G2 is equidistant. Another
assumption that may require equidistant sub grids is the assumption in Lemma 4.1 that

‖u − �n y‖Y m+p
n

� Chr, (4.12)

where u is the original approximation (that we are trying to improve) to �n y. However, if we consider (4.11) and suppose
that we have an approximation u = {u0, u1, u2} to �2 y such that u is produced by Euler’s method (note that u0 = y0), then
a short calculation actually yields

‖u − �2 y‖Y 1
2

� Ch, ∀a ∈ (0,1], (4.13)

which is what we need to apply Lemma 4.1 to be able to correct with Euler’s method and yield a second-order numerical
approximation. To see this note that

‖u − �2 y‖Y 1
2

= max
{∣∣uν − (�2 y)ν

∣∣, ∣∣Duμ − D(�2 y)μ
∣∣: ν = 1,2,3, μ = 1,2

}
.

It is clear that

max
{∣∣uν − (�2 y)ν

∣∣: ν = 1,2,3
} = O(h), h → 0, ∀a ∈ (0,1].

Also, note that since we are considering (4.11) and u is produced by Euler’s method, it follows that

Du1 = u0, Du2 = u1, D(�2 y)1 = y0(eah − 1)

ah
, D(�2 y)2 = y0(e2h − eah)

(2 − a)h
.

Hence,

Du1 − D(�2 y)1 = y0
ah

2
+ O

(
h2), Du2 − D(�2 y)2 = y0

(
ah − 2 + a

2
h

)
+ O

(
h2).

And hence we get (4.13). In particular, it is the problem with the existence of (4.9) with (4.10) and not (4.12) that is the
issue. Having said that, of course on a nonlinear problem (4.12) may be an issue on a nonequidistant grid. Note, however,
that if φ is a numerical method, that satisfies (4.9) with (4.10) and u is the numerical solution corresponding to φ, then
(4.12) will be satisfied (as long as f is sufficiently smooth). Indeed, this can be seen by Lemma 4.1 by interpreting u as
being obtained from the DGR method correcting from the “zero numerical solution”. In this case we need ‖�n y‖

Y m+2p
n

� C ,

and this will be satisfied given sufficient smoothness.
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Table 5.1
The table shows error and measured order of the DGR method using the Euler scheme.

N h Euler DGR2
Eul DGR3

Eul DGR4
Eul DGR5

Eul DGR6
Eul DGR7

Eul

12 0.5000 7.78e–01 2.96e–02 3.76e–03 4.49e–03 2.81e–03 2.01e–03 5.72e–04
24 0.2500 3.67e–01 9.12e–03 6.93e–04 2.49e–05 2.35e–05 4.30e–06 2.42e–06
48 0.1250 1.78e–01 2.29e–03 9.10e–05 1.94e–06 8.76e–07 4.16e–08 2.03e–08
96 0.0625 8.50e–02 5.80e–04 1.15e–05 1.28e–07 2.90e–08 5.60e–10 1.45e–10

12 0.5000
24 0.2500 1.08 1.69 2.44 7.49 6.91 8.87 7.88
48 0.1250 1.07 1.99 2.93 3.68 4.74 6.69 6.90
96 0.0625 1.04 1.98 2.98 3.92 4.92 6.25 7.12

5. Numerical examples

In this section we will test the method on a standard example; the Van der Pol equation. The equation is given by

x′′(t) + μ
(
1 − x(t)2)x′(t) + x(t) = 0, t ∈ [0, T ].

Making the usual transformation, y1(t) = x(t), y2(t) = μx′(t), and t = t/μ yields the system of equations

y′
1(t) = y2(t),

y′
2(t) = (−y1(t) + (

1 − y1(t)
2)y2(t)

)
/ε, ε = 1/μ2, t ∈ [0, T ]. (5.1)

5.1. Example with Euler’s method

As a first example it is natural to use a basic first-order one-step scheme. In particular, we have tested the DGR method
on (5.1) with the Euler method, thus

φn(F )(u)ν =
{−u0 + y0, ν = 0,

− uν−uν−1
h + f (tν−1, uν−1), ν = 1, . . . ,n.

We consider (5.1) with μ = 1, T = 6 and y0 = y(0) = [2,2/3]T . The “exact” solution has been computed with MATLAB’s
ode45 with ‘AbsTol’ = 10−16 and ‘RelTol’ = 10−16. Table 5.1 shows error Err = [er1, er2, er3, er4] at T = 6 (upper part), where
er j corresponds to ‖y(T ) − ycomp,h j ‖2 where ycomp,h j is the computed value at T according to the step size h j = T /N j
j = 1, . . . ,4, as well as the measured order log(er j/er j+1)/ log(2) (lower part). In all examples, each interval [(k − 1)h j,kh j],
k = 1, . . . , N j , has been divided into n = 7 subintervals used in the interpolation according to Section 4.1. The notation
DGRk

Eul denotes k corrections with Euler’s method from the zero solution and hence the DGRk
Eul method should be of

order k.

5.2. Example with second-order Runge–Kutta method

In this example we will test the DGR method on (5.1) with the midpoint method (which is of order 2), thus

φn(F )(u)ν =
{−u0 + y0, ν = 0,

− uν−uν−1
h + f

(
tν−1 + h

2 , uν−1 + h
2 f (tν−1, uν−1)

)
, ν = 1, . . . ,n.

We consider (5.1) with the same data as in the previous example. And the tested results have been collected in Table 5.2
similar to Table 5.1. In all examples, each interval [(k − 1)h j,kh j], k = 1, . . . , N j , has been divided into n = 14 subintervals
used in the interpolation according to Section 4.1. The notation DGRk

RK2 denotes k corrections with the midpoint method
(we use RK2 for short) from the zero solution and hence the DGRk

RK2 method should be of order 2k. Note that to show that
the correction scheme does not work with a nonequidistant subgrid we have plotted the error and measured order of 6
corrections with a RK2 on a nonequidistant grid. This method has been denoted by DGR6

RK2,ne.

5.3. Example with mixed methods

In this example we have tested the DGR method on (5.1) with mixed methods, meaning both the Euler method as well
as RK2 in the corrections. We consider (5.1) with the same data as in the previous examples. And the tested results have
been collected in Table 5.3 similar to Table 5.1. In all examples, each interval [(k − 1)h j,kh j], k = 1, . . . , N j , has been divided

into n = 10 subintervals used in the interpolation according to Section 4.1. The notation DGR j,k
Eu,R2 means j corrections with

the Euler method first and then k corrections with RK2. Similarly, DGR j,k
R2,Eu means j corrections with RK2 first and then k

corrections with the Euler method. Thus, DGR j,k should be of order j + 2k and DGR j,k should be of order 2 j + k.
Eu,R2 R2,Eu
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Table 5.2
The table shows error and measured order of the DGR method using the midpoint scheme.

N h RK2 DGR2
RK2 DGR3

RK2 DGR4
RK2 DGR5

RK2 DGR6
RK2 DGR6

RK2,ne

3 2.00 2.87e–02 1.72e–01 3.57e–01 2.29e–01 2.71e–01 2.82e–01 8.82e–04
6 1.00 9.67e–03 7.84e–05 1.07e–05 7.76e–06 9.00e–06 8.87e–06 1.28e–06

12 0.50 2.67e–03 7.33e–06 2.92e–08 2.43e–09 2.17e–09 2.18e–09 2.85e–09
24 0.25 6.94e–04 5.61e–07 1.99e–10 1.790e–12 6.06e–13 1.70e–13 3.44e–11

3 2.00
6 1.00 1.57 11.10 15.02 14.85 14.88 14.96 9.42

12 0.50 1.86 3.42 8.52 11.64 12.02 11.99 8.81
24 0.25 1.94 3.71 7.20 10.41 11.80 13.64 6.38

Table 5.3
The table shows error and measured order of the DGR method using mixed methods.

N h DGR2,3
Eu,R2 DGR3,2

R2,Eu DGR5,2
Eu,R2 DGR2,5

R2,Eu DGR7,1
Eu,R2 DGR4,1

R2,Eu

6 1.000 2.25e–04 1.92e–03 2.85e–03 7.23e–03 1.25e–02 8.86e–05
12 0.500 1.28e–06 9.73e–06 2.57e–06 2.26e–06 8.24e–06 2.21e–06
24 0.250 4.09e–10 5.75e–09 3.86e–10 5.85e–09 4.30e–10 2.67e–09
48 0.125 7.03e–13 1.60e–12 1.64e–13 3.10e–12 8.17e–13 7.20e–13

6 1.000
12 0.500 7.46 7.62 10.12 11.64 14.88 5.33
24 0.250 11.61 10.72 12.70 8.59 12.02 9.69
48 0.125 9.18 11.82 11.20 10.88 11.80 11.86

Table 5.4
The table shows error and measured order of the DGR method using one-step and multistep methods.

N h DGREu
AB3 DGREu

AB4 DGRR2
AB4 DGRAB3

Eu DGRAB2
R4 DGRAB3

R4

10 0.60 1.45e–02 8.96e–03 6.28e–05 2.15e–02 1.41e–04 1.83e–05
20 0.30 9.15e–04 2.20e–04 1.80e–05 3.43e–04 2.89e–07 2.34e–07
40 0.15 5.72e–05 5.94e–06 5.90e–07 1.71e–05 9.83e–10 1.18e–10
80 0.075 3.59e–06 1.69e–07 1.73e–08 9.41e–07 1.61e–11 3.41e–13

10 0.60
20 0.30 3.99 5.35 1.81 5.97 8.93 5.33
40 0.15 4.00 5.21 4.93 4.33 8.20 9.69
80 0.075 4.00 5.13 5.09 4.18 5.93 11.86

Note that in Table 5.2 and Table 5.3 the grid is rather coarse, because observing higher orders is otherwise not possible
in double precision. On the other hand, the observed orders are not yet in the “asymptotic regime” meaning that the step
size h may not be close enough to zero to actually reveal the actual order. This is why one can observe a slightly more
optimistic value of the measured order than what is theoretically predicted.

5.4. Example with multistep methods

Even though our convergence proof only covers one-step methods, we could not resist the temptation to experiment
with multistep methods. We have tested the DGR method on (5.1) with mixed methods, both one-step and multistep.
The test has been carried out as in the previous examples, and the results are displayed in Table 5.4 similar to Table 5.1.
The notation DGREu

ABj means that a solution has been computed with a j-step (order- j) Adams–Bashford method and then

corrected (according to the framework in Section 4.1) with Euler’s method. Also, DGRR2
ABj means that a solution has been

computed with a j-step (order- j) Adams–Bashford method and then corrected with a Runge–Kutta method of order two. In
all examples, each interval [(k − 1)h j,kh j], k = 1, . . . , N j , has been divided into n = 8 subintervals. Note that the correction
with Euler’s method improves the order of the method with one, however, the correction with a second-order RK method
does not improve the order of the method with two but rather one. We do not want to speculate why this is the case, but
leave this for future research. Although correcting with a higher-order method does not seem to be a very good idea, using
correction with Euler’s method for easy error control may be worth looking into.

The notation DGRABj
R4 means that a solution has been computed with a Runge–Kutta method of order four and then

this solution has been corrected with an Adams–Bashford method of order j. Note that in this case, it seems from the
experiment, that the total order of the method is order of Runge–Kutta + order of multistep. Note that a DGR method
based on a mix between one-step and multistep may have a connection to the general linear methods of Butcher [4,5]. We
postpone the theoretical analysis of the numerical results to future papers.
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6. Conclusion

We have proved convergence for the new DGR method based on one-step methods, and as the numerical results suggest,
this is a nice new addition to the deferred correction family. Since there previously did not exist any convergence proof for
this method, new theoretical tools had to be built. However, as the numerical examples with multistep methods suggest, the
convergence theory is not fully understood. We strongly believe that our analysis, based on smooth local error estimates,
should be extendable to multistep methods.

The most notably advantages of the method is that it is easy to build high-order schemes from low-order methods,
however, this feature is general for deferred correction methods. What makes this method really stand out is the advantage
that one may be able to at least have an easy error control for multistep methods, and also build methods from one-step
methods and multistep methods. The connection to Butcher’s general linear methods [4,5] is not obvious, but there is a
chance that what one eventually ends up with is a way of generating general linear methods. We postpone such analysis to
future papers.
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