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Abstra
tIn this paper, we present a fast algorithm whi
h evaluates a dis
reteLapla
e transform withN points atM arbitrarily distributed points in C(N+M) work, where C depends only on the pre
ision required. Our algorithmbreaks even with the dire
t 
al
ulation at N = M = 20, and a
hieves aspeedup of 1000 with 10000 points. It is based on a geometri
 divide and
onquer strategy, 
ombined with the manipulation of Laguerre expansions,via a dilation formula for Laguerre fun
tions.
1 Introdu
tionMany situations in applied mathemati
s require the use of the Lapla
e trans-form f̂(t) = Z 10 e�tsf(s) ds(1)of a fun
tion f de�ned on R+ = (0;1). Pra
ti
ally, one often evaluates f̂by applying a numeri
al quadrature rule to the integral (1). Thus pra
ti
alsituations usually require evaluation of the dis
rete Lapla
e transformf̂i = NXj=1 fj e�tisj ;(2)for i = 1; : : : ;M , where the 
oeÆ
ients fj depend on the values f(sj) andthe weights of the quadrature formula and ti and sj are given positive realnumbers. A spe
ial 
ase is the evaluation of polynomials, or more generallythe dis
rete Mellin transform.A diÆ
ulty, however, is the high 
ost of evaluating (2) when N or M islarge; dire
t evaluation of (2) 
osts O(NM) work. In this paper, we present2



an algorithm for evaluating the dis
rete Lapla
e transform (2), within a user-spe
i�ed pre
ision � relative to F = P jfjj, in O(M + N) arithmeti
 opera-tions, with a 
onstant in O(M +N) depending only on � and the interval inwhi
h all the points ti and sj lie. Our algorithm is based on 
ertain propertiesof Laguerre polynomials, and takes advantage of the multipli
ative 
onvolu-tion stru
ture of the transform. It will speed up 
al
ulations in whi
h Mand N are large and the work is dominated by the arithmeti
 operationsne
essary to evaluate the sums (2).Our algorithm generalizes to evaluate 
onvolutions with a �xed Laguerrefun
tion. Sin
e any smooth rapidly de
aying fun
tion on R+ has a rapidly
onverging Laguerre expansion, our algorithm thus generalizes to permit fastmultipli
ative 
onvolution on R+, with any su
h kernel.A fast Lapla
e transform has also been developed by Rokhlin [2℄ using anapproximation-theoreti
 approa
h quite di�erent from the spe
ial-fun
tion-theoreti
 approa
h presented here. We have not attempted to make a detailed
omparison of the two algorithms. They are similar in some respe
ts; both usea geometri
 subdivision of R+ but Rokhlin's algorithm is based on Chebyshevexpansions, while our algorithm uses spe
ial fun
tions espe
ially suited to theLapla
e transform.The stru
ture of the paper is standard. x1 presents the spe
ial fun
-tion de�nitions and identities we will need, x2 explains the algorithm, andx3 presents the numeri
al results. x4 dis
usses 
onvolution with Laguerrefun
tions and more general kernels, and x5 states our 
on
lusions.
3



2 Formulas and spe
ial fun
tionsThe Laguerre polynomials are dis
ussed in [3℄. We shall de�ne them by theRodrigues formula Ln(t) = etn!Dn �tne�t� t 2 Rwhere D = d=dt, though they are most 
onveniently evaluated by the three-term re
urren
e(n+ 1)Ln+1(t)� (2n+ 1� t)Ln(t) + nLn�1(t) = 0:We will need only one identity involving Laguerre polynomials. This is thedilation formula whi
h expresses the a
tion of the group of dilations of R+on a given Laguerre polynomial. It reads [3℄Ln(ts) = nXk=0 n!k!(n� k)!tn�k(1� t)kLn�k(s)(3)From this identity, we 
an derive the main formula used in our fast Lapla
etransform. We de�ne the Laguerre fun
tions byLn(t) = Ln(t)e�t:This is not the standard de�nition, but the appropriate one for our situation.These Laguerre fun
tions form a biorthonormal set with Laguerre polynomi-als rather than themselves forming an orthonormal set.We now require a dilation formula for Laguerre fun
tions. To derive su
ha formula, �x t and assume a Laguerre expansion of the formLn(ts) = 1Xk=0 gnk (t)Lk(s):4



Su
h an expansion exists, sin
e Ln(ts) is a smooth fun
tion on R+ whi
h de-
reases rapidly at1. The 
oeÆ
ients are found by using the biorthogonalityrelation [3℄ Z 10 Lk(t)Lm(t)dt = Ækm:Indeed, multiply the de�nition of gnk (t) by Lm(s) and integrate term by termto get gnm(t) = Z 10 Ln(ts)Lm(s)ds = 1t Z 10 Ln(s)Lm(s=t)ds:Use the dilation formula for Laguerre polynomials and biorthogonality to getgnm(t) = 1t Z 10 Ln(s) mXk=0 m!k!(m� k)! �1t�m�k �1� 1t�k Lm�k(s)ds= 0 if m < n= 1t m!n!(m� n)! �1t�n �1� 1t�m�n if m � n:Thus we have a dilation formula for Laguerre fun
tions:Ln(ts) = 1Xk=0�1t�n+1 �1� 1t�k (n+ k)!n!k! Ln+k(s):(4)(This formula 
an be found in the textbook [1℄, on page 215. A qui
ker proof
an be 
onstru
ted by using the generating fun
tion of Laguerre polynomi-als.) An important spe
ial 
ase (n = 0) ise�ts = 1t 1Xk=0�1� 1t�k Lk(s):(5)Sin
e Lk(s) � e�s=2, the series (4) and (5) 
onverge geometri
ally fast in theregion j1� 1=tj � r < 1.We are now ready to derive the expansion whi
h forms the basis of ouralgorithm: Put t = xy and s = z in (5) to gete�xyz = 1Xk=0 1xy  1� 1xy!k Lk(z):(6) 5



Apply the binomial theorem in the form 1� 1xy!k = 2�k [(1 + 1=x)(1� 1=y) + (1 + 1=y)(1� 1=x)℄k= 2�k kXj=0 k!j!(k � j)!(1 + 1=x)k�j(1� 1=y)k�j(1 + 1=y)j(1� 1=x)j:Thus (6) be
omes, after reversing the order of summation and shifting theindex k,e�xyz = 1xy 1Xj=0 1Xk=0 2�(j+k) (j + k)!j!k! (1+1=x)k(1�1=y)k(1+1=y)j(1�1=x)jLj+k(z):(7)This series separates the variables x, y and z in a way 
onvenient for thealgorithm.Finally, we will need to estimate the trun
ation error in
urred by trun-
ating (7) after say p2 terms. The error is Ep � Fp whereEp = 1xy 24 1Xj=p+1 1Xk=0+ 1Xk=p+1 1Xj=035 zk1zj2 (j + k)!j!k! Lj+k(z);z1 = (1 + 1=x)(1� 1=y)=2, z2 = (1 + 1=y)(1� 1=x)=2 andFp = 1xy 1Xj=p+1 1Xk=p+1 zk1zj2 (j + k)!j!k! Lj+k(z):We have split the error up like this so that the largest error term Ep 
anbe bounded by the dilation formula (4) for Laguerre fun
tions: we haveEp = 1xy 24 1Xj=p+1 zj2�j+11 Lj(�1z) + 1Xk=p+1 zk1�k+12 Lk(�2z)35(8)where z1 = 1� 1=�1 and z2 = 1� 1=�2. The uniform bound jLk(z)j � e�z=2and the formula for the tail of a geometri
 series give the error boundjEpj � �1xye��1z=2 ( z21�z1 )p+11� z21�z1 + �2xye��2z=2 ( z11�z2 )p+11� z11�z2 :6



Some algebra redu
es this expression tojEpj � e�xyz=(1+x�y+xy)  1� 21 + x� y + xy!p+1+e�xyz=(1�x+y+xy)  1� 21� x+ y + xy!p+1This bound is useful when z lies anywhere in (0;1) and x and y are restri
tedto lie near 1: If we take x and y in a geometri
 interval (1=q; q) with 1 � q <1+p52 , an easy 
al
ulation shows thatjEpj � 2e�z=q2(1+q2) " q � 1=q2� (q � 1=q)#p+1 :(9)Note that q � 1=q is just the length of the interval 
ontaining x and y.The other error term Fp 
annot be bounded by the dilation formula,be
ause the sums both run from p+1 to 1. We bound it 
rudely, assumingthat q is small, by using that (j+k)!=j!k! � 2j+k and that Lj+k(z) � e�z=2 �1. The resulting bound tremendously overestimates Fp, but it is sharp enoughfor our purposes. The formula for the partial sum of a geometri
 series impliesthat jFpj � 1xy (2z1)p+11� 2z1 (2z2)p+11� 2z2 :If x and y lie in the interval 1=q; q with 1 � q < p2, then Fp is bounded byjFpj � 2q2 (q2 � 1)2p+2(2� q2)2 :Note that the geometri
 
onvergen
e fa
tor q2� 1 = q(q� 1=q) is larger thanthe 
onvergen
e fa
tor q�1=q in the error bound for Ep, but that it is raisedto a higher power 2p+ 2 rather than p + 1. It turns out that our bound forFp is 
omparable to our bound for Ep roughly when q = 1:23 and negligibleroughly when q = 1:13. Our numeri
al results use the value q = 1:125, andFp is indeed negligible.This 
ompletes the formulas and estimates we will need to derive the fastLapla
e transform. 7



3 The fast Lapla
e transformWe now explain our algorithm for evaluating the dis
rete Lapla
e transformf̂i = NXj=1 fje�tisj ;(10)within an error bounded by �F = �P jfjj. We use the series (7) in a naturalway. Sin
e (7) 
onverges rapidly for x and y near 1, we s
ale ti and sj intogroups lying near 1. The s
aling fa
tors then 
omprise z whi
h is allowedto lie anywhere. We begin by dividing the interval (0;1) in whi
h the\sour
es" s lie into geometri
 intervals of ratio q > 1. Su
h an interval Bnis given by Bn = (q2n�1; q2n+1℄, for any integer n, and the geometri
 
enterof Bn is sB = q2n. Thus s lies in Bn whenever 1=q � s=sB � q. The ratio qwill be 
hosen later, to balan
e work and error. Similarly, we 
ut the interval(0;1) in whi
h the \targets" ti lie into geometri
 intervals Cm with geometri

enters tC and ratio q. (We take the same ratio for simpli
ity of exposition;
learly one 
an take di�erent ratios for targets and sour
es.) Now ea
h sour
esj and target ti lies in a geometri
 interval, say B or C respe
tively. Considertargets ti lying in C. We want to evaluatef̂i = NXj=1 fje�tisj= XB Xsj2B fje�tisj= XB Xsj2B fje�(ti=tC)(sj=sB)tCsB :Here we have broken up the sum over j by summing over sour
es sj in ea
hbox B separately, and s
aled ti and sj to lie near 1.Consider all sour
es and targets lying in a �xed pair of boxes B and C,8



and apply (7):f̂i(B) = Xsj2B fje�(ti=tC)(sj=sB)tCsB= pXj=0 pXk=0 Xsj2B fj sBsj  1 + sB=sj2 !j  1� sBsj !k tCti�  1 + tC=ti2 !k �1� tCti �j (j + k)!j!k! Lj+k(tCsB) + Ep:Here we 
hoose p and q, depending only on �, so that Ep � �F where F =P jfjj. We have now separated the variables ti and sj in su
h a way that afast algorithm is possible. It pro
eeds as follows.For ea
h nonempty sour
e interval B, we evaluate (p+ 1)2 
oeÆ
ientsAjk(B) = Xsj2B fj sBsj  1 + sB=sj2 !j  1� sBsj !kfor 0 � j; k � p. This 
osts O(p2) work for ea
h nonempty B, whi
h 
annotadd up to more than O(p2N). Note that p depends only on the user-spe
i�edtoleran
e �. Now the algorithm pro
eeds by running over nonempty targetintervals C. For ea
h C, we a

umulate a series of the formpXj=0 pXk=0Bjk(C)tCt  1 + tC=t2 !k �1� tCt �j(11)to be evaluated at all targets t = ti lying in C. Here the 
oeÆ
ients Bjk aregiven by Bjk(C) =XB Ajk(B)(j + k)!j!k! Lj+k(tCsB):Hen
e it 
osts at most O(p2jBjjCj) to form all 
oeÆ
ients Bjk for all targetboxes C, where jBj and jCj are the total numbers of nonempty sour
e andtarget boxes respe
tively.The �nal step in the algorithm is to evaluate the appropriate series (11) atea
h ti: this 
osts O(p2M) work. The 
omplete algorithm thus 
osts O(N +9



M) work to evaluate the dis
rete Lapla
e transform with an error less than�F ; the 
onstant in O(N +M) depends only on �. The overhead asso
iatedwith forming the 
oeÆ
ients is bounded by the number of sour
e box-targetbox intera
tions, whi
h depends only on the maximum and minimum sour
eand target lo
ations.An even further 
ost redu
tion is e�e
ted by 
utting o� the intera
tion:if t 2 C and s 2 B, then e�ts � e�tCsB=q2 :If tC = q2n and sB = q2m, thene�ts � e�q2(n+m�1)whi
h de
ays rapidly as n + m in
reases. Thus target box Cn need onlyintera
t with sour
e boxes Bm for whi
h n +m � 1 + (log log 1=�)=2 log q.
4 Numeri
al resultsFirst, we tested the algorithm on randomly generated points uniformly dis-tributed on the interval [0; 5℄, with weights fi random and uniformly dis-tributed on [0; 1℄. We took � = 10�6, q = 1:125 and p2 = 62 terms in theLaguerre series. The results are reported in Table 1; Tf is the time requiredfor the fast evaluation s
heme, while Td is the dire
t evaluation time. Thefast algorithm beats dire
t evaluation 
onsistently for N = M � 20. WhenN = M = 10240, the fast algorithm is about a thousand times faster thandire
t evaluation; thus the proje
ted break-even point is at N = M = 10.The 
olumn headed Ef reports the errors produ
ed by the fast algorithm, asmeasured against the dire
t 
al
ulation.10



N = M Tf Td Ef20 .01 .01 4.1-940 .01 .02 4.4-880 .03 .06 8.5-8160 .04 .24 1.1-7320 .06 .96 6.7-8640 .10 3.78 6.5-81280 .16 15.36 6.6-82560 .29 61.70 7.7-85120 .52 248.32 7.4-810240 .99 1022.98 7.0-8Table 1: Evaluation of a dis
rete Lapla
e transform to a

ura
y 10�6, withpoints randomly generated on [0; 5℄.
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We also tested the algorithm on equispa
ed points on the interval [0; 10℄,to simulate the appli
ation of the algorithm to numeri
al integration with thetrapezoidal rule. The weights were randomly distributed on [0; 1℄, as before.The results are shown in Table 2. Again, the fast algorithm breaks even atN = M = 20 and a
hieves a speedup of 1000 at N = M = 10240. The errorsare also 
onsiderably smaller than the error bound.N = M Tf Td Ef20 .01 .01 7.8-840 .02 .02 4.9-880 .03 .06 5.3-8160 .04 .26 6.9-8320 .07 .99 8.2-8640 .11 3.84 6.4-81280 .18 15.49 2.1-82560 .30 61.95 8.5-85120 .55 247.30 3.6-710240 1.04 993.28 3.6-7Table 2: Evaluation of a dis
rete Lapla
e transform to a

ura
y 10�6, withpoints equispa
ed on [0; 10℄.Finally, we tested the logarithmi
 dependen
e of the work estimate onthe user-spe
i�ed pre
ision �. A

ording to our estimates, the work requiredshould grow only logarithmi
ally with �. Thus we doubled the number ofsigni�
ant digits required, set � = 10�12, and used p2 = 132 terms in ea
hLaguerre series. Here the points were again equispa
ed on [0; 10℄. The re-sults are shown in Table 3. Clearly the time has very pre
isely doubled in12




omparison with Table 2.N = M Tf Td Ef20 .01 .01 4.2-1440 .04 .02 3.2-1480 .07 .07 5.9-14160 .09 .27 3.6-14320 .14 1.06 4.3-14640 .23 3.97 2.9-151280 .35 16.00 1.1-142560 .60 64.00 3.0-145120 1.07 247.81 1.4-1310240 2.00 1037.31 1.3-13Table 3: Evaluation of a dis
rete Lapla
e transform to a

ura
y 10�12, withpoints equispa
ed on [0; 10℄.
5 GeneralizationsOur algorithm generalizes immediately to evaluate the 
onvolution with a�xed Laguerre fun
tion, f̂i = NXj=1 fjLn(tisj):(The Lapla
e transform is the 
ase n = 0.) One simply uses the expansionderived in x2, Ln(ts) = 1Xk=0�1t�n+1 �1� 1t�k (n+ k)!n!k! Ln+k(s);13



in pla
e of (5) in the 
al
ulations following (5). The resulting formula,Ln(xyz) =  1xy!n+1 1Xj=0 1Xk=0 2�(j+k)(1 + 1=x)k(1� 1=y)k �� (1 + 1=y)j(1� 1=x)j (j + k + n)!j!k!n! Lj+k+n(z);implies a fast algorithm exa
tly similar to the fast Lapla
e transform.This observation makes an even further generalization possible. One oftenwants to evaluate multipli
ative 
onvolution sums of the formf̂i = NXj=1 fjK(tisj);(12)where K is a smooth fun
tion on R+ whi
h de
ays rapidly enough at 1.Su
h a kernel has a rapidly 
onverging Laguerre expansionK(z) = 1Xn=0KnLn(z)whi
h approximates K arbitrarily well if enough terms are taken. Thusone 
an trun
ate the series after say P terms, and apply a fast Laguerretransform to ea
h term to get an algorithm whi
h evaluates (12) atM pointsin O(N +M) work, with a 
onstant depending only on the pre
ision desired.
6 Con
lusionsWe have presented a fast algorithm whi
h a
hieves a thousandfold speedupover the dire
t 
al
ulation of the dis
rete Lapla
e transform when ten thou-sand points are used, but requires so little overhead that it is faster evenwhen 20 points are used. The 
onstant in the work estimate depends only onthe pre
ision desired, and only logarithmi
ally at that. Thus asking for twi
e14



as many 
orre
t digits only 
osts twi
e as mu
h. Su
h an algorithm makesit possible to evaluate Lapla
e transforms numeri
ally to far higher a

ura
yin far less time.A generalization of the algorithm allows the appli
ation of any multipli
a-tive 
onvolution operator on R+ with a smooth kernel, in optimal time.
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