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An efficient algorithm is presented for the computation of Fourier coefficients of piecewise-
polynomial densities on flat geometric objects in arbitrary dimension and codimension.
Applications range from standard nonuniform FFTs of scattered point data, through line
and surface potentials in two and three dimensions, to volumetric transforms in three
dimensions. Input densities are smoothed with a B-spline kernel, sampled on a uniform
grid, and transformed by a standard FFT, and the resulting coefficients are unsmoothed
by division. Any specified accuracy can be achieved, and numerical experiments demon-
strate the efficiency of the algorithm for a gallery of realistic examples.
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1. Introduction

Fourier coefficients
bf ðkÞ ¼ Z p

�p
f ðxÞeikx dx; jkj 6 K
constitute an indispensable tool of science. They are accurately approximated by the trapezoidal rule
ef ðkÞ ¼ 1
2N

1
2

f ð�pÞe�ikp þ
XN�1

�Nþ1

f ðpj=NÞeikpj=N þ 1
2

f ðpÞeikp

 !

and efficiently evaluated by the FFT [1] when f is a smooth periodic function and N P K . They are equally indispensable but
much harder to compute when f is a nonsmooth or nonperiodic function, or a singular distribution. Typically such distribu-
tions are defined by a density l on a m-dimensional submanifold C of Rn, according to the recipe
Z

Rn
uðxÞf ðxÞdx ¼

Z
C
uðcÞlðcÞdc
for all smooth compactly-supported ‘‘test functions” u on Rn. Their Fourier coefficients are defined by
bf ðkÞ ¼ Z
Rn

eikT xf ðxÞdx ¼
Z

C
lðcÞeikTc dc
for integer wave vectors k ¼ ðk1; k2; . . . ; knÞT . The computation of such coefficients is a well-known ingredient of semiconduc-
tor mask design [2]. They also occur in classical algorithms such as Ewald summation [3–7], which separates the inverse
. All rights reserved.
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Fig. 1. Polynomials on 760 triangles approximate a sinusoid on an annulus (a), yielding the 1282 Fourier coefficients with intensity and phase plotted in (b).
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ð�DÞ�1f ðxÞ ¼
Z

C
Gðx� yÞf ðyÞdy ð1Þ
of an unbounded differential operator into two components
GðxÞ ¼ GsðxÞ þ GLðxÞ : ð2Þ
a smooth global component
GsðxÞ ¼
1
jCj s�

X
0 – k2Zn

e�sjkj
2

jkj2
eikT x

 !
ð3Þ
efficiently represented in the Fourier basis, and a local singular component
GLðxÞ ¼ �
X
k2Zn

Z s

0
ð4ptÞn=2e�jx�2pkj2=4tdt ð4Þ
efficiently represented in real space, for any s > 0. We present an efficient algorithm for the computation of accurate Fourier
coefficients for a distribution f composed of polynomials l supported on a set C of arbitrary-dimensional simplices – points,
line segments, triangles, tetrahedra and so forth (Fig. 1). This geometric nonuniform fast Fourier transform (GNUFFT) delivers
performance comparable to specialized nonuniform FFT techniques [8–10] for point data sets, and essentially optimal per-
formance for general geometric data.

The GNUFFT proceeds in three steps. First, the singular distribution f is regularized into a smooth periodic function
fh ¼ qd

h H f by convolution with a smoothing kernel qd
h. The efficiency of the GNUFFT is ensured by choosing a piecewise-

polynomial smoothing kernel with minimal support OðhÞ and applying it efficiently to the piecewise-polynomial density
l on each simplex in C. Second, the Fourier coefficients
bfhðkÞ ¼ cqd

hðkÞbf ðkÞ

are accurately approximated by trapezoidal quadrature and efficiently evaluated by the standard FFT. Finally, the smoothing
is removed by division in Fourier space. The total error in these steps is analyzed and controlled by balancing the effects of
the various smoothing, quadrature and oversampling parameters.

2. Definitions

The GNUFFT operates on the ‘‘simplex-polynomial distributions” (SPDs) defined in Section 2.1, which approximate the
familiar point sources, line charges, and area charges of potential theory. The multidimensional Bernstein polynomials de-
fined in Section 2.2 provide a stable polynomial basis for SPDs on simplices of arbitrary dimension. The B-spline smoothing
kernel described in Section 2.3 permits exact quadrature on simplices. Table 1 summarizes the notation.

2.1. Simplex-polynomial distributions

The GNUFFT transforms the class of piecewise-polynomial densities on simplices defined below.

Definition 1. An m-dimensional simplex in Rn is the convex hull
D ¼ x ¼ vt ¼ t0v0 þ � � � þ tmvmjtj P 0; t0 þ � � � þ tm ¼ 1
� �

ð5Þ



Table 1
Definitions of symbols.

Symbol Definition

n Dimension of ambient space Rn

C Standard cubical cell ½�p;p�n in Rn

c Point of uniform grid with spacing h on C
m Simplex dimension m 6 n
D Simplex of dimension m, convex hull of mþ 1 vertices
jDj m-dimensional length, area or volume of simplex
v j Simplex vertex v j 2 Rn

v Matrix of vertices v ¼ ðv0 ;v1; . . . ; vmÞ 2 Rn�ðmþ1Þ

a Multiindex ða0; . . . ;amÞ of nonnegative integer indices
jaj Order jaj ¼ a0 þ � � � þ am of multiindex a
t Barycentric coordinates of simplex point x ¼ vt ¼ t0v0 þ � � � þ tmvm

B Set of barycentric coordinates
dt Lebesgue measure on simplex
d Degree of a polynomial
p Polynomial of n or m variables x or t

Bd
a

Bernstein polynomial of degree d and multiindex a
tq Quadrature point
wq Quadrature weight
Q Number of quadrature points and weights
k Fourier wavenumber with integer entries ðk1; . . . ; knÞ
jkj Norm jkj ¼maxðjk1j; . . . ; jknjÞ of wavenumber k
ekðxÞ Fourier basis function e�ikT x with wavenumber k on standard cell C
K Output Fourier wavenumber bound jkj 6 K
s Oversampling factor for FFT
q Piecewise-polynomial B-spline smoothing kernel qd

h

h Width parameter h ¼ p=Ks of B-spline smoothing kernel
d Degree of B-spline smoothing kernel
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of a collection of mþ 1 points v j in Rn, which form the mþ 1 columns of an n by mþ 1 matrix v. A point x ¼ vt 2 D has bary-
centric coordinates t ¼ ðt0; . . . ; tmÞ 2 B, where B ¼ ft 2 Rmþ1jtj P 0; t0 þ � � � þ tm ¼ 1g.

Definition 2. A function u : Rn ! R is a test function if u has continuous derivatives @au of all orders jajP 0, and vanishes
outside a bounded set. A sequence uk of test functions converges to 0 if every partial derivative @auk ! 0 uniformly on Rn as
k!1.

Definition 3. The space D0 of distributions consists of all continuous real-valued linear functionals f on the space D of test
functions.

Example 1. Every piecewise-continuous function f on Rn is a distribution which maps u to
f ðuÞ ¼
Z

Rn
f ðxÞuðxÞdx: ð6Þ
Its distributional derivative @af maps u to
@af ðuÞ ¼ ð�1Þjajf ð@uÞ ¼
Z

Rn
f ðxÞð�1Þjaj@auðxÞdx ð7Þ
for any multiindex a, generalizing the usual integration by parts formula.

Definition 4. A simplex-polynomial distribution (SPD) over Rn is a linear functional f 2 D0 defined by
f ðuÞ :¼
XN

j¼1

Z
Dj

pjðxÞuðxÞdx: ð8Þ
Here each Dj is a mj-dimensional simplex, each pj is a multivariate polynomial in the variable x 2 Dj, and dx is Lebesgue mea-
sure of dimension mj on each Dj. For simplicity an SPD may be written
f ¼
XN

j¼1

pjDj; ð9Þ
where each simplex is identified with the distribution which integrates test functions over the simplex. If D is a zero-dimen-
sional simplex consisting of a single point v0, and p is any polynomial, then f ¼ pD is defined by
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f ðuÞ ¼
Z

D
uðxÞpðxÞdx ¼ uðv0Þpðv0Þ: ð10Þ
Example 2. If every simplex Dj is zero-dimensional, so Dj ¼ fv jg for all j, then the SPD f is a distribution of point sources
which is often written as a function
f ðxÞ :¼
XN

j¼1

cjdðx� v jÞ; ð11Þ
where cj ¼ pjðv jÞ and d is the usual Dirac delta-function.

Example 3. If every simplex Dj is a one-dimensional interval Dj ¼ ½v j0;v j1� in ambient dimension n ¼ 1, then
f ðuÞ ¼
XN

j¼1

Z v j1

v j0

f ðxÞpjðxÞdx: ð12Þ
Thus the simplex-polynomial distribution f can be identified with a piecewise-polynomial function. Since every piecewise-
polynomial function with finite N may be written in this form, SPDs may be considered generalizations of piecewise-poly-
nomial functions.

Example 4. Consider a triangular region D1 in the plane R2 with vertices ð0;0Þ; ðL;0Þ; and ð0; LÞ, supporting an areal charge
density
p1ðx; yÞ ¼ CðL2 � x2ÞðL2 � y2Þ; ð13Þ
where C has units of ðchargeÞ=ðlengthÞ6. Let the boundary line segments D2 through D4 of the triangle support a uniform lin-
ear charge density p2 ¼ p3 ¼ p4 ¼ � C

16 L5, and a point charge of strength p5 ¼ CL6

6 rest at the origin D5 ¼ ð0;0Þ. Then the SPD
f ¼

P
pjDj maps any test function u to
f ðuÞ ¼
Z L

0

Z L�x

0
uðx; yÞCðL2 � x2ÞðL2 � y2Þdydx�

Z L

0
uð0; yÞCL5=16dy�

Z L

0
uðx;0ÞCL5=16dx

�
ffiffiffi
2
p Z L

0
uðs; L� sÞCL5=16dsþuð0;0ÞCL6=6: ð14Þ
Example 5. The definition of the SPD distinguishes between degenerate and lower-dimensional simplices. A triangle with
vertices at (0,0), ð1;0Þ, and ð0; �Þ supporting the constant density 1 is different from the line segment connecting (0,0)
and (1,0), supporting the constant density 1. The former is a two-dimensional simplex of nearly zero total mass, while
the latter is a one-dimensional object of total mass 1.

Definition 5. The Fourier coefficients of an SPD
f ðxÞ :¼
XN

j¼1

pjðxÞDjðxÞ; ð15Þ
with simplices Dj inside the standard cube C ¼ ½�p;p�n are defined for k 2 Zn by
bf ðkÞ :¼
XN

j¼1

Z
Dj

pjðxÞekðxÞdx; ð16Þ
where ekðxÞ is the kth Fourier mode
ekðxÞ :¼ e�ikT x: ð17Þ
2.2. Multidimensional Bernstein polynomials

The polynomials pj in an SPD can be efficiently represented in barycentric coordinates t on each simplex Dj by the stan-
dard multidimensional Bernstein basis [11] described below.

Definition 6. The Bernstein polynomials Bd
j of a single variable t are defined by
Bd
j ðtÞ :¼

d
j

� �
ð1� tÞd�jtj ¼

d
j

� �
td�j

0 tj
1; 0 6 j 6 d ð18Þ
in barycentric coordinates t ¼ ðt0; t1Þ ¼ ð1� t; tÞ on the standard interval D :¼ ½0;1�.
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Bernstein polynomials form a basis Bd for the space of polynomials of degree d, in which any polynomial p is represented
by a vector a of coefficients: pðtÞ ¼ aT BdðtÞ ¼

P
aaaBd

aðtÞ. They are convenient for integration because
Z 1

0
Bd

j ðtÞdt ¼ 1
dþ 1

: ð19Þ
Definition 7. For a multiindex a ¼ ða0; . . . ;amÞ of order jaj :¼ a0 þ � � � þ am ¼ d, the m-dimensional Bernstein polynomial Bd
a

is defined by
Bd
aðtÞ :¼

d

a

� �
ta; ð20Þ� �
where ta :¼ tj0
0 � � � tjm

m , and d
a is the usual multinomial coefficient [12]� �
d
a

:¼ d!

a0! � � �am!
: ð21Þ
Due to the leading 0 index, a Bernstein polynomial on an m-dimensional simplex has mþ 1 indices and depends on mþ 1
barycentric coordinates.

Example 6. The one-dimensional Bernstein polynomials Bd
a are multidimensional Bernstein polynomials with m ¼ 1 and

a ¼ ðd� j; jÞ, so
Bd
j ðtÞ ¼ Bd

ðd�j;jÞð1� t; tÞ: ð22Þ
Lemma 1. For each d P 0, the integral
Z
B

Bd
a dt ð23Þ
is independent of a.

Proof. It suffices to show that the integral over B of Bd
a is equal to the integral over B of Bd

b, where b precedes a in lexico-
graphic order. Let a be any multiindex other than ðd;0; . . . ;0Þ. Then for some k > 0, a multiindex component ak – 0. Then
Z

B
Bd

aðtÞdt ¼
d

a

� �Z
B

ta0
0 � � � t

ak
k � � � t

am
m dt ð24Þ

¼
d

a

� �
jBj
Z 1

0
� � �
Z t0þtk

0
ta0

0 � � � t
ak
k � � � t

am
m dt1 � � �dtk�1dtkþ1 � � �dtmdtk ð25Þ
since the factors dtj in the differential form may be permuted freely as long as the limits of integration are adjusted accord-
ingly. Integration by parts with respect to tk moves an exponent from the tk factor to the t0 ¼ 1� t1 � � � � � tm factor, and yields
Z

B
Bd

aðtÞdt ¼
Z

B

d

a

� �
ak

a0 þ 1
ta0þ1

0 � � � tak�1
k � � � tam

m dt ¼
Z

B
Bd

a�ekþe0
ðtÞdt; ð26Þ
where
ek :¼ ð0; . . . ;0
zfflfflfflffl}|fflfflfflffl{k zeros

;1; 0; . . . ; 0
zfflfflfflffl}|fflfflfflffl{m�k zeros

Þ 2 Zmþ1: ð27Þ
The boundary terms vanish because t0 ¼ 0 at one boundary, tk ¼ 0 at the other, and both factors appear with positive expo-

nent in the boundary term. Hence all dþm
m

� �
of the polynomials Bd

a have the same integral over the standard simplex B. h

Corollary 1. Let B be the standard m-dimensional simplex defined by tk P 0;
Pm

k¼0tk ¼ 1. Then
Z
B

Bd
aðtÞdt ¼ 1

m!
mþ d

m

� � ;
ð28Þ
where dt is m-dimensional Lebesgue measure dt ¼ dt1 � � �dtm.

Proof. Since Bernstein polynomials interpolate constants exactly,
X
jaj¼d

Bd
a ¼ 1: ð29Þ
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Thus integration gives
X
jaj¼d

Z
B

Bd
aðtÞdt ¼

Z
B

dt ¼ 1
m!

: ð30Þ�

All mþ d

m

�
terms of the sum are identical by Lemma 1, with common valueZ
B
Bd

aðtÞdt ¼ 1

m!
dþm

m

� � : �
ð31Þ
Corollary 2. A polynomial pðxÞ ¼ pðvtÞ ¼ aT BdðtÞ on a m-dimensional simplex D with vertices v has integral
Z
D

pðxÞdx ¼ 1

m!
dþm

m

� � X
a

aa: ð32Þ
2.2.1. The de Casteljau algorithm
The de Casteljau algorithm (Algorithm 1) evaluates polynomials in the Bernstein basis by the stable efficient process of

iterated linear interpolation.

Algorithm 1. One-dimensional de Casteljau

INPUT: A one-dimensional polynomial
pðtÞ ¼ a0Bd
0ðtÞ þ a1Bd

1ðtÞ þ � � � þ adBd
dðtÞ ¼: aT BdðtÞ ð33Þ
in the Bernstein basis, and an evaluation point t ¼ ðt0; t1 ¼ 1� t0Þ in barycentric coordinates on ½0;1�.
for j in 0; . . . ; d
a0

d�j;j :¼ aj

end for
for j in 0; . . . ; d� 1

for i in 0; . . . ; d� j

ajþ1
d�j�i;i :¼ t0aj

d�ðj�1Þ�i;i þ t1aj
d�ðj�1Þ�ðiþ1Þ;iþ1

end for
end for
OUTPUT: ad
0;0 ¼ pðtÞ.

Algorithm 1 proceeds from left to right through the columns of the following difference table:
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It can be arranged to overwrite a single array in place (proceeding down each column), and generalizes (Algorithm 2) to eval-
uate n-dimensional Bernstein polynomials in OðdnÞ storage and Oðd2nÞ time.

2.2.2. Subdivision
The intermediate results aj

a of the de Casteljau algorithm for pðtÞ are also the Bernstein coefficients of p, in the Bernstein
bases over the subsimplices generated by subdividing the original simplex at the common vertex t. Every aj

a for which at
least one component of a is zero becomes a coefficient on one or more of the subdivided simplices.

Algorithm 2. Multidimensional de Casteljau

INPUT: The coefficients of a degree-d polynomial
pðtÞ ¼
X
jaj¼d

aaBd
aðtÞ ¼ aT BdðtÞ ð34Þ

m-dimensional Bernstein basis on a m-dimensional simplex D with vertices v ; . . . ;v 2 Rn, and the barycentric
in the 0 m

coordinates t of a point
x ¼ vt ¼
Xm

j¼0

tjv j 2 D: ð35Þ
for a such that jaj ¼ d
a0
a :¼ aa

end for
for j in 1; . . . ; d

for a such that jaj ¼ d� jþ 1

aj
a ¼

Pm
k¼0tkaj�1

aþek

end for
end for
OUTPUT: ad
0 ¼ pðtÞ
2.3. B-spline kernels

Approximate Gaussian smoothing kernels built from piecewise polynomials form a convenient basis for
B-spline curves and surfaces [13], and can be defined by repeated autoconvolution of the characteristic function of an
interval.

Definition 8. One-dimensional degree-d B-spline kernels qd
h with width h are defined by
q0
hðxÞ :¼ 1

h
v �h

2;
h
2½ �ðxÞ ¼

0 if jxjP h
2 ;

1
h if jxj < h

2 ;

(
ð36Þ

qd
hðxÞ :¼ qd�1

h H q0
hðxÞ; ð37Þ
where H denotes the usual convolution f H gðxÞ ¼
R1
�1 f ðx� yÞgðyÞdy.

By the convolution theorem, the Fourier coefficients
cq0
h ðkÞ ¼

Z p

�p
q0

hðxÞe�ikx dx ¼ 1
h

Z h=2

�h=2
e�ikx dx ¼ sincðkh=2Þ; ð38Þ

cqd
hðkÞ ¼

cq0
h

� 	dþ1
¼ ðsincðkh=2ÞÞdþ1 ð39Þ
are powers of sinc functions sincðxÞ :¼ sinðxÞ=x. Convolution of degree d1 and d2 piecewise polynomials produces a piecewise
polynomial of degree d1 þ d2. Since each integration also adds one order of global differentiability, qd

h is a degree-d piece-
wise-polynomial function with d� 1 continuous derivatives. Products of one-dimensional kernels produce multidimen-
sional kernels with similar properties.
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Definition 9. Multidimensional B-spline kernels of degree d and width h are given by
qd
hðxÞ :¼ qd

hðx1Þ � � �qd
hðxnÞ ð40Þ
for x ¼ ðx1; . . . ; xnÞ 2 Rn.
2.3.1. Recurrence relation and derivatives
The convolution of (37) may be evaluated by repeated linear interpolation, leading to the recurrence relation
qd
hðxÞ ¼

qd�1
h xþ h

2


 �
x� dþ1

2 h

 �

hd
þ

qd�1
h x� h

2


 �
dþ1

2 h� x

 �

hd
: ð41Þ
Kernel derivatives thus satisfy the recurrence
dqd
h

dx
ðxÞ ¼ 1

h
qd�1

h xþ h
2

� �
� 1

h
qd�1

h x� h
2

� �
: ð42Þ
3. The GNUFFT

Let
f ðuÞ :¼
XN

j¼1

Z
Dj

pjðtÞuðxÞdx ð43Þ
be an SPD with simplices Dj ¼ fx ¼ v jtjt 2 Bg contained in the standard cube C. The Fourier coefficients of f are
(Definition 5)
bf ðkÞ ¼ Z
C

f ðxÞekðxÞdx ¼
XN

j¼1

jDjj
Z

B
pjðtÞekðv jtÞdt; k 2 Zn; ð44Þ
where v j is the n by mþ 1 vertex matrix of Dj.

3.1. Overview

The GNUFFT approximates bf ðkÞ for k 2 Zn with jkj :¼maxðjk1j; . . . ; jknjÞ 6 K by the Fourier coefficients of the smoothed
function qd

h H f , then removes the smoothing in Fourier space. Convolution in real space is equivalent to multiplication in
Fourier space, so
bf ðkÞ ¼ 1cqd
hðkÞ

Z
C

ekðxÞ
Z

Rn
qd

hðx� yÞf ðyÞdydx ð45Þ

¼ 1cqd
hðkÞ

Z
C

ekðxÞ
XN

j¼1

Z
Dj

qd
hðx� tÞpjðtÞdt dx: ð46Þ
The inner integral over each simplex Dj is exactly evaluated by a Q-point quadrature rule with points tjq and weights wjq,
yielding
bf ðkÞ ¼ 1cqd
hðkÞ

Z
C

ekðxÞ
XN

j¼1

XQ

q¼1

wjqqd
hðx� v jtjqÞpjðtjqÞdx: ð47Þ
The outer integral over x is then approximated by ð2KsÞn-point oversampled trapezoidal quadrature with uniform points
c 2 C and spacing h ¼ p=Ks, yielding a finite sum with ð2KsÞnNQ terms:
bf ðkÞ ¼ 1cqd
hðkÞ

hn
X

c

ekðcÞ
XN

j¼1

XQ

q¼1

wjqqd
hðc � v jtjqÞpjðtjqÞ þ �TðkÞ: ð48Þ
Once the localized sum over j is evaluated at each c, the sum over c can be evaluated efficiently by a standard FFT for wave-
numbers with jkj 6 Ks. The process is summarized as Algorithm 3.
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Algorithm 3. Geometric nonuniform fast Fourier transform

INPUT: A smoothing degree d, Fourier mode bound K P 1, real oversampling factor s, and an N-simplex SPD
Fig. 2.
linearly
f ðuÞ :¼
XN

j¼1

Z
Dj

pjðtÞuðtÞdt
 1000

 10000

 100000

 1e+06

 0.1  1

# 
of

 s
im

pl
ic

es

Centroid-vertex distance

Simplices after subdivison
f(x)

a b

(a) The first 11 steps of subdivision by Algorithm 4. (b) The number of subtriangles produced by applying Algorithm 4 to a single large triangle scale
with the triangle area.
(0) Precomputation: Compute lookup tables and simplex quadrature formulas.
(1) Compute the smoothed function f H qd

h on a regular grid:

(1.1) Subdivide each simplex D carrying polynomial p into subsimplices D# carrying p# subordinate to the over-

sampled grid of ð2KsÞn cells.
(1.2) Build a quadrature scheme for each subsimplex D# exact for polynomials of degree degðpÞ þ d.
(1.3) For each subsimplex D#, evaluate the contribution to f H qd

h at each uniform grid point due to integration
over D#.
(2) Compute the FFT dqd
h H f for jkj 6 Ks by an n-variate FFT of size ð2KsÞn

(3) Divide dqd
h H f ¼ cqd

h
bf by cqd

h , yielding bf .
OUTPUT: bf ðkÞ for jkj 6 K .
For zero-dimensional point sources, Q ¼ 1 and the GNUFFT becomes a NUFFT based on the B-spline kernel [10]. Convo-
lution trivially shifts and scales the kernel. For higher-dimensional simplices, nontrivial quadratures are required. Algorithm
4 below efficiently subdivides each simplex into subsimplices, each contained within a single grid cell where the kernel is a
polynomial. Quadrature with degree of exactness degðpjÞ þ d over each subsimplex of Dj then exactly integrates the product
of kernel and density. Here the choice of a piecewise-polynomial B-spline kernel is convenient, rather than the usual Gauss-
ian smoothing kernels employed in [14].

In the final step, the GNUFFT divides dqd
h H f by the transform cqd

h of the smoothing kernel, which amplifies the errors in
coefficients with high jkj. Oversampling the FFT by a factor s > 1 controls this amplification.

Subdivision takes OðNð2KsÞnÞ time. Quadrature takes Oðð2KsÞnðdþ degðpÞÞmÞ time, where m is the dimension of a typical
simplex in the SPD. The FFT itself takes Oðnð2KsÞn logð2KsÞÞ. Deconvolution takes Oðð2KsÞnÞ time. For large problem sizes the
running time is dominated by quadrature, yielding an Oðð2KsÞnðdþ degðpÞÞmÞ algorithm.

3.2. Subdivision quadrature

The GNUFFT integrates over each simplex Dj by (1) replacing the SPD f with an equivalent SPD f #, supported on simplices
D# each contained in a single grid cell, (2) generating a quadrature scheme on each D# which exactly integrates polynomials
of degree degðpÞ þ d, and (3) summing the contributions qd

h H ðp#D#Þ.
s
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3.2.1. Subdivision to a regular grid
The SPD is smoothed by convolution with a B-spline kernel qd

h built of polynomials on cubes of width h. The smoothed
function qd

h H f is sampled at uniform grid points c 2 C. If the simplices D of the SPD are subdivided into subsimplices D#,
each of which lies entirely within a single uniform grid cell, then quadrature of polynomial precision dþ degðpÞ on each
D# will exactly evaluate the convolution qd

h H ðp#D#Þ. Algorithm 4 carries out this subdivision. Fig. 2(a) illustrates its oper-
ation on a small triangle that cuts a few grid cells.

When Algorithm 4 terminates, every simplex has been successfully subdivided. Each subdivision step creates simplices
which have an L2-norm edge length that is strictly smaller than that of the parent simplex. Thus eventual termination is
guaranteed. Ideally, a subdivision algorithm should produce as few simplices as possible. However, it is likely that finding
a minimal subdivision is NP-hard, implying that deterministic fast algorithms may not exist. The heuristic Algorithm 4 works
extremely well in practice. Its efficiency was tested on equilateral plane triangles D of increasing size, with cell size h ¼ 1

512.
Fig. 2(b) exhibits the total number of subsimplices D# produced by Algorithm 4 vs. the centroid-vertex distance of D, to-
gether with a Levenberg–Marquardt fit with exponent 1.9.

Algorithm 4. Subdivision to grid

INPUT: A list L ¼ fðD; pÞg of simplices D carrying polynomials p.

(1) Create a new list L# ¼ fðD; p; bÞg, where b is a binary variable that is either ‘‘complete” or ‘‘incomplete” for each
simplex.

(2) Mark all simplices in L# incomplete.
(3) While L# contains at least one incomplete simplex,
(3.1) Let D be an incomplete simplex in L# carrying polynomial p

(3.2) Let e be the longest edge of D that crosses a grid plane. If no such edge exists, mark D complete, and goto 3.
(3.3) Let j be the index of the coordinate along which e crosses the largest number of grid planes.
(3.4) Subdivide ðD; pÞ at the point where e crosses the grid plane of coordinate j that cuts e most nearly into equal

pieces. Remove ðD; pÞ from L# and return both new simplices to L#, marked incomplete
(4) End while.

OUTPUT: A list L# of simplices D# carrying polynomials p#.
3.2.2. Quadrature on subsimplices
We efficiently generate a quadrature of degree D ¼ degðp#Þ þ d, for each subsimplex D#. Each integrand qd

hðx� v#tÞp#ðtÞ
is a polynomial on D#, so many exact quadrature options are available. For example, the integrand can be evaluated at equi-
distant points, transformed to the Bernstein basis, and integrated exactly by Corollary 1. However, this exact approach is nei-
ther optimally efficient nor numerically stable.

For one-dimensional quadrature, optimal Gaussian quadrature schemes can be computed efficiently. While such optimal
schemes exist in higher dimensions, their computation is time-consuming. Instead, we iterate one-dimensional Gaussian
schemes with the appropriate weight functions [15]. Iterated 1-D quadrature is exact, general and extremely stable [16],
but suboptimally efficient. Performance can sometimes be improved by specialized quadrature schemes. For two-dimen-
sional triangles, the symmetrical quadrature rules of [17] give speedups ranging from 12% for degree-5 smoothing up to
46% for degree-13 smoothing.

The resulting points t#
q and weights w#

q on D# depend only on the simplex dimension m and the polynomial degree
degðpjÞ þ d, and are efficiently precomputed and stored. Thus subdivision quadrature yields a GNUFFT of the form
bf ðkÞ ¼ 1cqd
hðkÞ

hn
X

c

ekðcÞ
XN

j¼1

X
D#�Dj

XQ

q¼1

w#
q qd

hðc � v#
j t#

q Þpjðt#
q Þ þ �TðkÞ: ð49Þ
3.3. Speedup

In practice, integration over subsimplices consumes the bulk of the computing time. It can be factorized into geometric
precomputation and runtime evaluation, to transform multiple distributions with the same geometry, by merging quadra-
tures over subdivided simplices into quadratures over the original simplices. The polynomial densities
pjðtÞ ¼ aT
j Bdeg pj ðtÞ ð50Þ
are independent of the subdivision, so (49) factorizes as
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bf ðkÞ ¼ 1cqd
hðkÞ

hn
X

c

ekðcÞ
XN

j¼1

aT
j

X
D#�Dj

XQ

q¼1

w#
q qd

hðc � v#
j t#

q ÞB
deg pj ðt#

q Þ þ �TðkÞ: ð51Þ
The inner sums over D# and q depend only upon the geometry of the SPD and the degrees of the pj. The sum over c has ð2KsÞn

terms. They may thus be precomputed and stored, yielding a quadrature formula on Dj suitable for efficient smoothing of
multiple distributions on a common geometry.

4. Error analysis

The GNUFFT approximates the Fourier coefficients by the trapezoidal rule, incurring an aliasing error. This error is ampli-
fied in the deconvolution step, when the GNUFFT divides the transformed function by the small wings of cqd

h . Each error is
bounded and controlled by the oversampling factor s and the smoothing kernel degree d.

4.1. Aliasing error

The exact Fourier transform bfs of the smoothed SPD fs ¼ f H qd
h is approximated by the oversampled trapezoidal sums
efsðkÞ ¼ hn

X
c

fsðcÞe�ikT c ð52Þ

¼ ð2KsÞ�n
X

c

X
m2Zn

bfsðmÞeimT c�ikT c ð53Þ

¼
X

m

bfsðkþ 2KsmÞ ð54Þ

¼ bfsðkÞ þ �aðkÞ; ð55Þ
where we have used the Fourier series inversion formula
fsðxÞ ¼ ð2pÞ�n
X

k

bfsðkÞeikT x
and the discrete orthogonality relation
ð2KsÞ�n
X

c

eikT c ¼
1 if k � 0 ðmod2KsÞ
0 otherwise

�

of the Fourier basis functions. The aliasing error �aðkÞ is bounded by
j�aðkÞj ¼
X

0–m2Zn

cqd
hðkþ 2KsmÞbf ðkþ 2KsmÞ


 ð56Þ

6 F
X

0–m2Zn

cqd
hðkþ 2KsmÞ

  ð57Þ

6 F
X

0–m2Zn

Yn

j¼1

sinc ðkj þ 2KsmjÞh=2

 � dþ1 ð58Þ

¼ F
X

0–m2Zn

Yn

j¼1

sinc pmj þ
pkj

2Ks

� � dþ1

; ð59Þ
where m ¼ ðm1; . . . ;mnÞ 2 Zn and
jbf ðkÞj 6 F :¼
XN

j¼1

Z
Dj

jpjðxÞjdx: ð60Þ
Since
jsincðplþ hÞj 6 sin p=2s
pj jlj � 1=2s j for l 2 Z and jhj < p=2s < p=2
and the output wavenumber k has components jkjj 6 K ,
j�aðkÞj 6 F
X
m–0

Yn

j¼1

sinp=2s
pjjmjj � 1=2sj

� �dþ1

¼ F sincðp=2sÞð Þnðdþ1Þgdþ1ðsÞ;
where



Table 2
Error amplification factor r for deconvolution.

s n ¼ 1 n ¼ 2 n ¼ 3

d r d r d r

2 3 6:09� 100 3 3:71� 101 3 2:26� 102

5 1:50� 101 5 2:26� 102 5 3:39� 103

7 3:71� 101 7 1:37� 103 7 5:09� 104

9 9:15� 101 9 8:36� 103 9 7:65� 105

11 2:26� 102 11 5:09� 104 11 1:15� 107

3 3 2:14� 100 3 4:57� 100 3 9:77� 100

5 3:13� 100 5 9:77� 100 5 3:05� 101

7 4:57� 100 7 2:09� 101 7 9:55� 101

9 6:68� 100 9 4:47� 101 9 2:98� 102

11 9:77� 100 11 9:55� 101 11 9:33� 102

Table 3
CPU tim

s
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4
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gdðsÞ :¼
X
m–0

Yn

j¼1

j2sjmjj � 1j�d ¼ ð1þ SÞn � 1:
The one-dimensional reciprocal power sum
S :¼ 2
X1
m¼1

1

ð2ms� 1Þd
6

2

ð2s� 1Þd
X1
m¼1

m�d
6

2:1

ð2s� 1Þd
6 1
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Fig. 3. Times for GNUFFT, direct summation, NFFT, and the Dutt–Rokhlin algorithm.

e for the GNUFFT of 16384 points in one dimension, with various kernel degrees d and oversampling factors s.

FFT size d sc sf st er Error bound

65536 3 20.6 10.8 57.7 3:65� 10�3 1:09� 101

98304 3 21.5 18.2 75.1 5:11� 10�4 1:41� 100

131072 3 22.4 22.5 89.9 1:40� 10�4 3:68� 10�1

65536 7 35.8 9.0 76.5 3:19� 10�5 1:35� 10�1

98304 7 38.4 16.9 96.5 5:69� 10�7 2:26� 10�3

131072 7 38.0 20.9 109.4 3:97� 10�8 1:53� 10�4

65536 11 51.7 9.0 99.0 3:23� 10�7 1:66� 10�3

98304 11 53.6 16.5 116.8 7:48� 10�10 3:62� 10�6

131072 11 52.1 20.9 128.9 2:55� 10�11 6:38� 10�8

65536 15 64.4 9.0 116.3 3:48� 10�9 2:05� 10�5

98304 15 68.8 16.6 138.0 6:80� 10�11 5:79� 10�9

131072 15 66.7 21.0 149.7 2:15� 10�11 2:66� 10�11
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for oversampling factors s P 1:1, smoothing kernel degrees d P 4, and dimensions 1 6 n 6 3. Thus by the finite geometric
series formula, the aliasing error bound
 1e-13

 1e-12

 1e-11

 1e-10

 1e-09

 1e-08

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0  50  100  150  200  250

e r

Time (ms)

s=2
s=3
s=4
s=5
s=6

 1e-14

 1e-12

 1e-10

 1e-08

 1e-06

 0.0001

 0.01

 0  100  200  300  400  500  600

e r

Time (ms)

s=2
s=3
s=4

 1e-14

 1e-12

 1e-10

 1e-08

 1e-06

 0.0001

 0.01

 0  2000  4000  6000  8000  10000  12000

e r

Time (ms)

s=2
s=3
s=4

Fig. 4. N ¼ 4096 points with wavenumbers jkj 6 K :¼ 4096.
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j�aðkÞj 6 F
2nþ1sincðp=2sÞnðdþ1Þ

ð2s� 1Þdþ1
can be made as small as desired by increasing the oversampling factor s and the degree d of the smoothing kernel.

4.2. Error amplification

Deconvolution divides each mode bfsðkÞ ¼ dqd
h H f ðkÞ by cqd

hðkÞ. Since sincðxÞ is a decreasing function on the interval
0 < x < p=2,
jcqd
hðkÞj ¼

Yn

j¼1

jsincðkjh=2Þdþ1jP jsincðp=2sÞjnðdþ1Þ for jkjj 6 K: ð61Þ
Thus deconvolution amplifies aliasing errors by a factor no larger than r ¼ sincðp=2sÞ�nðdþ1Þ. Since this factor already appears
in the aliasing error bound, the error �TðkÞ in the final result bf ðkÞ is controlled by
j�TðkÞj ¼
�aðkÞ

sincðp=2sÞnðdþ1Þ


 6 F

2nþ1

ð2s� 1Þdþ1 ;
which can be made arbitrarily small by increasing the oversampling factor and the smoothing degree. Other errors such as
roundoff are amplified by at worst the factors r shown in Table 2.

5. Numerical results

A version of the GNUFFT algorithm has been implemented in the C programming language, and its efficiency and accuracy
have been extensively studied in a gallery of complex test cases. Test cases have been designed with approximately equal
input and output sizes to measure the algorithm speed realistically.

The tables below report various timing measures:
sc = CPU time required for convolution.
sf = CPU time for a standard oversampled FFT of size ð2KsÞn.
st = Total CPU time.
All timings correspond to wall-clock time on a 2.16 GHz Intel Core 2 Duo iBook with 2.5 GB RAM, under Mac OS X 10.4.11,
with the open source compiler gcc 4.0.1 and optimization flag -O3.

We report Fourier coefficient errors
ea ¼ kef � bf k2 ¼
X
jkj6K

jef ðkÞ � bf ðkÞj2 !1=2

; er ¼
ea

kbf k2

ð62Þ
are approximate absolute and relative errors that are not sensitive to near-zero components of bf . For point and line segment
distributions in n ¼ 1 ambient dimension, bf is evaluated directly to measure errors. In more complicated cases with m P 1 or
rformance for the GNUFFT applied to a sawtooth function in one dimension.

FFT size d sc sf st er Error bound

2048 3 5.1 0.3 44.8 5:71� 10�3 3:14� 102

4096 3 7.9 0.7 40.7 2:64� 10�5 3:87� 100

6144 3 12.9 1.3 63.0 1:88� 10�6 5:02� 10�1

8192 3 15.9 1.3 81.7 3:12� 10�7 1:31� 10�1

2048 7 10.5 0.3 27.0 4:15� 10�3 3:14� 102

4096 7 21.2 0.5 54.2 2:55� 10�7 4:78� 10�2

6144 7 34.43 0.9 84.8 2:60� 10�9 8:03� 10�4

8192 7 41.9 1.1 109.2 1:21� 10�10 5:44� 10�5

2048 11 19.9 0.3 37.6 3:40� 10�3 3:14� 102

4096 11 39.6 0.5 74.1 2:63� 10�9 5:90� 10�4

6144 11 65.8 0.9 118.0 4:29� 10�12 1:28� 10�6

8192 11 80.1 1.1 149.5 3:20� 10�13 2:27� 10�8

2048 15 32.3 0.3 53.1 2:95� 10�3 3:14� 102

4096 15 64.7 0.5 102.3 3:38� 10�11 7:29� 10�6

6144 15 107.9 0.9 163.2 1:47� 10�12 2:06� 10�9

8192 15 130.9 1.1 203.7 4:65� 10�13 9:44� 10�12
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n P 2, results are compared against another GNUFFT with smoothing degree d ¼ 15 and oversampling factor s ¼ 4:4, suffi-
cient for full machine accuracy.

Times are reported as multiples of one FFT that returns the same number of Fourier coefficients as the GNUFFT in ques-
tion. On our test iMac, a 322 FFT takes 1.1 ms, a 642 FFT 2.1 ms, and a 1282 FFT 5.4 ms. In the n ¼ 3 case on the same machine,
a 163 transform takes 0.55 ms, while a 323 transform takes 3.9 ms.

5.1. Simplex dimension m ¼ 0

First consider SPDs
Table 5
Perform
f ðxÞ ¼
XN

i¼1

pjdðx� xjÞ ð63Þ
ance of the GNUFFT on 1D data in 2D.
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supported on zero-dimensional points xj which are uniformly distributed on ½0;2�n. The constant polynomials pj are uni-
formly distributed on ½�1;1�.

5.1.1. Space dimension n ¼ 1
Input and output sizes are approximately balanced by computing all modes of wavenumber jkj 6 K :¼ N=2 for N input

points on ½0;2�. Fig. 3 compares the performance of the GNUFFT to our implementations of direct summation and the
Dutt–Rokhlin algorithm with error tolerance � ¼ 10�11, and to the publicly available NFFT library [10]. The four cases of
GNUFFT plotted used oversampling s ¼ 3 and smoothing degree d ¼ 3ðer � 5� 10�4Þ; d ¼ 5ðer � 2� 10�5Þ; d ¼
11ðer � 7� 10�10Þ, and d ¼ 17ðer � 4� 10�12). The GNUFFT runs at essentially the same speed as Dutt–Rokhlin despite its
increased generality. NFFT is slightly faster; we attribute this to the library using a one-dimensional implementation for
the n ¼ 1 transform. The detailed results of Table 3 confirm the efficiency and accuracy of the algorithm in this setting.
Fig. 4 shows the tradeoffs between time and accuracy over a wide range of oversampling factors s and for kernel degrees
d ranging over 3;5;7; . . . ;25, for a test case with 4096 input points and output modes.

5.1.2. Space dimensions n ¼ 2 and n ¼ 3
To equalize input and output sizes, we compute wavenumbers jkj 6 K :¼ N1=n with N points in ½0;2�n for test cases in n > 1

dimensions. Tables 10 and 11 list results for 16,384 and 32,768 points with a variety of parameters. Fig. 4(b) and (c) shows
tradeoffs between accuracy and time for 4096 points. Oversampling is more costly in higher dimensions, so oversampling
factors higher than 4 were dropped.
Table 6
Performance of the GNUFFT on 1D data in three dimensions.
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5.2. Simplex dimension m ¼ 1

Next we consider the Fourier transform of SPDs supported on line segments, reminiscent of boundary integrals in two
dimensions and curve singularities in three dimensions. The N � N discrete Fourier transform has 2N2 real degrees of free-
dom for input and output. A line segment supporting a complex linear distribution in n dimensions has 4þ 2n degrees of
freedom. We balance input and output size by requiring the output to have the same number of degrees of freedom as
the input.

5.2.1. Space dimension n ¼ 1
A SPD in R supported by one-dimensional simplices is a piecewise polynomial function whose transform can be computed

exactly. For example, the periodic sawtooth
Table 7
Performance of the GNUFFT on 2D data in two dimensions.
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f ðxÞ ¼ �1þ x ð64Þ
has the exact transform
bf ðkÞ ¼ Z 2

0
f ðxÞe�pixkdx ¼ 2i

pk
: ð65Þ
GNUFFT errors for this input function are reported in Table 4.

5.2.2. Line segments in higher dimensions
A convenient set of test cases is provided by the sequence of piecewise linear curves whose limit is the Sierpinski curve

[18], with a random linear complex polynomial on each segment (see Table 5).
ance of the GNUFFT on 2D data in three dimensions.
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Since GNUFFTs of output size ð2KÞ2 ¼ 322;642, and 1282 have 211;213, and 215 degrees of freedom respectively and a line
segment in two dimensions supporting a complex linear polynomial has eight real degrees of freedom, input and output
sizes are balanced with curves containing 28 � 1;210 � 1, and 212 � 1 segments. The results are plotted in Table 5. The upper
series of lines on each graph show precomputation time vs. error; the lower series of lines show computation time vs. error.
Each line corresponds to a different smoothing kernel degree d ranging over 5;7; . . . ;13, while the oversampling parameter s
increases from 1.1 to 4.4 along each line. In these cases precomputation typically takes 100-1000 times as long as an
equivalent uniform FFT, while computation typically takes 10–100 FFTs. After precomputation, each extra digit of accuracy
costs about a 15% increase in computation time.

In three dimensions, 163 and 323 GNUFFTs yield 213 and 216 degrees of freedom respectively. Thus convenient test cases
are provided by the same curves, displaced into three dimensions so that the curve climbs at a constant rate. Results are
shown in Table 6. In three dimensions oversampling is much more expensive; the cost after precomputation is typically
Table 9
Performance of the GNUFFT on 3D data in three dimensions.
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hundreds of FFTs. Additional accuracy is similarly more expensive; each additional digit in the balanced 323 case, for exam-
ple, costs a 27% increase in time.

5.3. Distributions on triangles

A triangle supporting a complex linear polynomial in n dimensions has 6þ 3n degrees of freedom. For a grid size h a tri-
angle subdivides to Oðh�2Þ subtriangles, making precomputation considerably more expensive than it is for line segments.
Thus n� n Fourier coefficients balance the complexity of n2=6 triangles supporting linear polynomials.

5.3.1. Triangles in two dimensions
A two-dimensional test case with two-dimensional triangles, is provided by a finite Sierpinski Gasket [19]. Results with

35;36, and 37 triangles are shown in Table 7. Each transform takes 10–100 FFTs after precomputation. Precomputation cost
up to 10,000 FFTs in these trials, because quadrature schemes on triangles are expensive compared to line segments. In the
36 triangles case with a 642 transform, each additional digit of accuracy requires about a 21% increase in time.

5.3.2. Triangles in three dimensions
The Stanford bunny [20] is a readily-available triangulated surface with 948 or 3851 triangles. Results for 163 and 323

Fourier transforms are plotted in Table 8. Each transform requires time equivalent to a few hundred of these small FFTs, after
precomputation costing tens of thousands to millions of FFTs. Each additional digit of accuracy costs about 21% increase in
time for the 3851-triangle 323 transform.

5.4. Distributions on tetrahedra

The three-dimensional analog [19] of the Sierpinski gasket begins with an equilateral tetrahedron and recursively re-
places each parent tetrahedron with four tetrahedra, each of which is the hull of one vertex of the parent and the midpoints
Table 10
CPU time for the GNUFFT of 16384 points in two dimensions.

s FFT size d sc sf st er Error bound

2 5122 3 49.3 38.6 245.5 5:13� 10�3 4:42� 101

3 7682 3 58.9 126.6 529.9 7:20� 10�4 5:73� 100

4 10242 3 67.2 170.8 843.6 1:95� 10�4 1:49� 100

2 5122 7 132.1 27.6 322.1 4:39� 10�5 5:46� 10�1

3 7682 7 147.4 95.0 593.9 7:86� 10�7 9:17� 10�3

4 10242 7 158.1 148.7 926.2 5:42� 10�8 6:21� 10�4

2 5122 11 269.3 28.3 468.4 4:35� 10�7 6:74� 10�3

3 7682 11 283.6 95.3 752.6 1:02� 10�9 1:47� 10�5

4 10242 11 305.2 150.0 1090.4 3:83� 10�11 2:59� 10�7

2 5122 15 449.1 27.4 651.0 4:60� 10�9 8:32� 10�5

3 7682 15 466.4 95.7 929.9 1:06� 10�10 2:35� 10�8

4 10242 15 497.6 149.5 1283.4 3:37� 10�11 1:08� 10�10

Table 11
CPU performance of the 3D GNUFFT on 32768 data points in three dimensions, returning 323 modes.

s FFT size d sc sf st er Error bound

2 1283 3 363.5 492.8 2678.7 5:83� 10�3 2:47� 102

3 1923 3 468.3 2116.1 8712.3 8:27� 10�4 3:20� 101

4 2563 3 643.2 4082.4 19095.2 2:26� 10�4 8:33� 100

2 1283 7 2202.1 495.1 4558.4 4:64� 10�5 3:05� 100

3 1923 7 2309.1 2076.5 10606.6 8:47� 10�7 5:12� 10�2

4 2563 7 2585.5 4073.7 21243 5:88� 10�8 3:47� 10�3

2 1283 11 7264.3 495.2 9670.36 4:27� 10�7 3:76� 10�2

3 1923 11 7212.3 2067.1 15649.3 1:03� 10�9 8:19� 10�5

4 2563 11 7607.5 4112.4 26644.5 4:73� 10�11 1:44� 10�6

2 1283 15 16781.2 497.7 19187.9 4:20� 10�9 4:64� 10�4

3 1923 15 16536.7 2060.9 24936.3 1:38� 10�10 1:31� 10�7

4 2563 15 17208.8 4133.7 36179.9 4:37� 10�11 6:02� 10�10
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of the edges connected to that vertex. Results are plotted in Table 9 and . Transforms typically take hundreds of FFTs, while
precomputation is about an order of magnitude more expensive than in the 3D triangle case, requiring tens of millions of
FFTs. Each additional digit of accuracy requires about 21% more time.

5.5. Small simplices without precomputation

The above results on segments, triangles, and tetrahedra all precompute the smoothing operator. Without precomputa-
tion, the performance of the algorithm can be inconsistent, because the time required to smooth a given simplex depends on
its size. A consistent test involves distributions of randomly placed simplices with edge lengths constrained to fall between
0.5 and 2.0 times the grid length. The resulting times are plotted in Figs. 5 and 6(a) through Fig. 5(f). In these small cases,
computation times are tens of FFTs in two dimensions, hundreds of FFTs in three.
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Fig. 5. Extremely small simplices, no precomputation.



Fig. 6. Constant densities on approximate Sierpinski paths (left) and their transforms (right).
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6. Future work

Several potential optimizations and extensions appear straightforward. The long precomputation times are partly due to
the Oðlog NÞ insertion time into a B-tree data structure. A faster structure such as a hash map could store the smoothing oper-
ator in slightly more space and retrieve it faster, yielding shorter precomputation times. Smoothing with the B-spline kernel
is left-invertible, so an inverse GNUFFT is possible. The present algorithm could easily be combined with Ying’s sparse FFT
[21] to evaluate a specified subset of Fourier modes, rather than the full box ½�K;K�n. Such computations are common in scat-
tering theory.

Acknowledgments

We thank C. Epstein, W. Kahan, D. Bass, and T. Chen for valuable discussions. This work was partially supported by NSF
Grant DMS-0512963, by the Air Force Office of Scientific Research, Air Force Materiel Command, USAF, under Grant Number
FA9550-05-1-0120, and by the University of California. The US Government is authorized to reproduce and distribute rep-
rints for Government purposes notwithstanding any copyright notation thereon.

References

[1] J.W. Cooley, J.W. Tukey, An algorithm for the machine calculation of complex Fourier series, Math. Comput. 19 (1965) 297–301.
[2] H.J. Levinson, Principles of Lithography, SPIE, 2001.
[3] P. Ewald, Die Berechnung optischer und elektrostatistischer Gitterpotentiale, Ann. Phys. 64 (1921) 253.
[4] J. Strain, Fast potential theory II: Layer potentials and discrete sums, J. Comput. Phys. 99 (1992) 251–270.
[5] D. Saintillan, E. Darve, E.S.G. Shaqfeh, A smooth particle-mesh Ewald algorithm for Stokes suspension flows: the sedimentation of fibers, Phys. Fluids 17

(2004) 1–21.
[6] J. Strain, Locally-corrected spectral methods and overdetermined elliptic systems, J. Comput. Phys. 224 (2007) 1243–1254.
[7] J. Tausch, A spectral method for the fast solution of boundary integral formulations of elliptic problems, in: C. Constanda, Z. Nashed, D. Rollins (Eds.),

Integral Methods in Science and Engineering, Birkhauser, 2006, pp. 287–297.
[8] G. Beylkin, On the fast Fourier transform of functions with singularities, Appl. Comput. Harm. Anal. 2 (1995) 363–381.
[9] A. Dutt, V. Rokhlin, Fast Fourier transforms for nonequispaced data, SIAM J. Sci. Comput. 14 (6) (1993) 1368–1393.

[10] D. Potts, G. Steidl, Fast summation at nonequispaced knots by NFFTs, SIAM J. Sci. Comput. 24 (2003) 2013–2037.
[11] G.G. Lorentz, Bernstein Polynomials, Mathematical Expositions, vol. 8, University of Toronto Press, Toronto, 1953.
[12] M. Abramowitz, I.A. Stegun, Handbook of Mathematical Functions, Dover, 1965.
[13] C. de Boor, A Practical Guide to Splines, Applied Mathematical Sciences, vol. 27, Springer-Verlag, 2001. Revised ed..
[14] A. Dutt, V. Rokhlin, Fast Fourier transforms for nonequispaced data II, Appl. Comput. Harmon. Anal. 2 (1) (1995) 85–100.
[15] A.H. Stroud, D. Secrest, Gaussian Quadrature Formulas, Prentice-Hall, 1966.
[16] J. Stoer, R. Bulirsch, Introduction to Numerical Analysis, Textbook in Applied Mathematics, third ed., vol. 12, Springer-Verlag, New York, 2002.
[17] D.A. Dunavant, High degree efficient symmetrical gaussian quadrature rules for the triangle, Int. J. Numer. Methods Eng. 21 (6) (1985) 1129–1148.
[18] H. Sagan, Space-Filling Curves, Springer-Verlag, 1994.
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