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Abstra
tWe present three new families of fast algorithms for 
lassi
al potentialtheory, based on Ewald summation and fast transforms of Gaussians andFourier series. Ewald summation separates the Green fun
tion for a 
ubeinto a high-frequen
y lo
alized part and a rapidly-
onverging Fourier series.Ea
h part 
an then be evaluated eÆ
iently with appropriate fast transformalgorithms. Our algorithms are naturally suited to the use of Green fun
tionswith boundary 
onditions imposed on the boundary of a 
ube, rather thanfree-spa
e Green fun
tions.Our �rst algorithm evaluates 
lassi
al layer potentials on the boundary ofa d-dimensional domain, with d equal to two or three. The quadrature erroris O(hm)+ � where h is the mesh size on the boundary and m is the order ofquadrature used. The algorithm evaluates the dis
retized potential using Nelements at O(N) points in O(N logN) arithmeti
 operations. The 
onstantin O(N logN) depends logarithmi
ally on the desired error toleran
e.Our se
ond s
heme evaluates a layer potential on the domain itself, withthe same a

ura
y. It produ
es Md values using N boundary elements inO((N +Md) logM) arithmeti
 operations.Our third method evaluates a dis
rete sum of values of the Green fun
tion,of the type whi
h o

ur in parti
le methods. It attains error � at a 
ostO(N� logN) where � = 2=(1 + D=d) and D is the Hausdor� dimensionof the set where the sour
es 
on
entrate in the limit N ! 1. Thus it isO(N logN) when the sour
es don't 
luster too mu
h and 
lose to O(N logN)in the important pra
ti
al 
ase when the points are uniformly distributed overa hypersurfa
e. We also sket
h an O(N logN) algorithm based on spe
ialfun
tions.Two-dimensional numeri
al results are presented for all three algorithms.Layer potentials are evaluated to se
ond-order a

ura
y, in times whi
h ex-hibit 
onsiderable speedups even over a reasonably sophisti
ated dire
t 
al-
ulation. Dis
rete sum 
al
ulations are speeded up astronomi
ally; our al-gorithm redu
es the CPU time required for a 
al
ulation with 40,000 pointsfrom six months to one hour.
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1 Introdu
tionA stable and a

urate approa
h to the numeri
al solution of the Lapla
eequation ��u = f in 
 � Rd(1) �u+ � �u�n = g on � = �
(2)is provided by the integral equations of 
lassi
al potential theory. In thisapproa
h, we use a known Green fun
tion K(x; x0) for a simple region 
on-taining 
 to form layer potentialsS�(x) = Z�K(x; x0)�(x0)dx0D�(x) = Z� �K�n (x; x0)�(x0)dx0and the volume potentialV f(x) = Z
K(x; x0)f(x0)dx0:Classi
ally, the free-spa
e Green fun
tion has been the most popular[21℄,but when 
 is bounded, we will see that there are signi�
ant 
omputationaladvantages to using the Green fun
tion for a 
ube B 
ontaining 
, withboundary 
onditions imposed on �B. With any Green fun
tion, we 
anseek a solution u as an appropriate linear 
ombination of volume and layerpotentials; su
h an ansatz has the right Lapla
ian in 
, and the boundary
onditions will be satis�ed if we 
hoose the density � on � properly. Usuallythis requires the solution of a se
ond-kind integral equation on �, with anoperator 
ombining the nonsingular parts of the double layer potential andthe normal derivative of the single layer potential. Numeri
al solution of theseboundary integral equations and the resulting boundary element methodshave been extensively studied; see [7, 22, 29℄, for example.There are also interfa
e problems o

urring in 
rystal growth [27, 28℄, inwhi
h (2) is repla
ed by a jump 
ondition�u+ � "�u�n# = g on �and the problem is augmented by a boundary 
ondition on a 
ube B 
on-taining 
, say u = uB on B:3



The Lapla
e equation is to hold everywhere in B n�. These problems redu
eto an integral equation ��+ �S� = g on �;with an integral operator whi
h is the single layer potential restri
ted to �.The advantages to integral equation formulations of these problems areeÆ
ien
y, stability and a

ura
y. The integral equation approa
h is sta-ble and a

urate be
ause integral operators are bounded and even smooth-ing on appropriate fun
tion spa
es; thus dis
rete approximations 
an havebounded 
ondition numbers as the mesh is re�ned [19℄. (This 
ontrastswith usual �nite di�eren
e and �nite element approximations, whi
h ap-proximate unbounded operators and therefore may have very large 
onditionnumbers when the mesh is very �ne.) It is eÆ
ient be
ause one redu
es ad-dimensional problem (to be solved on the d-dimensional domain 
) to a(d�1)-dimensional problem to be solved on �. The pri
e one pays for this re-du
tion in dimensionality is the loss of sparsity in the linear systems one hasto solve. This 
an be over
ome, however, by introdu
ing \fast algorithms"whi
h apply or invert the dis
retized operators of 
lassi
al potential theoryin essentially optimal amounts of CPU time. This has been done for variousspe
ial 
ases in [24, 23℄ and with some generality in [3, 4℄.In this paper, we present new fast algorithms for the approximate evalua-tion of 
lassi
al layer potentials formed with the Green fun
tion for a square(if d = 2) or 
ube (if d = 3). Our methods use Ewald summation [1, 11℄ tosplit the potential into a high-frequen
y lo
alized part and a low-frequen
ypart with separated variables. The lo
alized part 
an be evaluated eÆ
iently,be
ause it de
ays very fast away from the sour
e. The low-frequen
y part is arapidly 
onvergent Fourier series, whi
h 
an be evaluated by non-equidistantfast Fourier transform te
hniques. Balan
ing the work and error involved byadjusting the splitting parameter leads to a fast O(N logN) algorithm.Our algorithms are based on di�erent prin
iples from earlier fast potentialtheories su
h as the fast multipole method [5℄ or the method of lo
al 
orre
-tions [2℄. These s
hemes were intended to evaluate dis
rete 
onvolution sumsof the form Si =Xj 6=iWjK(xi � xj)(3)whi
h appear in vortex methods [6℄. Here xj 2 Rd, d = 2 or 3, and K isthe free-spa
e Green fun
tion for �� or its derivative. The fast multipolemethod, for example, is based on multipole expansions (separation of vari-ables), re
ursion and data stru
tures. It evaluates (3) in O(N logN) work if4



there are N of the points xj and N values of Si are desired, within an errortoleran
e � spe
i�ed by the user. The 
onstant in O(N logN) depends on �and is quite reasonable in two dimensions, where the method takes advantageof 
omplex analysis.We also present fast algorithms for evaluating (3) with K the Greenfun
tion for a box B; these are mu
h simpler than our method for evaluatinglayer potentials, be
ause they need not address the issue of quadrature error.Our �rst method for evaluating (3) is very fast, but its 
ost is not alwaysO(N logN); however, the deviation from O(N logN) is small if the pointsxj are not too 
lustered. We sket
h a se
ond method whi
h is O(N logN),but we have not implemented it.The outline of the paper is as follows. In x2, we derive the Ewald sum-mation formulas for evaluation of the Green fun
tion for �� with Diri
h-let boundary 
onditions imposed on the boundary of a d-dimensional 
ube.The only analyti
al tool ne
essary is the Poisson summation formula. Inx3, we dis
uss quadrature errors in dis
retizing layer potentials in d = 2 or3 dimensions, using Ewald summation, Gaussian quadrature and produ
tintegration. In x4, we present some ba
kground material on subsidiary fastalgorithms whi
h we use in this paper. We give brief des
riptions of Rokhlin'snon-equidistant fast Fourier transform, a s
heme for evaluating Fourier se-ries, and the fast Gauss transform. x5 presents fast evaluation s
hemes forevaluating layer potentials both on and o� �. These s
hemes evaluate the dis-
retizations developed in x3, to arbitrary a

ura
y and in O(N logN) time.They also allow us in prin
iple to make the quadrature error arbitrarily highorder if � and � are smooth enough. x6 dis
usses how to use Ewald summa-tion methods to evaluate dis
rete sums like (3). The algorithm we presentis optimal only when sour
es are roughly uniformly distributed, but is usu-ally very fast. We also sket
h an optimal algorithm for solving this problem.x7 dis
usses some generalizations of our method | other potentials, otherGreen fun
tions, other equations | x8 presents numeri
al results for two-dimensional versions of three of the algorithms, and x9 our 
on
lusions.2 The Green fun
tion for a 
ubeThis se
tion presents derivations of the Ewald summation formula for theGreen fun
tion K(x; x0) of the Lapla
e equation��u = f in B = [0; 1℄d(4) 5



u = 0 on �Bin a d-dimensional 
ube B, with Diri
hlet boundary 
onditions spe
i�ed onthe boundary �B of B. The 
hoi
e of Diri
hlet boundary 
onditions is arbi-trary; we 
ould just as well use Neumann, periodi
 or mixed (but separable)boundary 
onditions on �B. Our strategy is to relate (4) to the heat equationand use a well-known transformation of the heat kernel for B.The heat kernel G(x; x0; t) for the 
orresponding paraboli
 problem�tv = �v in B(5) v = 0 on �Bv = f at t = 0(6)
an be found by a d-dimensional Fourier sine expansion: the result isG(x; x0; t) = 2d Xk2Nd e��2jkj2t sin �k1x1 � � � sin �kdxd sin �k1x01 � � � sin �kdx0d;(7)where k = (k1; : : : ; kd) runs over the set Nd of ve
tors with d stri
tly positiveinteger 
omponents and jkj2 = k21 + � � � + k2d. This series 
onverges expo-nentially fast when t is large. The Poisson summation formula [9℄ (or themethod of images [20℄) gives the 
omplementary formulaG(x; x0; t) = (4�t)�d=2 Xk2Zd X�i=�1�1 � � ��de�jx��x0�2kj2=4t;(8)whi
h 
onverges exponentially fast when t is small. (Here �x0 = (�1x01; : : : ; �dx0d)and k runs over the set Zd of ve
tors with d arbitrary integer 
omponents.)We 
an integrate (5) from t = 0 to t =1 and use (6) to get���Z 10 v(x; t)dt� = f(x):Thus u(x) = R10 v(x; t)dt is the solution to the Lapla
e equation (4). Itfollows that the Green fun
tion K(x; x0) for (4) is given byK(x; x0) = Z 10 G(x; x0; t)dt:(9)This translates|into the language of kernels|the operator identity(��)�1 = Z 10 et�dt:6



This 
onne
tion between the heat and Lapla
e equations was used in[20℄, and doubtless in many other pla
es. The next step in our derivation isessentially equivalent to what is known as \Ewald summation" in the physi
alliterature[1, 11℄. Split the time integral (9) at a 
uto� time Æ, substitute theFourier series (7) for G(x; x0; t) when t � Æ, and repla
e G(x; x0; t) by (8)when 0 � t � Æ. Thus we use ea
h of our two formulas for G(x; x0; t) inan interval of the time axis where it 
onverges exponentially fast. The timeintegrals 
an be evaluated exa
tly, and the result is the following formula forK(x; x0): K(x; x0) = KF (x; x0) +KL(x; x0)(10)whereKF (x; x0) = 2d Xk2Nd e��2jkj2Æ�2jkj2 sin �k1x1 � � � sin �kdxd sin �k1x01 � � � sin �kdx0d(11)and KL(x; x0) = 14�d=2 Xk2Zd X�i=�1�1 � � ��djx� �x0 � 2kj2�d(12) � �d=2� 1; jx� �x0 � 2kj2=4Æ� :Here �(a; z) = Z 1z e�ssa�1ds(13)is the in
omplete gamma fun
tion. Its properties are dis
ussed in [10℄; weonly need smoothness away from zero and exponential de
ay: j�(a; z)j �2za�1e�z for a � 1 and z > 0.The Fourier series for KF 
onverges exponentially fast: If we drop allterms in whi
h some ki is greater than a trun
ation parameter p, we in
uran error EF bounded byjEF j � 2dd 1Xk1=1 � � � 1Xkd�1=1 1Xkd=p+1 e��2jkj2Æ�2jkj2� 2dd�2p2 �Z 10 e��2k2Ædk�d�1 �Z 1p e��2k2Ædk�� 2dd�2p2 (4�Æ)�(d�1)=2 e��2p2Æ�2pÆif �2p2Æ � 1. This 
an be summarized for d = 2; 3 as a Fourier seriestrun
ation error bound: jEF j � e��2p2Æ50p3Æ(d+1)=2 :(14) 7



The usefulness of KL, on the other hand, is not so mu
h that the series(12) 
onverges exponentially fast | though it does | but that the sum KLis exponentially lo
alized in spa
e. Indeed, if x and x0 are inside B = [0; 1℄d,then one 
ommits an error whi
h is O(e�1=Æ) in keeping only 3d terms of thesum (12), 
orresponding to the nearest images of B. If either x or x0 staysa distan
e D from �B, then KL is approximated by one term with an errorwhi
h is O(e�D2=4Æ) as Æ ! 0. This term is then bounded byj 14�d=2 jx� x0j2�d�(d=2� 1; jx� x0j2=4Æ)j � 23�d�d=2 Æ2�d=2jx� x0j2 e�jx�x0j2=4Æ:This is exponentially small as soon as jx � x0j � O(pÆ) in two dimensionsand jx� x0j � O(pÆj log Æj) in three dimensions.Finally, we explain why Ewald summation is useful. If we had 
omputedK(x; x0) by a dire
t Fourier expansion, we would have foundK(x; x0) = 2d 1Xk2Nd 1�2jkj2 sin �k1x1 � � � sin �kdxd sin �k1x01 � � � sin �kdx0d:(15)This series either diverges (if d � 3) or 
onverges slowly (if d � 2), so it isalmost useless for evaluating the kernel. This is be
ause we are expressinghigh-frequen
y information and low-frequen
y information alike as a Fourierseries, so we have to in
lude many terms. If we had 
omputed K(x; x0) by themethod of images, we would also have gotten a useless expansion, be
ause wewould be trying to 
onvey global information by point evaluation. Instead,we have 
onstru
ted formulas whi
h give K(x; x0) as a sum of two series,KF and KL. The lo
al information is 
arried by the rapidly de
aying lo
alpart KL and the global low-frequen
y information is expressed in the Fourierseries for KF . The 
uto� Æ indexes a one-parameter family of formulas forK(x; x0), the Fourier series appears when Æ = 0, and the method of imagessum o

urs in the limit Æ !1.Our fast algorithms are based on this splitting of K(x; x0). Global in-formation is en
oded in the rapidly 
onverging Fourier series for KF , whi
h
an be evaluated rapidly be
ause the variables are separated. Lo
al high-frequen
y information is 
arried inKL, andKL de
ays very rapidly away fromits singularity { it de
ays like a Gaussian with small varian
e. Hen
e 
onvo-lution with KL is an almost lo
al operator, whi
h 
an be applied rapidly.
8



3 Dis
retization of layer potentialsWe now have the basi
 Ewald summation formulas we need to evaluate layerand volume potentials. For simpli
ity, we deal in detail only with the singlelayer potential, in dimensions d = 2 and 3. We des
ribe how to evaluateS� on and o� � to a

ura
y O(hm) in the size h of the mesh on �. We aremostly interested in the 
ases m = 2 and m = 4.Our basi
 approa
h is as follows. We allow two types of error. The �rst,quadrature error, o

urs with all approximate evaluations of integrals. It isO(hm) as the size h of the mesh on � de
reases, with a 
onstant in O(hm)whi
h is allowed to depend on derivatives of the density � up to some orderM ,possibly larger than m. This error has to do with the dis
retization error inevaluating S� with Ewald summation, independent of the speed with whi
hS� is evaluated. It does, however, depend on the splitting parameter Æ andtherefore on the number of terms p kept in the Fourier series representationof SF�. The se
ond type of error is the pri
e we pay for the fast evaluations
heme; it is O(�) where � is a user-spe
i�ed toleran
e and the 
onstant inO(�) is not allowed to depend on higher derivatives of � or �.It is unrealisti
 in many appli
ations to assume that � is known exa
tly,say as a smooth parametrized surfa
e. In moving boundary problems, forexample, we have to approximate � by an obje
t with �nitely many degreesof freedom. Thus our 
ode has been written to operate on � and � given asa union of elements �j, with maximum side length bounded by h. In twodimensions, � is a union of line segments if m = 2 and a union of 
ubi

urves if m = 4, say 
ubi
 Hermite interpolants to points on � and thederivatives of � at those points for example. In three dimensions, we take� to be a union of quadrilaterals if m = 2 and if m = 4 we use images ofre
tangles under bi
ubi
s, say Hermite interpolants or splines. See [14℄ forba
kground on surfa
e representation and [29℄ for the e�e
t on �nite elementmethods. On ea
h element, � will be given as a polynomial of degree m� 1,to a

ura
y O(hm) if � and � are of 
lass Cm. (We use quadrilateral elementsin three dimensions, rather than the more popular and versatile triangularelements, mainly for 
onvenien
e of exposition. We need to take advantage ofGaussian integration rules with their superalgebrai
 
onvergen
e. Su
h rulesdo exist for triangles, for example 
oni
al Gaussian rules, so our analysis 
anpresumably be extended to triangular elements.) We 
an treat many moregeneral situations using the te
hniques reported here, but have preferredsimpli
ity of exposition over generality for the time being. We aim to keep thedis
ussion on a 
on
rete and pra
ti
al level, with a minimum of abstra
tion.9



If � and � are smooth, we have thenS�(x) = NXj=1 Z�j K(x; x0)�(x0)dx0 +O(hm)(16)where O(hm) depends on derivatives of � and � of order up to m; see [22, 29℄for error analysis. We now introdu
e the Ewald splittingS�(x) = SF�(x) + SL�(x)= Z�KF (x; x0)�(x0)dx0 + Z�KL(x; x0)�(x0)dx0where SF is a rapidly 
onverging Fourier series and SL is highly lo
alized.We 
onsider dis
retization of SF� and SL� separately, and also separate theevaluation of SL� on � from its evaluation at an arbitrary point x 2 B, whi
his not known to lie on �. These two situations require 
ompletely di�erentstrategies.3.1 The Fourier partFirst we 
onsider the evaluation of SF�. From (10), we haveSF�(x) = Z� 2d Xk2Nd e��2jkj2Æ�2jkj2 sin �k1x1 � � �� � � sin �kdxd sin �k1x01 � � � sin �kdx0d�(x0)dx0= 2d Xk2Nd e��2jkj2Æ�2jkj2 �̂(k) sin �k1x1 � � � sin �kdxdwhere the Fourier 
oeÆ
ients �̂(k) of the measure on B with density � on �are given by �̂(k) = Z� sin �k1x01 � � � sin �kdx0d�(x0)dx0:The error in trun
ating the Fourier series for SF� after terms with ki = p isbounded by (x2) jEF j � e��2p2Æ50p3Æ(d+1)=2 j�j1where j�j1 = R� j�(x0)jdx0 and �2p2Æ � 1. If this error is to be bounded, it is
learly ne
essary to have p2Æ bounded away from zero as Æ ! 0 and p!1.If d = 2 this 
ondition is suÆ
ient; in d = 3 dimensions, p2Æ has to in
rease10



logarithmi
ally as Æ ! 0 and p!1, in order to balan
e an additional powerof Æ in the denominator. In two dimensions, for example, this bound is lessthan 10�6j�j1 when p2Æ � 1 and less than 10�11j�j1 when p2Æ � 2.Next, 
onsider the error in evaluating �̂(k) by produ
t q-point Gauss-Legendre quadrature over ea
h element �j. Generally, the error in evaluatingthe integral R 10 f(s)ds by su
h a rule is bounded by (see page 98 of [8℄)jEj = ������Z 10 f(s)ds� qXj=1 f(sj)wj������ � q!4(2q + 1)2q!3 jf (2q)j1= O e8q!2q jD2qf j1;where sj are the points and wj are the weights of the Gauss-Legendre formula,D denotes di�erentiation, and jf j1 = max jf(s)j. The se
ond equality followsfrom Stirling's formula.Our task now is to split this estimate, with f equal to a produ
t of sinestimes �, into O(hm) and O(�) parts, as des
ribed above. By Leibniz' rule,we have D2qf(x0) = 2qXj=00� j2q1AD2q�j(sin �k1x01 � � � sin�kdx0d)Dj�(x0)where D denotes di�erentiation. The two dominant terms in this estimate arethe endpoints, where all the derivatives go onto one fa
tor or the other. (Theintermediate terms 
an be bounded in terms of the endpoints by interpolationestimates for intermediate derivatives and Holder's inequality.) Thus the 2qthderivative of f 
an be estimated byO(�dph)2qj�j1 +O(h2q)where the �rst 
omes from di�erentiating the sines and the se
ond termdepends on derivatives of � up to order 2q but is independent of p. We will
hoose p and q depending on h to make the �rst term less than � and these
ond term O(hm), in x5.We then will have ea
h Fourier 
oeÆ
ient �̂(k) for 1 � ki � p, with errorEk. Thus evaluating SF� gives an error bounded byjEj � max jEkj Xk2Nd e�2jkj2Æ�2jkj211



� max jEkjCd Z 10 e��2r2Ærd�3dr� max jEkjCdÆ1�d=2:3.2 The lo
al part evaluated on �We turn now to the evaluation of the lo
al partSL�(x) = Z�KL(x; x0)�(x0)dx0for x 2 �. More 
are is required in this 
ase, be
ause KL is in�nite whenx = x0. But we 
an use the known form of the singular kernel to transformthe integral in a manner 
onvenient for evaluation. WriteKL(x; x0) = Z Æ0 K(x; x0; t)dt= Z Æ0 e�jx�x0j2=4t(4�t)d=2 dt+O(e�D2=4Æ):Here we assume, for simpli
ity, that dist(�; �B) � D > 0 and we 
an thusdrop images when Æ is small. The images are nonsingular, and thereforerepresent only a notational 
ompli
ation. Thus we haveSL�(x) = Z Æ0 Z� e�jx�x0j2=4t(4�t)d=2 �(x0)dx0dt+O(e�D2=4Æ):This is a single layer heat potential with density � independent of time. Write,for 
onvenien
e, g(x; t) = Z� e�jx�x0j2=4t(4�t)(d�1)=2�(x0)dx0SL�(x) = Z Æ0 1p4�tg(x; t)dt+O(e�D2=4Æ):Then it 
an easily be shown [28℄ thatg(x; t)! �(x) as t! 0 for x 2 �and g is a smooth fun
tion of t. Hen
e the only remaining singularity is thesquare-root singularity in the time integral, and this is independent of x.Thus we 
an make a produ
t integration formula [18℄Z Æ0 1p4�tg(x; t)dt = qÆ=� nXj=0wjg(x; �j) +O(Æn+3=2);12



with �j = jÆ=n, with weights wj determined by requiring the formula to beexa
t whenever g is a polynomial in t of degree � n. Thus we have, from thede�nition of g,SL�(x) = qÆ=�w0�(x) +qÆ=� nXj=1 wj(4��j)(d�1)=2G4�j�(x) +O(e�D2=4Æ)where the Gauss transform G��(x) is de�ned byG��(x) = Z� e�jx�x0j2=��(x0)dx0:Thus we need to evaluate n�1 Gauss transforms with � = O(Æ). Given G��with error bounded by E, we get SL� on � with error bounded byjELj � C1Æ1�d=2E +O(Æn+3=2) +O(e�D2=4Æ)where C1 is a 
onstant of order unity.Now 
onsider the evaluation of the Gauss transform. We have, as in (16),G��(x) = NXj=1 Z�j e�jx�x0j2=��(x0)dx0 +O(hm)formth order elements and interpolation. We approximate ea
h integral over�j by produ
t Gauss-Legendre quadrature using q points per dimension. Toestimate the quadrature error, we need the 2qth derivative of the integrand.A 
al
ulation with Hermite fun
tions shows that roughly, we 
an estimatesu
h derivatives by jf (2q)j1 � C0  hp� !2qq2q!:With Stirling's formula, we �nd that the quadrature error satis�esjEj �  e32q h2� !q j�j1:Note that this estimate is essentially the same as (14) sin
e � � Æ=n andp2Æ �
onstant. Finally, the quadrature error involved in evaluating SL� on� is thus bounded roughly byjELj � CÆ1�d=2  e32q nh2Æ !q j�j1 +O(Æn+3=2):As in the 
al
ulation of the Fourier 
oeÆ
ients, we haven't yet enough in-formation to use this estimate, so we will return to the evaluation of SL� on� after introdu
ing the fast Gauss transform in x4 and balan
ing the workestimates in x5. 13



3.3 The lo
al part evaluated o� �When x is not known to lie on �, the integrand in the integralSL�(x) = Z�KL(x; x0)�(x0)dx0may not be singular. It is smooth when x is not on �, but blows up whenx approa
hes �. Paradoxi
ally, this possible la
k of a singularity is quitetroublesome when evaluating SL�. This is be
ause we 
annot use a produ
tintegration formula in time whi
h is independent of x, and therefore 
annotexpress SL� as a sum of Gauss transforms.We use instead a spatial produ
t integration method to evaluate SL� o��. This is parti
ularly 
onvenient in the se
ond-order 
ase in two dimensionswhere the integrals involved are fairly straightforward, so we give the detailsonly in this 
ase. When higher order a

ura
y is desired, produ
t integrationbe
omes diÆ
ult; however, the approa
h suggested in [19℄ is an attra
tivealternative. A lo
al expansion as in [26, 13℄ 
ould also be used e�e
tivelyhere, be
ause KL de
ays rapidly away from its singularity; there is no far�eld.In two dimensions,KL(x; x0) = 14�� 0; jx� x0j24Æ !+O(e�D2=4Æ)and �j is the line segment 
onne
ting xj and xj+1 if m = 2. ThusZ�j KL(x; x0)�(x0)dx0 = 14� Z 10 � 0; jx� txj+1 � (1� t)xjj24Æ !(t�j+1 + (1� t)�j)jxj+1 � xjjdt:We have �(0; z) = � log(z) + F1(z)where F1(z) is entire. Thus we integrate the logarithmi
 part of the kernelexa
tly over ea
h line segment and apply Gauss-Legendre quadrature to theremaining integral involving F1(jx � x0j2=4Æ)�(x0). The integrand of the F1integral is an analyti
 fun
tion s
aled by 1=pÆ, so the 2qth derivative growsno worse than 2q!Æ�q. Hen
e the error estimate for integrating the F1 termlooks no worse than jE1j � C q!42q!3 2q!h2qÆq = O h4pÆ!2q14



by Stirling's formula. This is therefore the 
omplete error involved in evalu-ating SL� in this 
ase. Further analysis will have to be postponed until weknow how h is related to Æ.In three dimensions, a similar analysis applies. Only the details of evalu-ating the singular term exa
tly are di�erent.4 Ba
kground materialIn this se
tion, we des
ribe three fast algorithms whi
h we will use in the mainbody of this paper. First, we des
ribe an unpublished algorithm suggestedby Rokhlin [25℄, whi
h evaluates dis
rete Fourier 
oeÆ
ients given fun
tionvalues at arbitrary points. Then we des
ribe a simple method for evaluatinga Fourier series at an arbitrary 
olle
tion of points. Finally, we des
ribe thefast Gauss transform [12℄ whi
h evaluates a 
onvolution sum of d-dimensionalGaussians. All three s
hemes are mu
h faster than dire
t evaluation of the
orresponding sums, as soon as problems of any reasonable size need to besolved.4.1 The non-equidistant fast Fourier transformRokhlin's algorithm evaluates the sumf̂(k) = NXj=1 eiajkfj(17)for k = 0; 1; 2; � � � ; p, given N points aj 2 [��; �℄ and N 
omplex numbers fj.Dire
t evaluation 
osts O(Np) work , and the usual fast Fourier transform
an be used only when aj are equispa
ed. Rokhlin's algorithm evaluates thissum with a

ura
y �F in O((N + p) log p) work, with a 
onstant dependingon the user-spe
i�ed pre
ision � and F = PNj=1 jfjj.The evaluation of (17) amounts to �nding the Fourier 
oeÆ
ients of theperiodi
 distribution f de�ned byf(x) = 2� NXj=1 Æ(x� aj)fj(18)on [��; �℄. A natural approa
h, if f were a smooth fun
tion, would beto evaluate f on an equidistant mesh and apply a standard fast Fourier15



transform. This is impossible, of 
ourse, be
ause we 
an't evaluate Æ(x� aj)at a point. Thus we smooth ea
h point mass into a Gaussian, apply the FFT,and undo the smoothing.We de�ne the smoothed fun
tion g approximating f by requiring itsFourier 
oeÆ
ients ĝ(k) to be given byĝ(k) = e�Æk2 f̂(k)= 12� Z ��� eikxg(x)dx:Thus g(x) = 1X�1 e�Æk2 f̂(k)e�ikx:(19)Sin
e f̂(k) = 12� Z ��� eikxf(x)dx;we have g(x) = 12� Z ���K(x� x0)f(x0)dx0where K(x) = 1X�1 e�Æk2eikx= r�Æ 1X�1 e�(x�2k�)2=4Æ:The se
ond equality is a well-known 
onsequen
e of the Poisson summationformula [9℄. From the de�nition of f , we haveg(x) = r�Æ NXj=1 fj 1X�1 e�(x�aj�2k�)2=4Æ:(20)Sin
e Æ will be small, we need only a few terms of the in�nite sum over kin (20): the error in keeping only three terms is bounded by q�=Æe��2=Æ aslong as jxj � �.Next we evaluate g on the equidistant grid x = jh with �q � j � q,h = �=q. If we evaluate three Gaussians for ea
h j at ea
h grid point, wedo O(Nq) work, and we expe
t q � p so this 
osts too mu
h. The rapidspatial de
ay of the Gaussian, however, means that we need evaluate theGaussian 
entered at aj only for jx�aj j � R, where the range R depends on16



Æ. The error in this trun
ation is bounded by 3Fq�=Æe�R2=4Æ. If R = Lh,this evaluation will 
ost O(LN) work. We now have the values g(jh) on anequidistant grid, so we 
an use the standard FFT to evaluate the dis
reteFourier 
oeÆ
ients ~g(k) = qX�q e2�ikj=2qg(jh)(21)in O(q log q) work. However, we really wanted the 
ontinuous Fourier 
oeÆ-
ients ĝ(k) = 12� Z ��� eikxg(x)dx;not the trapezoidal sums (21). Fortunately, the expli
it formula (19) allowsus to bound the quadrature error in repla
ing 
ontinuous by dis
rete Fourier
oeÆ
ients. A Fourier series 
al
ulation des
ribed in [8℄ givesjĝ(k)� ~g(k)j � 2F (e�Æ(2q�p)2 +O(e�Æ(4q�p)2))if jkj � p.Finally, we 
an evaluate f̂(k) by unsmoothing;f̂(k) = eÆk2 ĝ(k) 0 � k � p:This will multiply any errors (in
luding roundo� errors) in the 
omputationof g by a fa
tor eÆk2 � eÆp2 . The whole algorithm will therefore be unstableunless Æp2 � 
, where 
 is a 
onstant depending only on the pre
ision desired.Thus we tentatively set Æ = 
=p2.Now we must determine the parameters 
 and q to a
hieve the desireda

ura
y and eÆ
ien
y. The error in f̂(k) for 0 � k � p will be bounded by�F if the following three 
onditions are satis�ed:q�=Æe��2=ÆF � �e�
2q Fq�=Æe�R2=4Æ3F � �e�
2q F2Fe�Æ(2q�p)2 � �e�
F:The �rst inequality 
omes from trun
ating the in�nite sum of Gaussians afterthree terms, the se
ond from allowing aj to in
uen
e only points x within arange R, and the third inequality requires the quadrature error in evaluating17



ĝ(k) by the trapezoidal rule to be small. The total work required by thealgorithm is O(LN) +O(q log q) +O(p):The �rst term 
omes from evaluating Gaussians, the se
ond from applyingthe FFT to g and the third from evaluating f̂ .First, we require 
 � 2 log 10; thus the �nal pro
essing of f̂ 
an loseno more than two de
imal digits. This is a 
ompromise between speed androundo� error. The quadrature error bound will hold ife
(1�(2q=p�1)2) = �or 
 = log �=(1 � (2q=p � 1)2). The requirement 
 � 2 log 10 gives a lowerbound for q=p; q=p � max0�2; 12 + 12s1� 12 log �= log 101A :For � � 10�16, this redu
es to q=p � 2. Thus 
 is determined given q=p. Nowlet �0 = �e�
=10q (given q). We 
hoose R = Lh = L�=q so that1pÆ e�R2=4Æ � �0:Thus R = q�4Æ log(pÆ�0)= O(h log p):We 
hoose q so that R � �; thus only three images need be kept, and the�rst requirement is satis�ed as well. The total work estimate now looks likeW = O(N log p+ p log p+ p) = O((N + p) log p):This 
ompletes our des
ription of Rokhlin's non-equidistant fast Fouriertransform.In pra
ti
e, the algorithm performs extremely well. We wrote a Fortran
ode implementing the algorithm and tested it with a set of N points aj
hosen from a uniform distribution on [��; �℄ and fj 
hosen from a uniformdistribution on [0; 1℄. Table 1 shows the parameters, errors and times(Tf )obtained with � = 10�7 and N = p = 16; 32; 64; 128; 256; 512; 1024; 2048.18



The times Td given for dire
t evaluation are extrapolated from the time re-quired for dire
t evaluation at 80 points for the larger runs, and the 
olumnheaded TFFT shows the time required to exe
ute one standard FFT of size2p. Thus we see that it 
osts only �ve or six times as mu
h to evaluateFourier 
oeÆ
ients with arbitrary points as it does to evaluate them withequidistant points. The fast algorithm is mu
h faster than dire
t evaluation,breaking even at only about 16 points and 
oeÆ
ients, and the error in thefast evaluation s
heme is always 
onsiderably smaller than the error bound.4.2 Evaluation of Fourier seriesNow let's 
onsider the inverse problem: Given f̂(k) for k = �p;�p+1; : : : ; p�1; p and N arbitrary points aj 2 [��; �℄, evaluate the trigonometri
 polyno-mial f(x) = pX�p eikxf̂(k)at the points aj in O((N + p) log p) work, with error bounded by �F̂ whereF̂ = P jf̂(k)j.Our approa
h is straightforward; we zero-pad the 
oeÆ
ients fj to length2q and perform a standard FFT of length 2q to obtain 2q valuesf(jh) = pX�p eijkhf̂(k)on a �ne grid on [��; �℄ with step size h = �=q. Then we interpolate be-tween grid points to obtain the desired values f(aj) for 1 � j � N , withinterpolation error � �F̂ . It turns out that we 
an guarantee su
h a

ura
y,for 
ompletely arbitrary Fourier 
oeÆ
ients f̂(k), by taking q fairly large
ompared to p and using fairly high-order interpolation. Thus the algorithmturns out to be 
onsiderably more expensive than a standard FFT when f̂are randomly 
hosen and high a

ura
y is desired. Of 
ourse, in most pra
ti-
al situations, f̂ are approximations to the Fourier 
oeÆ
ients of a fun
tionand in that 
ase mu
h less work is required; an example will o

ur in x5.1.Let q = np; we will 
hoose n and the order of interpolation 2k�1 to makethe interpolation error � �F̂ . In general, the error in equidistant polynomialinterpolation of a fun
tion f at a point x 2 [0; 1℄, by polynomials of degree19



2k � 1, is bounded by jE2k�1j � jf (2k)j1(2k)! !2k�1(x)where jgj1 denotes the max-norm of g and!n(x) = (x� 0 � h)(x� 1 � h) � � � (x� n � h):We use interpolation only on the 
enter interval kh � x � (k + 1)h; thenj!2k�1(x)j � 12h2k(k!)2:By Stirling's formula, (k!)2(2k)! � p�k22k ;and in general the best we 
an say about the 2kth derivative of f isjf (2k)j1 � p2kF̂ ;so jE2k�1j � pkF̂  hp2 !2k = pkF̂ � �2n�2ksin
e h = �=q = �=np. Table 2 shows this error bound (with the fa
torF̂ omitted) as a fun
tion of k and n. Single pre
ision a

ura
y (� = 10�7)requires 19th degree interpolation with n = 4, 11th with n = 8 and 7thwith n = 16. Double pre
ision a

ura
y (� = 10�13) requires 19th degreeinterpolation with n = 8 and 13th degree with n = 16. In pra
ti
e, we foundinterpolation of degree higher than about 20 to lead to substantial roundingerrors. We evaluated the interpolating polynomial by Aitken's algorithm.Given n, one 
an �nd k by requiring (�=2n)2k � � or 2k � � log �= log(2n=�).Table 3 shows numeri
al results obtained from testing the algorithm on ran-domly generated Fourier series 
oeÆ
ients and points of evaluation as in x4.1,with error toleran
e � = 10�5, n = 8 and 7th degree interpolation. The er-ror bound is quite sharp, and even in this fairly diÆ
ult 
ase, the algorithmbreaks even at only about 32 points and 
oeÆ
ients. These 
hoi
es of n and kare not optimal, of 
ourse; in pra
ti
e the 
hoi
e of n and k will be a tradeo�between speed and memory, espe
ially for multidimensional problems.Finally, we observe that both the s
heme presented in this se
tion andRokhlin's algorithm generalize immediately to higher-dimensional problems.20



N = p q Æ L Tf Td TFFT Error/F16 32 7.0-3 8 0.03 0.03 0.004 3.0-832 64 1.8-3 8 0.05 0.11 0.008 6.2-864 128 4.4-4 8 0.11 0.38 0.018 6.2-11128 256 1.1-4 8 0.24 1.54 0.035 8.8-12256 512 2.7-5 8 0.45 6.22 0.077 7.3-12512 1024 6.8-6 9 0.95 25.0 0.16 5.9-141024 2048 1.7-6 9 1.93 100.3 0.34 2.9-142048 4096 4.3-7 9 4.01 401.4 0.67 3.0-14Table 1: Results for the non-equidistant FFT, with CPU times on a Sun-4workstation.
2k � 1 n = 3 n = 4 n = 6 n = 8 n = 12 n = 161 0.27E+00 0.15E+00 0.69E-01 0.39E-01 0.17E-01 0.96E-023 0.10E+00 0.32E-01 0.63E-02 0.20E-02 0.39E-03 0.12E-035 0.33E-01 0.59E-02 0.52E-03 0.92E-04 0.80E-05 0.14E-057 0.10E-01 0.10E-02 0.40E-04 0.40E-05 0.16E-06 0.16E-079 0.31E-02 0.18E-03 0.31E-05 0.17E-06 0.30E-08 0.17E-0911 0.94E-03 0.30E-04 0.23E-06 0.73E-08 0.56E-10 0.18E-1113 0.28E-03 0.50E-05 0.17E-07 0.30E-09 0.10E-11 0.18E-1315 0.81E-04 0.81E-06 0.12E-08 0.12E-10 0.19E-13 0.19E-1517 0.24E-04 0.13E-06 0.90E-10 0.51E-12 0.34E-15 0.19E-1719 0.68E-05 0.22E-07 0.65E-11 0.21E-13 0.62E-17 0.20E-19Table 2: Error bounds for Fourier series evaluation, using a mesh ratio n andpolynomial interpolation of degree 2k � 1.

21



They are not tensor produ
ts as are standard FFT's, but the generalizationis straightforward nonetheless. In the numeri
al 
al
ulations of this paper,we use s
hemes whi
h evaluate two-dimensional Fourier sine 
oeÆ
ients andFourier sine series with non-equidistant points; these are also straightforwardgeneralizations of the s
hemes presented in this se
tion.4.3 The fast Gauss transformIn this se
tion, we very brie
y summarize the fast Gauss transform presentedin [12℄. Consider the evaluation of the d-dimensional Gaussian sumf(x) = NXj=1 fje�jx�sj j2=Æ(22)at M points x = ti 2 B = [0; 1℄d. Here sj are N given points in B, fjare N given real or 
omplex numbers, and jxj2 = x21 + : : : + x2d. Clearlydire
t evaluation takes O(NM) work. The fast Gauss transform requiresO(N+M + Æ�d=2) work to evaluate (22) to pre
ision �F with F = P jfjj; the
onstant in O(N +M + Æ�d=2) depends only on �. In pra
ti
e, the algorithma
hieves a tremendous speedup over dire
t evaluation when M and N arelarge and Æ is not too small. When Æ is very small, the fast Gauss transformredu
es to a stru
tured and trun
ated dire
t evaluation s
heme whi
h takesadvantage of the short range of in
uen
e of ea
h sour
e sj.The basi
 approa
h 
ombines separation of variables with a divide and
onquer approa
h, as in the fast multipole method [5℄. We divide the boxB into O(Æ�d=2) boxes of side O(pÆ) and sort the sour
es sj and targetsti into boxes by spatial lo
ation. The in
uen
e of all sour
es in a givenbox 
an be 
ombined into a single Hermite expansion about the 
enter ofthe box. Ea
h Hermite expansion in
uen
es a �xed number of boxes withinrange O(pÆ), by adding to the Taylor expansion of f about the 
enter ofea
h target box. Finally, the Taylor expansion is evaluated at ea
h targetin the box. A de
ision analysis ensures that Hermite expansions are formedand Taylor expansions evaluated only when it is eÆ
ient to do so; otherwise,box-box intera
tions take pla
e dire
tly or semi-dire
tly.The analyti
al apparatus required for the algorithm 
an be summed upin the rapidly 
onverging series expansione�jx+y+zj2 = X��0X��0 x��! y��!h�+�(z):22



Here x; y; z lie in Rd, while � = (�1; : : : ; �d) and � = (�1; : : : ; �d) are mul-tiindi
es with positive integer elements, x� = x�11 � � �x�dd , and h
 is the d-dimensional Hermite fun
tion, whi
h de
ays like a Gaussian as jzj in
reases.Thus the in
uen
e of sour
es sj in a box B with 
enter sB on targets ti in abox C with 
enter tC is given byfBC(t) = X��0 (t� tC)��! X��0 h�+�(tC � sB) Xsj2B (sj � sB)��! :This is a Taylor series about tC . Its 
oeÆ
ients are formed by taking mo-ments of the sj's about sB, summing over j, and transforming with a matrixmultiply. One a

umulates the Taylor 
oeÆ
ients due to all boxes B in
u-en
ing C before evaluating. A

ura
y is obtained by adjusting the numberof terms retained in the sums over � and �. These sums 
onverge extremelyfast, so not very many terms are ne
essary in order to a
hieve quite highpre
ision.Table 4 presents numeri
al results for a two-dimensional fast Gauss trans-form, with � = 10�6 and 72 terms kept in the Hermite series. These resultsshow that the fast transform is never mu
h slower than dire
t evaluation (forN � 100) and a
hieves tremendous speedups when N is large. The timerequired for evaluating the sum of 100,000 Gaussians at 100,000 points isredu
ed from a week to a minute by the fast Gauss transform.5 Rapid evaluation of layer potentialsIn this se
tion, we present our new algorithms for evaluating the dis
retizedsingle layer potential S�(x) = Z�K(x; x0)�(x0)dx0with optimal eÆ
ien
y. From x3, we know that it is natural to 
onsiderseparately the 
ase when the evaluation point x is restri
ted to lie on � andthe 
ase when x lies anywhere in B, either on or o� �. The appli
ationsmake it natural also to 
onsider two even more spe
i�
 
ases: First, in x5.1,we des
ribe how to evaluate S�(x) at the N points xj on � where the valuesof � were originally given. This is the essential part of solving for � on � byan iterative method. We 
arry this out by using produ
t integration in timeand the fast Gauss transform to evaluate the lo
al part, and non-equidistant23



N = p Fast Dire
t Error/F̂16 0.07 0.03 1.5-632 0.11 0.12 8.6-764 0.25 0.49 9.7-7128 0.48 2.0 9.6-7256 1.0 7.9 1.1-6512 2.1 31.2 1.7-71024 4.2 126 2.5-72048 8.4 502 1.2-7Table 3: Times and errors for evaluating randomly generated Fourier serieswith � = 10�5, n = 8 and 7th degree interpolation.
Case N =M Fast Dire
t Error/F1 100 0.500 0.460 .479E-092 200 1.540 1.840 .447E-063 400 2.060 7.400 .499E-064 800 2.370 29.600 .737E-065 1600 3.180 117.920 .749E-066 3200 4.320 486.080 .755E-067 6400 6.930 1953.280 .199E-068 12800 11.080 7686.400 .199E-069 25600 19.690 30397.440 .199E-0610 51200 36.700 123141.120 .200E-0611 102400 72.130 485406.720 .200E-06Table 4: Table of 
ost and errors for the two-dimensional fast Gauss transformwith Æ = 0:01 and � = 10�6, with targets and sour
es spa
ed uniformly on a
ir
le.
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FFT methods to evaluate the Fourier part. Optimal eÆ
ien
y then di
tatesa 
ertain balan
e between Æ, p and the mesh size h.Se
ond, in x5.2, we suppose � given on ea
h element and evaluate S�(x)on an equispa
ed grid in B, in other words at the points x = (i1H; : : : ; idH)with 0 � i1; : : : ; id � M and H = 1=M . We assume the grid is 
oarser thanthe mesh on �, that is H � h, as this eliminates a tiresome 
onsideration of
ases and is the 
ase in almost all appli
ations. In this 
ase, we evaluate theFourier 
oeÆ
ients using the non-equidistant FFT and evaluate the Fourierpart on the grid with a standard FFT. (If the grid were irregular, we 
ouldstill 
onstru
t an optimal algorithm by using the Fourier series evaluations
heme of x4.2). The lo
al part is done by produ
t integration with a 
uto�,whi
h takes advantage of its rapid spatial de
ay, as in x3.3. Optimal eÆ
ien
ynow di
tates a di�erent relationship between p, Æ, h and H.5.1 Evaluation of S� on �First split S� = SF�+SL� with Æ to be determined, and trun
ate SF� afterterms with ki = p. Then we need to evaluate pd 
oeÆ
ients�̂(k) = Z� sin �k1x01 � � � sin �kdx0d�(x0)dx0;in O(N logN) work, with a

ura
y O(hm) + �. If we use produ
t q-pointGauss-Legendre quadrature on ea
h element �j, we get an expression of theform �̂(k) = NXj=1Xi sin �k1xij1 � � � sin �kdxijd�jiwijThis 
an be evaluated with the non-equidistant FFT (extended to do thed-dimensional sine transform) in O((qdN +pd) log p) work and with a

ura
y�F where F = NXj=1Xi j�ji jwij � j�j1:This suggests that we take p = O(N1=d) and the Fourier series trun
ationerror requirement (that p2Æ be bounded away from zero) suggests then thatÆ = O(N�2=d). In d dimensions, having N elements on � with maximumsize h means roughly that h = O(N1=(1�d)), be
ause � is (d�1)-dimensional.Hen
e Æ and h are related by Æ = O(h2�2=d), and p = O(h1=d�1). The errorestimate for Gauss-Legendre quadrature presented in x3.1 is then dominated25



by jEj � CÆ1�d=2  d�e8q h1=d!2q j�j1 = O(h3�d�2=d+2q=d):Thus we get order m a

ura
y uniformly in 1 � ki � p if we take q �d(m� 3 + d+ 2=d)=2. For d = 2, we need q = m, while in three dimensionswe need q = 1+ 3m=2. The 
onstant in the error estimate is quite small; forexample, dropping fa
tors of Cj�j1, it is 1.30 when m = d = 2, 6:6 � 10�3when d = 2 and m = 4, and generally speakingjEj � Cj�j1 � �e4m�md hm:We 
an now evaluate the trun
ated Fourier series at the N points xj, toget SF�(xj) = 2d pXki=1 e��2jkj2Æ�2jkj2 �̂(k) sin �k1x1 � � � sin �kdxd + Ewhere the error E is of orderE = O(hm) +O(�) +O( e��2p2Æp3Æ(d+1)=2 ):We do this by the Fourier series evaluation s
heme of x4.2, extended to d-dimensional sine series, in other words by evaluating SF� on a �ne meshwith mesh size H = 1=np and interpolating to ea
h xj with tensor produ
tpolynomial interpolation of degree 2K � 1. The error in this pro
edure isbounded by jEj � C(H=2)2Kjf (2K)j1where f(x) = pXki=1 e��2jkj2Æ�2jkj2 �̂(k) sin �k1x1 � � � sin �kdxdis a smooth fun
tion. Comparison of the derivative of the sum with anintegral shows that jf (2K)j1 � Cdj�j1Æ�d=2�K+1where Cd is a 
onstant of order unity, depending only on the dimension d.Thus jEj � Cj�j1Æ1�d=2  14n2p2Æ!K :In two dimensions, this bound 
an easily be made less than � with 
hoi
es ofn and K whi
h are independent of N ; in three dimensions, n and K may have26



to in
rease logarithmi
ally with N . Typi
ally n2 � 10 and p2Æ � 1, so thiserror bound is � 10�6 when K = 4 (7th degree interpolation) if Cj�j1 � 1.Thus if we 
hoose p and Æ withe��2p2Æ50p3Æ(d+1)=2 � �;p = O(N1=d), and Æ = O(N�2=d), we 
an evaluate SF� on � in O(N logN)work with a

ura
y O(hm)+ �j�j1; the 
onstant in O(N logN) depends onlyon log �.Next we turn to the evaluation of the lo
al partSL�(x) = Z Æ0 Z�K(x; x0; t)�(x0)dx0:We use the produ
t integration in time approa
h developed in x3.2 to redu
ethe problem to n Gauss transforms:SL�(x) = qÆ=�w0�(x) +qÆ=� nXj=1 wj(4��j)(d�1)=2G4�j�(x) +O(Æn+3=2):Sin
e Æ = O(h2�2=d), the error term looks like O(h(2�2=d)(n+3=2)) = O(hm) ifn � (m� 3 + 3=d)=(2� 2=d). When d = 2, we need to have n � 1 or n � 3for se
ond or fourth-order a

ura
y respe
tively, while in three dimensions,we need only n � 0 or n � 2 respe
tively. Thus in three dimensions, thesimple approximation SL�(x) � qÆ=��(x)is already 
orre
t to se
ond order a

ura
y | and 
ertainly very inexpensiveto evaluate. In the other 
ases, we need to evaluate Gauss transforms toa

ura
y �0 = Æ1�d=2� plus O(hm). The quadrature error in produ
t q-pointGauss-Legendre quadrature for ea
h Gauss transform is, from x3.2,E = CÆ1�d=2  e32q nh2Æ !q j�j1:We now know that Æ = O(h2�2=d), so this estimate is equivalent toE = O(h2q=d+3�d�2=d):This is O(hm) if q � (md� 3d+ d2 + 2)=2. If d = 2 we need q � m while ifd = 3 we need q � 3m=2 + 1.The fast Gauss transform now evaluates SL� on � in O(N logN+Æ�d=2) =O(N logN) work, to a

ura
y �0. Thus we 
an evaluate S� = SF� + SL�eÆ
iently and a

urately. 27



5.2 Evaluation of S� o� �We now 
onsider the evaluation of S�, dis
retized with N elements of size� h, on a mesh in the box B 
ontaining 
. For 
on
reteness, we 
onsider anequally spa
ed mesh x = (i=M; j=M; : : :) on B; the more general 
ase is aneasy extension using the Fourier series evaluation s
heme dis
ussed in x4.2.We assume for simpli
ity that the boundary dis
retization is no 
oarser thanthe mesh, so that h � H = 1=M . The other 
ase rarely o

urs in pra
ti
eand is easy to deal with when it does o

ur.We allow ourselves O((N +Md) logM) work to evaluate S� on the grid;
learly this is optimal, up to a logarithm.First we trun
ate SF� after terms with ki = p. The resulting series will
ost O(Md logM) to evaluate on the mesh, so we might as well take p = Mand Æ = O(M�2), with p and Æ 
hosen to make the Fourier series trun
atiuonerror � �j�j1. Now we need to evaluate Md Fourier 
oeÆ
ients �̂(k) with1 � ki �M . The fast algorithm error is bounded by (x3.1)jEj � CÆ1�d=2  d�e8q Mh!2q j�j1for 1 � ki �M . Sin
e Mh � 1 by assumption, we havejEj � CÆ1�d=2  d�e8q !2q j�j1whi
h 
an easily be made � � by 
hoi
e of q. For example, � = 10�7 andd = 2 requires q � 7 while � = 10�12 and d = 3 still requires only q � 11 ifCj�j1 is of order unity. In pra
ti
e, even a mu
h smaller value of q suÆ
es,be
ause the Fourier series is dominated by lower terms for whi
h jkjh � 1and often we even have Mh� 1. On
e we have the Fourier 
oeÆ
ients �̂(k),we multiply them by the appropriate Gaussian fa
tors and evaluate SF� onthe grid with a standard FFT. If the grid were non-equispa
ed, we wouldapply the Fourier series evaluation s
heme of x4.2. We have now evaluatedSF� on the grid at a 
ost of O((N +Md) logM) work and with an a

ura
yof O(hm) + �.Now we turn to the evaluation of the lo
al part SL�(x) on the grid.This 
an a
tually be done in O(N logM) work, as it turns out. The keyobservation is that Æ = O(M�2) and SL de
ays to less than � outside atubular neighborhood of � having radius O(pÆ) = O(1=M). Thus ea
h of28



the N elements of � a�e
ts a number of grid points whi
h depends only onlog(�=M), leading to O(N logM) work as N and M in
rease.To be pre
ise, suppose that we 
an ignore images so that KL(x � x0) =(1=4�d=2)jx � x0j2�d�(d=2 � 1; jx � x0j2=4Æ). Then a point x at distan
eD = dist(x;�) from � has SL�(x) bounded bySL�(x) � 14�d=2 Z� jx� x0j2�d�(d=2� 1; jx� x0j2=4Æ)�(x0)dx0� 14�d=2 j�j1�(d=2� 1; D2=4Æ)D2�d� C  D24Æ !d=2�2 e�D2=4ÆD2�dfrom x2. Suppose for 
on
reteness that Æ = M�2, so the Fourier seriestrun
ation error is about � = 10�5. Then this error bound is below �j�j1when D � K=M where K � 6 in two dimensions. Thus, to single pre
isiona

ura
y, SL� is zero when x lies more than 6 grid spa
ings from �. Hen
eea
h point on � 
an a�e
t at most 13d grid points. The general 
ase is similar.In
luding images presents no additional di�
ulty, be
ause they are subje
tto the same estimate. Only 3d images need be in
luded, and even these matteronly if � 
omes very 
lose to �B.Thus we need evaluate SL�(x) only at O(N logM) grid points near �.When we do evaluate it, we use the s
heme des
ribed in x3.3; evaluate thesingular part of jx� x0j2�d�(d=2� 1; jx� x0j2=4Æ)exa
tly over ea
h element, and apply Gaussian quadrature to the remainder.The singular part is a logarithm if d = 2 and jx � x0j�1 if d = 3; it 
an beintegrated exa
tly over a linear element to get se
ond order a

ura
y andquite likely over a 
ubi
 element for fourth order a

ura
y. See [7℄ for somedis
ussion of the diÆ
ulties involved. (A
tually, if Æ = O(H2) as is often the
ase, then one need only use quadrati
 elements in the evaluation of the lo
alpart to get fourth order a

ura
y and zero order elements to get se
ond ordera

ura
y, be
ause SL� is itself of size O(h).)The smooth part 
an be integrated by Gaussian quadrature with an errorbound that looks like (x3.3)E � C  h4pÆ!2q j�j1:29



At the very worst, we will have h � 1=M and pÆ = 1=M , whereuponE � C16�qj�j1:Thus q � 6 gives single pre
ision and q � 10 gives double pre
ision a

ura
yassuming Cj�j1 is of order unity.We have now evaluated SL� o� � to a

ura
y O(hm)+�; hen
e we 
an addtogether SF� and SL� to get the full single layer potential S� o� �, evaluatedin O((N +Md) logM) operations, with the same order of a

ura
y.6 Dis
rete SumsIn many 
al
ulations [1, 6℄, one needs to evaluate a dis
rete sum of pointsour
es S(i) = NXj=1 0�jK(xi; xj) 1 � i � N;(23)where the prime on the sum indi
ates that the j = i term is to be omitted.Here xi are distin
t points given in B = [0; 1℄d and K is a Green fun
tion for�� with boundary 
onditions imposed on �B. Dire
t evaluation of this sum
osts O(N2) operations sin
e one must sum up N � 1 sour
es for ea
h targeti. We present an algorithm whi
h evaluates (23) mu
h more eÆ
iently.First, we des
ribe a method whi
h is optimal only when the points xiare distributed over B in a fairly uniform way. When the xi's are uniformlydistributed on a lower-dimensional set as N !1, the algorithm is no longeroptimal, but is still very fast; in numeri
al examples, it a
hieves tremendousspeedups over dire
t 
al
ulation. The work estimate of the algorithm dependson the Hausdor� dimension D of the set where the xi's 
on
entrate as N !1.We also sket
h an O(N logN) algorithm, whi
h we have not implemented.It requires more 
ompli
ated analysis and some new spe
ial fun
tion theory,whi
h will be dis
ussed elsewhere.Method 1.Suppose for 
on
reteness that K is the Diri
hlet Green fun
tion for B, asdes
ribed in (2). Then we have the Ewald splittingS(i) = SF (i)� �iKF (xi; xi) + SL(i):30



Here SF (i) = 2d pXki=1 e��2jkj2Æ�2jkj2 �̂(k) sin �k1xi1 � � � sin �kdxid + EFwhere �̂(k) = NXj=1�j sin �k1xj1 � � � sin �kdxjdand EF satis�es the Fourier series trun
ation error boundjEF j � e��2p2Æ50p3Æ(d+1)=2MwhereM = P j�jj. The se
ond term must be subtra
ted be
ause our originalsum ex
luded the term with j = i. The lo
al part is given bySL(i) = 14�d=2 NXj=1 0 Ximages�jxi � ~xjj2�d�(d=2� 1; jxi � ~xjj2=4Æ) + ELwhere we keep only 3d images ~xj of ea
h point xj, those lying in the imageboxes adja
ent to B, and the error EL in dis
arding the rest of the images isbounded by jELj � CdÆ2�d=2e�1=4ÆM;with a 
onstant Cd of order unity. We 
onsider ea
h of the three termsforming S(i) in turn.First, it is 
lear that we 
an evaluate the Fourier part SF (i) with themethods of x4.1 and x4.2. This will require O((pd+N) log p) work to produ
ea

ura
y �M=3, say, if p and Æ are 
hosen to make the Fourier series trun
atedafter pd terms a

urate to �M=3. This requires that p2Æ be bounded awayfrom zero.Next 
onsider the subtra
ted term�iKF (xi; xi) = �i2d pXki=1 e��2jkj2Æ�2jkj2 sin2 �k1xi1 � � � sin2 �kdxid + ESwhere ES satis�es the same estimate as EF . At �rst glan
e, this termseems trivial, be
ause ea
h point xi intera
ts only with itself. Unfortunately,KF (xi; xi) depends on Æ and we have to sum up pd values to evaluateKF (x; x)at ea
h value of x. Thus it looks as though this term would 
ost O(pdN)whi
h would be far too mu
h. 31



Fortunately, it turns out that KF (x; x) 
an be evaluated by a fast methodvery similar to the Fourier series evaluation method of x4.2: We evaluateKF (x; x) on a �ne mesh in B and interpolate to ea
h desired value of x. The�ne mesh evaluation must be done eÆ
iently (though it 
ould of 
ourse bedone on
e and for all for ea
h Æ and stored permanently) and for this we needto observe that4 sin2 x sin2 y = 1� 
os 2x� 
os 2y + 
os 2x 
os 2yor the analogue in higher dimensions. Thus KF (x; x) 
an be evaluated on aregular grid by zero-padding and fast 
osine transforms.Finally, 
onsider the lo
al part. Here, the essential feature is rapid de
ay.Choose R = R(Æ) so that Cd Æ2�d=2R2 e�R2=4Æ � �=3;then R = O(pÆ) up to a logarithm. Then the lo
al term is less than �M=3whenever jx � x0j � R. Hen
e ea
h point xj only in
uen
es points xi withjxi � xjj � R. The assumption that the xj's are uniformly distributed ona set of Hausdor� dimension D as N ! 1 means then that ea
h ~xj 
anin
uen
e only O(RDN) points as N !1, so we 
an limit the sum to su
hpoints.In pra
ti
e, this needs a little further work, be
ause we want to ex
ludethe in
uen
e of distant points xj without 
omputing the distan
e to ea
hpoint. (The latter would 
ost O(N2) work whi
h would be too mu
h.) This
an be done by the standard te
hnique of organizing the points into boxes ofsize � R and allowing points in one box to intera
t only with points in thenearest neighbor boxes. This te
hnique also allows easy in
lusion of images,by using an extra layer of �
titious boxes outside B.Hen
e the total work required to evaluate SL(i) for 1 � i � N isO(RDN2) = O(ÆD=2N2):Now we 
an minimize the total workW = O(pd logN +N logN + ÆD=2N2)subje
t to the 
onstraint that p2Æ is bounded away from zero. The result isW = O(N� logN)32



where � = 2=(1 + D=d). Clearly � = 2 when D = 0 (points 
onvergeto a �nite set of points as N ! 1), while � = 1 when D = d. Thusthe algorithm is optimal if the points xi 
over B in a reasonably uniformway when N ! 1. An interesting intermediate 
ase is when the xi's areuniformly distributed over a hypersurfa
e, so D = d � 1. Then we �nd� = 2=(2�1=d). In two dimensions this gives us an O(N4=3 logN) algorithmwhile in three dimensions we get an O(N6=5 logN) algorithm. Thus thealgorithm di�ers little from an O(N logN) algorithm in this 
ase; the ratioN1=3 is less than 100 for N � 106, while N1=5 is bounded by 10 for N � 105.In pra
ti
e, these methods a
hieve large speedups over dire
t evaluation.Note that we were able to do better than this when the sour
es were dis-tributed on a hypersurfa
e, in the 
ontinuous 
ase when the dis
rete problem
orresponded to quadrature of a layer potential. This is be
ause in the 
on-tinuous 
ase, we were able to 
lassify 
ertain parts of the error as quadratureerror; we don't have this option when evaluating dis
rete sums.Method 2.As we have seen, the diÆ
ulty in making an O(N logN) algorithm isdue to the lo
al part SL(i). One needs a multipole-type expansion whi
hseparates the variables yet|unlike multipoles|preserves lo
alization. Su
han expansion 
an be 
onstru
ted by integrating the Hermite expansion whi
hwas used to 
onstru
t the fast Gauss transform. Begin with the expansion[12℄ ejx�yj2=Æ = X��0 1�!  x�pÆ!h�  ypÆ! :(24)Ignoring images temporarily, we haveKL(x� y) = Z Æ0 e�jx�yj2=4t(4�t)d=2 dt:Combining these two expressions gives an expansionKL(x� y) = X��0 x��! Z Æ0 (4�t)�d=2(4t)�j�j=2h�  yp4t! dt= X��0 x��! g�(y)This expansion 
an be used in the same way as (24) was used in the deriva-tion of the fast Gauss transform, if allowan
es are made for the singularity33



of the fun
tions g�. The te
hnique required to make these allowan
es is pre-
isely the same as in the fast multipole method [5℄, but with the substantialsimpli�
ation of lo
alization; KL(x � y) de
ays rapidly as jx � yj in
reases.Images are in
luded (if ne
essary) in the obvious way.This s
heme is theoreti
ally elegant|and pra
ti
al 
ompared to dire
tevaluation|but it seems unlikely to be 
ompetitive with Method 1 ex
eptin situations unlikely to o

ur. Thus we did not implement or test it inthis paper. It will be dis
ussed in a future publi
ation if it turns out to bepra
ti
al.7 GeneralizationsWe have presented fast algorithms whi
h evaluate a dis
retized version of thesingle layer potential with an arbitrary order of a

ura
y, in an essentiallyoptimal amount of 
omputational e�ort. Di�erent approa
hes are used toevaluate S� on and o� �, 
orresponding to the 
ommon situation where onesolves an integral equation on � by iteration, then evaluates the potential ofthe resulting density � on a grid in the domain 
.Our algorithm 
an immediately be generalized to solve many other prob-lems whi
h arise in pra
ti
e. We list some examples.1. The modi�
ations needed to evaluate double rather than single layerpotentials are straightforward. This is important in pra
ti
e be
ause oneusually solves a standard Diri
hlet or Neumann problem on 
 by 
onverting itto an integral equation on �, in whi
h the integral operator is the nonsingularpart of either the double layer or the normal derivative of the sigle layer. Thusone often needs to apply su
h an operator eÆ
iently on �.2. One 
an easily modify the analysis to handle potentials formed withother Green fun
tions for �� on a 
ube; for example, the periodi
 Greenfun
tion is dealt with by repla
ing sine series by exponential Fourier series.This is useful in periodi
 
omputations with interfa
es.3. Volume potentials V f 
an be evaluated, say on a regular M �M gridin B, using the values of f on the grid points lying inside 
. The workestimate is O(Md logM) on a Md-point grid. The only new pie
e of workthat must be done is to do produ
t integration over d-dimensional elementson 
 rather than (d � 1)-dimensional ones on �. Mu
h bene�t is derived34



from the fa
t that the lo
al part VLf is O(h2) to begin with; thus quadrati
approximation of f gives fourth order a

ura
y, and se
ond order a

ura
y
an be a
hieved by dropping the lo
al part altogether.4. The same approa
h 
an be used to produ
e fast solvers for boundaryvalue problems for any ellipti
 equation or system whi
h admits a potentialtheory. An important example in appli
ations is the stationary Stokes equa-tions, for whi
h the fundamental solution is known and Ewald summationhas been des
ribed in [15℄. (Boundary element methods for this problemhave been 
onstru
ted e.g. in [16℄.) The analysis goes through in the sameway, and the result is a fast solver for the Stokes equations in a boundeddomain or for Stokes 
ow with interfa
es.5. Pre
isely the same generalizations 
an be made for the dis
rete sumalgorithm of x6.8 Numeri
al ResultsWe programmed two-dimensional versions of three of the algorithms pre-sented in this paper and tested them on examples. The 
omputations weredone in double-pre
ision arithmeti
 in optimized Fortran on a SPARCstation1 or a Sun-4 workstation.The results are quite satisfa
tory; all three algorithms are mu
h fasterthan dire
t evaluation s
hemes for large-s
ale 
omputations, while the over-head is small enough that it is feasible to use them for very small 
al
ulationsas well. They break even at a very small number of points and a
hieve dra-mati
 speedups for large jobs. The O(N logN) and O((M2+N) logN) timeestimates for the evaluation of the single layer potential on and o� � are veri-�ed by the numeri
al results. The dis
rete sum algorithm exhibits linear timerequirements when the points are uniformly distributed and O(N4=3 logN)when the points lie on a 
urve, as predi
ted. In both 
ases, a 
onsiderablespeedup is obtained, even when N is as small as 160.The a

ura
y of all three 
al
ulations is ex
ellent. The layer potential
al
ulations were 
learly se
ond-order a

urate or better, while the dis
retesum evaluation s
heme a
hieved the error toleran
e desired, and was sub-stantially more a

urate than dire
t evaluation when the number of pointswas large. 35



8.1 Layer potentials evaluated on �We tested the algorithm of x5.1 on two examples, the �rst for a

ura
y andspeed, the se
ond only for speed, and 
ompared it with a dire
t evalautions
heme. In the dire
t method, the same dis
retized single layer potential isevaluated on � by dire
t summation. Thus the dire
t 
al
ulation already usesseparation of variables, produ
t integration in time, and Gaussian integrationover ea
h element. We programmed it also to evaluate Gaussians only whenthey were above the 
uto� �.In this type of experiment, a standard time-saving pro
edure is to usethe dire
t 
al
ulation to evaluate the potential only at 100 of the N pointson �. The resulting CPU time is then multiplied by N=100 to obtain anestimate of the time Td the dire
t 
al
ulation would require to 
arry out theentire 
al
ulation. In our present situation, the dire
t 
al
ulation still has toevaluate all the Fourier 
oeÆ
ients even though only 100 values of S� aredesired. Thus the standard pro
edure would punish the dire
t 
al
ulationunfairly. Hen
e we 
ompared our results with the full dire
t 
al
ulation, aslong as the time required did not try our patien
e, and estimated the timerequired for larger dire
t 
al
ulations by extrapolation. In other words, wemultiplied Td by 4 whenever we doubled N . This pro
edure tends to produ
e
onservative estimates.In our �rst numeri
al example, we took � to be an o�-
enter 
ir
le, withradius 0.13 and 
enter at (0:4; 0:7), parametrized by 0 � � � 2�, and we tookthe density �(�) = 10k 
os(k�), with k = 3. We tested the algorithm withvarious values of k between 1 and 10; the results we report were obtainedwith k = 3, but they would be little di�erent in form for other 
ases. Themain di�eren
e is that the asymptoti
 se
ond order a

ura
y takes longerand longer to be rea
hed as k is in
reased, be
ause it takes more and morepoints to resolve the rapid variations in �. The potential S� is of orderunity, and is plotted in Figure 1. It 
an be evaluated essentially exa
tly bynumeri
al integration, and the a

ura
y of both fast and dire
t evaluations
hemes 
ompared to an exa
t solution.The numeri
al parameters N , p and Æ are reported in Table 5. We set thetoleran
e � to 10�4 initially, and redu
ed it by a fa
tor of 4 at ea
h step. Thisis be
ause it would have been pointless to demand an a

ura
y of evaluationmu
h less than quadrature error 
ould reasonably be expe
ted to be. Theparameters Æ and p were 
hosen so that e��2p2Æ=50p3Æ3=2 � � initially (whenN = 20), and then re�ned by fa
tors of 1.5 and 0.5 respe
tively as N was36



Figure 1: Single layer potential of 30 
os 3� on an o�-
enter 
ir
le.
37



doubled. We used n = 1 level of produ
t integration in time, q = 2 points forGaussian quadrature on ea
h element to evaluate the Fourier 
oeÆ
ients, andq = 2 points per element to evaluate the Gauss transform. The Fourier seriesevaluation s
heme used a �ne mesh of size 3p and �fth order interpolation.The fast transform parameters were tested by re�ning them to see that theymade no signi�
ant di�eren
e in the error in the numeri
al solution.The numeri
al results are shown in Table 5. The timing runs were madeon a SPARCstation 1 with the FORTRAN optimizer; this is about a one-mega
op ma
hine. The 
olumns headed Tf and Td give respe
tively thetime required for the fast algorithm to evaluate S� and the time requiredto evaluate S� dire
tly at all N points. It is 
lear that the fast algorithmis mu
h faster than dire
t evaluation for large jobs, and breaks even for asurprisingly small number (between 20 and 40) of points on the 
urve. With10,000 points on the 
ir
le, the fast algorithm is over 300 times faster thanthe dire
t 
al
ulation, taking three minutes rather than 17 hours.The 
olumns headed Ef and Ed report the maximum error measured in200 randomly 
hosen values of S� on �, for the fast and dire
t 
omputationsrespe
tively. Asterisks indi
ate 
ases for whi
h we did not obtain the error inthe dire
t 
al
ulation be
ause we did not run it. On
e the os
illations in thesolution are well-resolved, the error in the method is 
learly at least se
ondorder. There is no appre
iable di�eren
e between the errors of the fast anddire
t 
al
ulations, be
ause the quadrature error dominates the error due tothe fast evaluation s
hemes. One feature of the error whi
h is not apparentfrom the tables is that the relative error is small, as well as the absolute error.In pla
es where the potential is small, the error is also small; the potentialhas roughly the same number of 
orre
t signi�
ant digits in all pla
es.Next, we ran a 
omputation with a more 
ompli
ated boundary just tosee how mu
h faster the fast algorithm would be in a more realisti
 situation.In this 
ase, we took � to be the union of four 
ir
les, modelled on a typi
alproblem in 
rystal growth [27, 28℄, and � to be 20 
os 2� on ea
h 
ir
le. Moreappli
ations to 
rystal growth will be reported in future publi
ations. Thesingle layer potential is shown in Figure 2. The timings given in Table 6 wereobtained with the same parameters that were used for the previous example,but this time we did not measure the error. Study of the results at sele
tedpoints suggests, however, that the error is quite similar to the previous 
ase,so that we a
hieve 1% a

ura
y with N = 640 points distributed over the four
ir
les. The fast algorithm is then about nine times faster than the dire
tevaluation; it is never slower, and soon be
omes mu
h faster as the mesh is38



re�ned. With 20,000 points, it is 240 times faster than dire
t evaluation.8.2 Layer potentials o� �In the next pair of examples, we tested the evaluation of S� on a regulargrid of size M �M , for the potential of a 
ir
le or four 
ir
les. We did notin
lude images for the lo
al 
al
ulation, so Æ was 
hosen so that images werenegligible. This put a lower bound on p =M via the Fourier series trun
ationerror estimate. The dire
t 
al
ulation now 
onsists of the same lo
al partas the fast algorithm, 
ut o� at the same distan
e, together with dire
tevaluation of the Fourier 
oeÆ
ients of the lo
al part. The Fourier series isthen evaluated on the grid with an FFT, as dire
t evaluation would be unfair.Thus the only di�eren
e between the fast and dire
t 
al
ulations is that thefast algorithm evaluates the Fourier 
oeÆ
ients mu
h more eÆ
iently. Thefast algorithm is O(M2 + N) work whereas the dire
t 
al
ulation requiresO(M2N) work. The growth of the time required by the fast algorithm isa
tually 
loser to linear than to quadrati
; this is be
ause most of the e�ortis spent on evaluating the lo
al part, whi
h is an O(N) 
al
ulation. Again,the error was relatively small as well as absolutely small; the potential hasroughly the same number of signi�
ant digits in di�erent pla
es, despite thefairly rapid spatial variation evident in Figure 1. In this 
al
ulation, we usedq = 5 points for Gaussian quadrature of both the lo
al part and the Fourier
oeÆ
ients. The same sequen
e of toleran
es � was used as in the previousexample.Table 8 shows results for evaluating the four-
ir
le potential on the grid.Again, the fast algorithm is mu
h faster than the dire
t 
al
ulation. Aspeedup of seventy is obtained with 2560 points distributed over the four
ir
les. Asterisks denote dire
t timings estimated by extrapolation from pre-vious values.8.3 Dis
rete sumsFinally, we present two numeri
al examples for the dis
rete sum algorithm.In the �rst, we generated N random points uniformly on B, and observethe predi
ted linear growth of work with N ; in the se
ond, we distributedpoints uniformly on a 
ir
le, and observe the expe
ted O(N4=3 logN) workrequirement. Both 
ases exhibit a 
onsiderable speedup, 
ompared to a dire
t39



Case N p Æ Ef Ed Tf Td1 20 9 0.01024 0.478 0.478 0.29 0.212 40 13 0.00512 0.202 0.202 0.57 0.803 80 19 0.00256 0.572E-1 0.573E-1 1.09 3.354 160 28 0.00128 0.119E-1 0.119E-1 2.40 14.115 320 42 0.00064 0.218E-2 0.218E-2 4.51 61.616 640 63 0.00032 0.379E-3 0.379E-3 10.15 249.387 1280 94 0.00016 0.645E-4 ** 20.42 985.768 2560 141 0.00008 0.105E-4 ** 41.56 3943.049 5120 211 0.00004 0.166E-5 ** 93.02 15772.1610 10240 316 0.00002 0.264E-6 ** 192.75 63088.64Table 5: Results of evaluating (on the 
ir
le) the single layer potential of30 
os 3� on a 
ir
le.
Case N p Æ Tf Td1 80 9 0.010240 0.790 1.0502 160 13 0.005120 1.430 4.1803 320 19 0.002560 3.780 16.1504 640 28 0.001280 7.430 64.6005 1280 42 0.000640 15.880 258.4006 2560 63 0.000320 29.320 1033.6007 5120 94 0.000160 65.630 4134.4008 10240 141 0.000080 127.290 16537.6009 20480 211 0.000040 277.850 66150.400Table 6: Time required to evaluate (on the 
ir
les) the single layer potentialof 20 
os 2� on four 
ir
les.
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Figure 2: Single layer potential of 20 
os 2� on the union of four 
ir
les.
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Case N M Æ Ef Ed Tf Td1 20 7 0.020480 0.111E-01 0.111E-01 3.890 3.6702 40 13 0.005120 0.785E-02 0.785E-02 10.290 10.5803 80 25 0.001280 0.898E-03 0.898E-03 21.650 28.7104 160 49 0.000320 0.285E-03 0.285E-03 45.150 113.2205 320 97 0.000080 0.658E-04 0.658E-04 97.710 688.9206 640 193 0.000020 0.144E-04 0.144E-04 229.830 5173.210Table 7: Results of evaluating (on a M �M grid) the single layer potentialof 30 
os 3� on a 
ir
le.

Case N M Æ Tf Td1 80 7 0.020480 8.540 7.8402 160 13 0.005120 19.120 20.6903 320 25 0.001280 40.080 69.2904 640 49 0.000320 87.070 554.3205 1280 97 0.000080 205.240 4434.560*6 2560 193 0.000020 509.300 35476.480*Table 8: Time required to evaluate (on the grid) the single layer potential of20 
os 2� on the union of four 
ir
les.
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al
ulation with the same a

ura
y. The breakeven point is quite low as well,indi
ating that the fast algorithm has very little overhead.We 
ompared our s
heme with a dire
t evaluation s
heme whi
h 
omputesS(i) = NXj=1 0K(xi; xj)�jto a

ura
y �M withM = P j�jj. To 
arry out the dire
t evaluation, we splitK = KF +KL by Ewald summation and evaluate ea
h pie
e to a

ura
y �=2.The splitting parameter Æ0 for the dire
t evaluation is 
hosen as large aspossible subje
t to the restri
tion that only nine images be kept; thus werequired 2Æ0� e�1=4Æ0 � �=2:The number of terms p2 kept in KF was then set by the Fourier series trun-
ation error estimate e��2p2Æ050p3(Æ0)3=2 � �=2:Typi
ally we took � = 10�6, Æ0 = 0:02 and p = 7. We used the dire
tsummation method to evaluate the potential at 10 points and extrapolatedthe time estimates.First we used random xi uniformly distributed over B. We took � = 10�6,and used a mesh of size 4p with seventh order interpolation in the Fourierseries evaluation s
heme. We took N = 10; 20; 40; : : :. The results are shownin Table 9, where Td is the CPU time required for the dire
t 
al
ulation, Tf isthe time required by the fast algorithm, and Ed and Ef are the 
orrespondingerrors. The error Ef is asymptoti
ally smaller than the error Ed in dire
tevaluation, and the speedup Td=Tf is astronomi
al. With 40,960 points, thedire
t 
al
ulation would take almost six months to do what the fast algorithmdoes in a little over one hour. The fast algorithm in
urs so little overheadthat it is faster than dire
t evaluation even with only 10 points.Our se
ond test 
ase used xi uniformly distributed on a 
ir
le of radius0.39 and 
enter (0.4,0.4), so it almost tou
hes the edge of the box and im-ages must be in
luded. Now our re�nement strategy was to in
rease p by22=3 and redu
e Æ by 24=3 when N was doubled. The work is supposed to beO(N4=3 logN) in this 
ase, and the numeri
al results bear out this expe
ta-tion. A speedup of 360 is a
hieved when N = 10; 000.43



Case N p Æ Tf Td Ef Ed1 10 5 0.020480 0.730 0.820 0.602E-06 0.470E-072 20 8 0.010240 1.440 3.500 0.263E-06 0.696E-073 40 12 0.005120 2.870 14.320 0.125E-06 0.440E-074 80 17 0.002560 11.120 56.880 0.606E-07 0.468E-075 160 25 0.001280 21.060 228.160 0.233E-07 0.419E-076 320 36 0.000640 35.390 908.160 0.688E-08 0.189E-077 640 51 0.000320 74.880 3701.120 0.568E-08 0.279E-078 1280 73 0.000160 142.810 14896.640 0.133E-08 0.229E-079 2560 104 0.000080 285.960 59898.880 0.119E-08 0.236E-0710 5120 148 0.000040 545.120 236687.360 0.435E-09 0.233E-0711 10240 210 0.000020 1123.720 944834.560 0.107E-09 0.236E-0712 20480 297 0.000010 2113.840 3753779.200 0.763E-10 0.226E-0713 40960 421 0.000005 4111.720 15002624.000 0.396E-10 0.227E-07Table 9: Results for the O(N logN) dis
rete sum algorithm with uniformlydistributed points.
Case N p Æ Tf Td Ef Ed1 20 6 0.020480 1.630 2.700 0.635E-07 0.511E-072 40 10 0.008127 2.930 10.840 0.469E-07 0.156E-073 80 16 0.003225 9.280 44.080 0.192E-07 0.153E-074 160 26 0.001280 19.150 177.760 0.378E-08 0.111E-075 320 42 0.000508 34.650 718.400 0.523E-08 0.555E-086 640 67 0.000202 78.270 2947.200 0.411E-08 0.720E-087 1280 107 0.000080 183.000 11773.440 0.259E-08 0.760E-088 2560 170 0.000032 523.160 46376.960 0.138E-08 0.999E-089 5120 270 0.000013 972.040 176517.120 0.925E-09 0.816E-0810 10240 429 0.000005 1951.720 708864.000 0.271E-08 0.846E-08Table 10: Results for the dis
rete sum algorithm with points distributed ona 
ir
le; the algorithm is then O(N4=3 logN).
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9 Con
lusionsWe have presented three new families of fast algorithms for 
lassi
al potentialtheory and demonstrated their pra
ti
ality with numeri
al results. Our algo-rithms are based on a new approa
h whi
h 
ombines Ewald summation withfast transforms for simple spe
ial fun
tions. The key is Ewald summation,whi
h separates the Green fun
tion into low-frequen
y global information andhigh-frequen
y lo
al information. The low-frequen
y information is 
arriedby a rapidly 
onverging Fourier series and the high-frequen
y information islo
alized near the singularity. Adjusting the splitting parameter adjusts thede
ay in Fourier spa
e versus the de
ay in real spa
e, and leads to new fastalgorithms for various problems.Numeri
al results show that our new approa
h is a

urate and eÆ
ient.The breakeven point is amazingly low, and the new algorithms a
hieve 
on-siderable speedups for large problems. When one wants to evaluate a layerpotential to one per
ent a

ura
y on a reasonably 
ompli
ated domain, thefast algorithm is nine times faster than even a sophisti
ated dire
t 
al
ula-tion. When higher a

ura
y is desired or the boundary is more 
ompli
ated,requiring a �ner dis
retization, the fast algorithm 
an be several hundredtimes faster. Ewald summation is responsible for the a

ura
y of the algo-rithm whi
h evaluates the potential on �, be
ause it splits the potential intopie
es, ea
h stru
tured so that simple Gauss-Legendre quadrature 
an beused for ea
h element. The eÆ
ien
y is then due to the use of the fast Gausstransform and fast manipulation methods for Fourier series. When evaluat-ing the potential o� �, a

ura
y suggests the use of produ
t integration forthe lo
al part. EÆ
ien
y 
an still be a
hieved be
ause the lo
al part de
aysrapidly when one moves away from �.Dis
rete sums 
an be evaluated rapidly as well, suggesting that this al-gorithm will be very useful in large-s
ale 
omputations with periodi
 vortexmethods or other parti
le methods. Numeri
al results for dis
rete sums showthat speedups of 4,000 
an be a
hieved in 
al
ulations with 40,000 randomuniformly distributed parti
les, and the algorithm breaks even at 10 parti
les.10 A
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