
A Fast Algorithm for the Evaluation of Heat Potentials

(to appear in Communications and Pure and Applied Mathematics)

L. Greengard ∗ J. Strain †

May, 1989

Abstract

Numerical methods for solving the heat equation via potential theory have been hampered by the high
cost of evaluating heat potentials. When M points are used in the discretization of the boundary and
N time steps are computed, an amount of work of the order O(N 2M2) has traditionally been required.
In this paper, we present an algorithm which requires an amount of work of the order O(NM), and
we observe speedups of five orders of magnitude for large-scale problems. Thus, the method makes it
possible to solve the heat equation by potential theory in practical situations.
Keywords: Heat Equation, Potential Theory, Fast Algorithms, Integral Equations

1 Introduction

A classical approach to the solution of the heat equation

Ut = ∆U

in a space-time domain ΩT =
∏T

t=0 Ω(t) (see Fig. 1) is through the use of heat potentials [3, 7]. Given zero
initial conditions, one seeks a representation of U as a single layer heat potential

Sµ(x, t) =

∫ t

0

∫

Γ(t′)

K(x,x′, t − t′)µ(x′, t′) dx′ dt′ (1)

or a double layer heat potential

Dµ(x, t) =

∫ t

0

∫

Γ(t′)

∂K

∂n′ (x,x′, t − t′)µ(x′, t′) dx′ dt′ , (2)

where K is a fundamental solution of the heat equation in some region containing Ω, n′ denotes the unit
outward normal to Γ(t′) = ∂Ω(t′) at x′, and µ is a surface density defined on ΓT =

∏T
t=0 ∂Ω(t).

∗Yale University and Courant Institute of Mathematical Sciences, New York University. The work of this author was
supported in part by the Office of Naval Research under Grant N00014-89-J-1527, in part by IBM under grant P00038437 and
in part by a NSF Mathematical Sciences Postdoctoral Fellowship.

†Courant Institute of Mathematical Sciences, New York University. The work of this author was supported by
DARPA/AFOSR Contract No. F-49620-87-C-0065.

1

Figure 1: A domain ΩT contained in space-time Rn × R. Ω(t) is the cross-section of ΩT at time t. ΓT is
the lateral boundary of ΩT . Its cross-section at time t is given by Γ(t) = ∂Ω(t).

2

For example, the initial-Neumann problem where

U(x, 0) = 0 in Ω(0)

∂U

∂n
= g on ΓT

is reduced to the Volterra integral equation of the second kind

1

2
µ(x, t) + Dµ(x, t) = g(x, t) on ΓT

by means of the representation U = Sµ. Such an approach is used for numerical solution of the heat equation
in [4, 6].

Other applications of heat potentials include the study of crystal growth and unstable solidification which
can be modelled by the integral equation

εC + V + U + SV = 0 ,

where the unknown V is the normal velocity of the solid-liquid boundary Γ(t), C is the curvature of Γ(t), ε
is a positive constant, and U is a given temperature field incorporating the initial and boundary conditions.
Recent numerical methods for unstable solidification have used this formulation [5, 8].

However, numerical methods based on heat potentials have been crippled by their history-dependence:
both solving the integral equation and evaluating the potential representation require more and more work
as time proceeds. Consider, for example, the task of calculating Sµ at a sequence of time levels t =
∆t, 2∆t, . . . , N∆t. At the nth level, we must sum over n previous levels; therefore, the total work is O(N 2).
As for the spatial variables, if we are given M points xj , j = 1, 2, . . . , M in the discretization of the boundary,
the evaluation of Sµ requires O(M 2) work per time step. Thus, solving the heat equation up to a fixed time T
by an integral equation method would seem to require at least O(N 2M2) work. This high cost has prevented
integral equation methods from being used in practice.

In this paper, we develop an algorithm for the rapid evaluation of heat potentials. This algorithm requires
only O(MN) work to evaluate Sµ or Dµ at M points on the boundary at each of N time levels. Since there
are MN data points and MN values to be computed, this is asymptotically optimal. The basic idea of the
algorithm is that the potential can be split into two components, one representing the effects of the source
µ over distant time (the history part) and one representing the effects of µ over recent time (the local part).
The history part is smooth and can be well approximated by only a few Fourier modes. The local part,
on the other hand, can be well approximated by Taylor expansion, using the singularity structure of the
fundamental solution.

The outline of the paper is as follows; Section 2 describes the fundamental solution for a box, Section 3
describes the fast algorithm itself, and Section 4 presents some numerical results. We state our conclusions
in Section 5.

The algorithm is currently being applied to crystal growth and unstable solidification by Sethian and
Strain [9]. In a subsequent paper, we will describe a different local approximation and use the fast algorithm
for the numerical solution of the heat equation.

A detailed description of the algorithm is presented only for the single layer potential Sµ; the modifica-
tions necessary for evaluating Dµ or volume potentials are straightforward. Furthermore, we consider only
potentials formed with the “box” kernel defined below; one advantage of the integral equation approach is
that the solution in ΩT does not depend on which kernel is used.

2 The Fundamental Solution in a Box

In this section, we obtain complementary representations for the fundamental solution K of the heat equation
in a box B = [0, 1]n with homogeneous Dirichlet boundary conditions. A Fourier series calculation [2] shows

3

that

K(x,x′, t) = 2n
∑

k∈Nn

e−π2|k|2t
n

∏

i=1

sin(πkixi) sin(πkix
′
i) , (3)

where N denotes the positive integers, k = (k1, ..., kn) and x = (x1, ..., xn).
On the other hand, the method of images (see [10]) can be used to show that

K(x,x′, t) = (4πt)−n/2
∑

k∈Zn

∑

σ1=±1

· · ·
∑

σn=±1

σ1σ2 · · ·σn e−‖x−σ·x′−2k‖2/4t , (4)

where σ ·x′ = (σ1 x′
1, . . . , σn x′

n). This expression can also be derived by the Poisson summation formula [2].
The equality of (3) and (4) is one of the foundations of our algorithm; both sums converge exponentially

fast, but in different regions of time. Indeed, the error in using pn terms of (3) is of the order O(e−p2π2t) as

p2t → ∞, whereas the error in using 2n(2p + 1)n terms of (4) is of the order O(e−p2/t) as p2/t → ∞. Thus,
we truncate the Fourier series (3) to evaluate K for large t and the sum of Gaussians (4) to evaluate K for
small t.

3 The Fast Algorithm

The fast algorithm will be explained in the simplest context, namely that of evaluating the single layer heat
potential

Sµ(x, t) =

∫ t

0

∫

Γ(t′)

K(x,x′, t − t′)µ(x′, t′) dx′ dt′ (5)

in two space dimensions. Here Γ(t) is a family of boundary curves lying in the unit box B = [0, 1]2 and K
is the fundamental solution of the heat equation in B with homogeneous Dirichlet boundary conditions:

K(x,x′, t) = 4
∑

k∈N2

e−π2|k|2t sin(πk1x1) sin(πk1x
′
1) sin(πk2x2) sin(πk2x

′
2) (6)

=
1

4πt

∑

k∈Z2

∑

σi=±1

σ1σ2 e−‖x−σx
′−2k‖2/4t . (7)

We begin by splitting the time integral in (5) at time t − δ, with δ a small parameter to be determined
later. Thus, we write Sµ = SLµ + SF µ, where

SLµ(x, t) =

∫ t

t−δ

∫

Γ(t′)

K(x,x′, t − t′)µ(x′, t′) dx′ dt′ , (8)

SF µ(x, t) =

∫ t−δ

0

∫

Γ(t′)

K(x,x′, t − t′)µ(x′, t′) dx′ dt′ . (9)

The subscripts L and F refer to the local and Fourier parts, respectively.

3.1 Fast evaluation of SFµ

First consider the component SF µ, which contains the history-dependence of the potential. After replacing
K with its Fourier expansion (6), SF µ becomes a Fourier series

SF µ(x, t) =

∞
∑

k1=1

∞
∑

k2=1

Ck(t, δ) sin(πk1x1) sin(πk2x2) , (10)

4

with coefficients

Ck(t, δ) = 4

∫ t−δ

0

e−π2|k|2(t−t′)

∫

Γ(t′)

sin(πk1x
′
1) sin(πk2x

′
2)µ(x′, t′) dx′ dt′. (11)

This representation, by itself, does not eliminate the problem of history-dependence, because each of the
Fourier coefficients Ck at time t is obtained by integrating over all previous history. However, Ck(t, δ) can
be computed from Ck(t − ∆t, δ) recursively. That is, by separating the final time interval ∆t from the rest,
we get

Ck(t, δ) = e−π2|k|2∆tCk(t − ∆t, δ) +

4

∫ t−δ

t−∆t−δ

e−π2|k|2(t−t′)

∫

Γ(t′)

sin(πk1x
′
1) sin(πk2x

′
2)µ(x′, t′) dx′ dt′. (12)

Each coefficient Ck can be updated with constant work per time step, rather than recomputed from t = 0;
history-dependence is effectively eliminated.

Remark 3.1 This elimination of history actually applies much more generally. Let an operator A generate a semigroup
etA, and consider the problem of evaluating the Duhamel integral

F (t) =

∫ t

0

e(t−t′)Af(t′) dt′

at a sequence of time levels t = ∆t, 2∆t, . . . ,N∆t. Redoing the time integral at each step costs O(N 2) work, but we can
compute F (t + ∆t) recursively from F (t):

F (t + ∆t) =

∫ t+∆t

0

e(t+∆t−t′)Af(t′) dt′ (13)

= e∆tA

(

F (t) +

∫ t+∆t

t

e(t−t′)Af(t′) dt′

)

. (14)

This costs only O(N) work up to time N∆t. In the present paper, A is the Laplacian ∆ on the box B with Dirichlet boundary

conditions on ∂B, and f(t′) is a measure concentrated on Γ(t′) with density µ.

Another feature of the Fourier series representation (10) for SF µ is that it allows us to take advantage
of the smoothing effect of the heat operator. Higher modes are damped exponentially, so that the Fourier
series representation (10) of the kernel can be truncated after p2 terms with an exponentially small error.

Lemma 3.1 Let t − t′ ≥ δ and let Ep be the error in truncating the series expansion (6) after p2 terms

Ep = |K(x,x′, t − t′) − 4

p
∑

k1=1

p
∑

k2=1

e−π2|k|2(t−t′)
2

∏

i=1

sin(πkixi) sin(πkix
′
i)| .

Then

Ep ≤ e−2π2(p+1)2δ

πδ
. (15)

Proof:

Ep = 4|
∞
∑

k1=p+1

∞
∑

k2=p+1

e−π2|k|2(t−t′)
2

∏

i=1

sin(πkixi) sin(πkix
′
i)| (16)

≤ 4

∞
∑

k1=p+1

∞
∑

k2=p+1

e−π2|k|2δ =



2

∞
∑

k1=p+1

e−π2k2
1δ





2

5

≤



2e−π2(p+1)2δ
∞
∑

j=0

e−π2j2δ





2

≤
(

2e−π2(p+1)2δ

∫ ∞

0

e−π2δ·x2

)2

=

(

2e−π2(p+1)2δ · 1

2

√
π√

π2δ

)2

=
1

πδ
e−2π2(p+1)2δ . (17)

An error bound for truncation of the Fourier series representation of SF µ now follows immediately.

Lemma 3.2 Let EF (p) be the error in truncating the series expansion (10) after p2 terms

EF (p) = |SF µ(x, t) −
p

∑

k1=1

p
∑

k2=1

Ck(t, δ) sin(πk1x1) sin(πk2x2)| .

Then

EF (p) ≤ |ΓT ||µ|∞
πδ

e−2π2(p+1)2δ , (18)

where |ΓT | is the area of ΓT and |µ|∞ is the maximum of |µ| over ΓT .

We now define the updates Uk(t, ∆t, δ) by

Uk(t, ∆t, δ) = 4

∫ t−δ

t−δ−∆t

e−π2|k|2(t−t′)

∫

Γ(t′)

sin(πk1x
′
1) sin(πk2x

′
2)µ(x′, t′) dx′ dt′ . (19)

As the calculation of Sµ proceeds in time, the recursion relation (12) provides us with a means for
updating the representation of SF µ at a total cost which grows only linearly with the number of time steps,
rather than quadratically:

Ck(n∆t, δ) = e−π2|k|2∆tCk((n − 1)∆t, δ) + Uk(n∆t, ∆t, δ) . (20)

We therefore avoid both the computational cost and excessive storage required by the direct evaluation of
the integral SF µ.

We still need to construct space and time quadratures for evaluating the updates Uk in equation (19).
First, consider the calculation of the trigonometric moments of µ

Mk(t′, δ) =

∫

Γ(t′)

sin(πk1x
′
1) sin(πk2x

′
2)µ(x′, t′) dx′ ,

assuming µ to be known at M equidistant points on Γ(t′). The trapezoidal rule for smooth periodic functions
converges superalgebraically, so it would be natural to use it to evaluate Mk. Using all M points to integrate
each of the first p2 moments at each time step leads to a nonoptimal method, however, because p must increase
as δ → 0 and M → ∞, to ensure that the Fourier series truncation error vanishes (see equation (18) above).
But each moment Mk(t, δ) involves integration (over a smooth curve) of sine functions with wave numbers
ki ≤ p. Since accurate integration of such an oscillatory function requires only a fixed number of quadrature
points per wavelength, we need only use O(p) of the given points in the integration scheme. (The constant
in O(p) will depend, of course, on the smoothness of the boundary Γ and the density µ.) Hence, all of the
p2 coefficients Ck(n∆t, δ) can be updated at a total cost of O(p3) work. We want O(M) work per time step,
so we choose p = M1/3. In the error estimate (18), we then have

EF (p) ≤ |ΓT ||µ|∞
πδ

· e−2π2M
2
3 δ .

6

By choosing δ = M− 2
3
+ε, 0 < ε < 2

3 , we have

EF (p) ≤ M
2
3
−ε · |ΓT ||µ|∞

π
· e−2π2Mε

, (21)

which is decaying superalgebraically with M . For example, with ε = 4/15 and M = 10, this error bound is
already less than 10−15.

Next we must carry out the time integral in the update. Standard approaches like the trapezoidal rule
are not uniformly second order accurate as N, M → ∞ and δ → 0, because of the singularity of the heat
kernel at t′ = t, which lies a distance δ away from the endpoint of the interval of integration. However, we
can evaluate the integral of an exponential times a polynomial exactly, which suggests the construction of a
product integration rule. Thus, we construct weights Wi such that the rule

∫ t−δ

t−∆t−δ

e−π2|k|2(t−t′)g(t′) dt′ = W0g(t − ∆t − δ) + W1g(t − δ) (22)

is exact whenever g is linear. (Higher order rules are equally easy to construct, but for simplicity, we are
seeking a globally second order method.) Some simple algebra gives

W0 =
e−z − 1 + z

z2
∆t e−π2|k|2δ (23)

W1 = e−z ez − 1 − z

z2
∆t e−π2|k|2δ (24)

where z = π2|k|2∆t.
By evaluating the updates in the above manner (the trapezoidal rule in space and product integration in

time), it is clear that the error incurred in the calculation of the Fourier coefficients Ck(t, δ) is O(∆t2) plus
a term which is decaying superalgebraically with ∆s = |Γ(t)|/M . The net work required is O(M) per time
step. Now, given the values Ck(t, δ), it remains only to evaluate the truncated series

SF µ(x, t) =

p
∑

k1=1

p
∑

k2=1

Ck(t, δ) sin(πk1x1) sin(πk2x2)

at the M points xj given on Γ(t). Direct evaluation of the series would require O(Mp2) work which would
preclude optimality. However, SF µ contains only information with wave numbers ki ≤ p. It suffices,
therefore, to evaluate it directly at O(p) of the given points on the one-dimensional set Γ(t). The values of
SF µ can then be reconstructed at the rest of the points by high-order local interpolation along the curve.
Using the preceding strategy, the total amount of work required is of the form O(p3)+O(M) to achieve some
fixed interpolation error, say second order in ∆s. (However, since the points on the curve are equispaced in
arclength, one can actually make the interpolation error decay superalgebraically, by means of an FFT in
arclength. The net computational cost would then be of the form O(p3) + O(M log M).)

In summary, we can evaluate SF µ in O(M) work per time step, with a constant independent of N , and
with an error of the form

O(∆t2 + ∆s2 + M2/3−εe−2π2Mε

) ,

when δ = O(M−2/3+ε) and second order interpolation is used in arclength. Since the final term is super-
algebraic, the error in SF µ is second order. Higher order error estimates can be obtained by using higher
order product integration and higher order interpolation in arclength.

7

3.2 Fast evaluation of SLµ

We must now decide how to evaluate the local part of the potential

SLµ(x, t) =

∫ t

t−δ

∫

Γ(t′)

K(x,x′, t − t′)µ(x′, t′) dx′ dt′ .

Since t − t′ ≤ δ, the kernel K is sharply peaked at x′ = x. This rapid decay of the heat kernel in space
suggests that SLµ(x, t) can be well-approximated by considering only the values of µ in a small space-time
neighborhood of x ∈ Γ(t) as δ → 0. To take advantage of this locality, we expand Γ(t′) and µ in Taylor
series, and construct an asymptotic approximation to SLµ in powers of δ.

First, assume for simplicity that Γ(t′) is always a distance ≥ d from the boundary of the unit box. Then
K can be approximated by the free-space kernel

G(x − x′, t − t′) =
e−|x−x

′|2/4(t−t′)

4π(t − t′)

as t − t′ ≤ δ → 0. Indeed, G is the term in

K(x,x′, t − t′) =
1

4π(t − t′)

∑

k∈Z2

∑

σi=±1

σ1σ2 e−‖x−σx
′−2k‖2/4(t−t′)

with σi = 1 and k = 0. The remaining terms are decaying exponentially

|K(x,x′, t − t′) − G(x − x′, t − t′)| = O(
e−d2/δ

δ
)

for x,x′ on Γ(t′). Thus,

SLµ(x, t) =

∫ t

t−δ

∫

Γ(t′)

G(x − x′, t − t′)µ(x′, t′) dx′ dt′ + O(
e−d2/δ

δ
) (25)

as δ → 0. This last expression is invariant under Euclidean motions, so that for ease of calculation we may
assume that x = 0 and that the tangent line to Γ(t) at x = 0 is the x-axis. We also assume that Γ(t′)
extends to infinity, incurring an approximation error which decays like O(e−1/δ) as δ → 0. Then Γ(t′) may
be parametrized by

x = s, y = y(s, t′)

where y(0, t) = ys(0, t) = 0, κ = yss(0, t) is the curvature and v = yt(0, t) is the normal velocity of Γ(t) at
s = 0.

After these notational simplifications, SLµ(0, t) assumes the form

SLµ(0, t) ≈
∫ t

t−δ

∫ ∞

−∞

e−s2/4(t−t′)e−y2(s,t′)/4(t−t′)

4π(t − t′)
µ(s, t′)

√

1 + y2
s(s, t′) ds dt′ ,

where we have written µ(s, t′) in place of µ(x′, t′) for simplicity. Note that s is equal to the arclength at
s = 0. The changes of variable s =

√

4(t − t′) · r and z =
√

4(t − t′) give

SLµ(0, t) ≈ 1

2π

∫ 2
√

δ

0

∫ ∞

−∞
e−r2

e−y2(zr,t−z2/4)/z2

µ(zr, t − z2/4)
√

1 + y2
s(zr, t − z2/4) dr dz.

The sharp peak of the Gaussian in r and the short interval of integration in z allow us to compute SLµ as an
asymptotic series in δ. After Taylor expansion of µ and y about the point (0, t), we obtain to lowest order
in δ the result

SLµ(0, t) =

√

δ

π
µ(0, t) + O(δ3/2) .

8

Retaining one more order in δ and doing some algebra gives

SLµ(0, t) =

√

δ

π
(µ(0, t) +

δ

12
(κ − v)2µ(0, t) − δ

3
(µt − µss)) + O(δ5/2) .

Since the parameter s is equal to arclength at s = 0 and the curvature and normal velocity are invariant
under Euclidean motions, the preceding formula holds more generally. We have therefore proven

Lemma 3.3 Let Γ(t) and µ(x, t) be four times differentiable. Then

SLµ(x(s, t), t) =

√

δ

π

[

(1 +
δ

12
(κ − v)2)µ(s, t) − δ

3
(µt(s, t) − µss(s, t))

]

+ O(δ
5
2) , (26)

where κ is curvature, v is normal velocity and s is arclength on Γ(t).

This calculation can be extended to higher order in δ for sufficiently smooth curves and densities, but
we shall carry it no further. The approximation of Lemma 3.3 will suffice for the purposes of this paper: it
can clearly be evaluated at M points in O(M) work, completing our derivation of an O(MN) algorithm for
evaluating the single layer heat potential Sµ.

3.3 Formal Description of the Algorithm

In this section, we describe the fast algorithm in a more procedural form. We first observe that the parameter
δ was chosen in subsection 3.1 to be of the order M−2/3+ε, independent of the time step ∆t. In practice, it
is convenient to have δ be equal to an integer number of time steps. We therefore set

δ =

⌈

M−2/3+ε

∆t

⌉

· ∆t .

Algorithm

Comment [Choose M, N, ∆t and the small parameter ε which defines δ. Set l = dM−2/3+ε

∆t
e and δ = l∆t. Set

p = M1/3.]

Step 1.

Comment [Use the local approximation SLµ to evaluate the single layer heat potential Sµ for the first l time steps.]

do n = 1, 2, . . . , l

do m = 1, 2, . . . , M

Evaluate Sµ(xm, n∆t) via the approximation for SLµ(xm, n∆t)
given by equation (26), with n∆t in place of δ and t.

enddo

enddo

Step 2.

Comment [Initialize Fourier coefficients.]

do k1 = 1, ..., p

do k2 = 1, ..., p

k:= (k1, k2)
Ck(l∆t, δ) := 0

end do

end do

9

Step 3.

Comment [For all subsequent steps, update the Fourier coefficients and calculate the history part SF µ at the points
xm on the curve. Then add the local approximation SLµ at each xm to complete the evaluation of the single layer
heat potential Sµ.]

do n = l + 1, l + 2, · · · , N

(A) do k1 = 1, ..., p

do k2 = 1, ..., p

k:= (k1, k2)
Evaluate the trigonometric moments Mk((n − 1)∆t, δ) and Mk(n∆t, δ).
Compute the update Uk(n∆t, ∆t, δ) of equation (19)
by product integration (equations 22 - 24).
Uk(n∆t, ∆t, δ) = W0 · Mk((n − 1)∆t, δ) + W1 · Mk(n∆t, δ).
Update the Fourier coefficients by means of equation (20):

Ck(n∆t, δ) = e−π2|k|2∆tCk((n − 1)∆t, δ) + Uk(n∆t, ∆t, δ)
end do

end do

(B) Evaluate Fourier series at p equispaced points on Γ(n∆t).
Extend values of Fourier series to all M points xm by interpolation.

(C) do m = 1, 2, . . . , M

Evaluate SLµ(xm, n∆t) by the local approximation (26) and add to SF µ(xm, n∆t).
end do

end do

Remark 3.2. Inspection of the above algorithm shows that the amount of work required is of the order
O(NM), assuming fixed degree interpolation in arclength is used. If Fourier interpolation is used in Step 3
(B), the amount of work required is of the order O(NM log M).

Remark 3.3. As noted previously, the convergence rate of the scheme is dependent on the product
integration scheme used, the interpolation scheme used and the order of the local approximation. The
scheme described in the text is second order in ∆t and of order 5

2 in δ. We have chosen in our tests to use
Fourier interpolation in arclength, which increases the computational complexity by a factor of log M , but
effectively removes interpolation as a limiting source of error.

Remark 3.4. In the algorithm outlined above, we end up computing each trigonometric moment
Mk(n∆t, δ) twice, once for the update Uk(n∆t, ∆t, δ) and once for Uk((n + 1)∆t, ∆t, δ). This is easily
avoided by an appropriate modification to the program.

4 Numerical Examples

The algorithm was implemented in FORTRAN and tested on several numerical examples. We evaluated the
single layer heat potential of a cosine density µ(θ) = cos(kθ) of wavenumber k on a stationary circle

Γ : (x = R cos θ, y = R sin θ, 0 ≤ θ ≤ 2π) .

We computed the potential at time T = 1/2 with a sequence of numerical parameters in which the number
N of time steps and the number M of points on the circle are doubled at each stage, p and the number Mp

of points used for integrating over the curve grow like M 1/3, and δ decreases like M−2/3. Thus, the total
error should be dominated by the δ5/2 = M−5/3 error due to Taylor expansion in the local approximation.
The parameters used and corresponding computational times are shown in Table 1.

10

Case N M δ p Mp Time(Fast) Time(Direct)
1 10 20 .01 10 20 9 45
2 20 40 .0063 13 40 12 331
3 40 80 .004 16 50 21 4400
4 80 160 .0025 20 63 56 66024
5 160 320 .0016 26 80 213 (1.1 106)
6 320 640 .00099 32 102 794 (1.7 107)
7 640 1280 .00063 40 128 3074 (2.7 108)

Table 1: Table of parameters for Cases 1-7, with CPU times on the Multiflo Trace computer at Yale
University.

In cases 1-4, the direct computation times were estimated by evaluating the potential at 20 of the
boundary points at each step, using the trapezoidal rule in space and second order composite product
integration in time. In cases 5-7, direct CPU times were estimated by extrapolation.

The accuracies of the fast and direct methods are compared in Table 2 for wavenumber k = 0. The error
reported is the maximum deviation of the computed potential from the exact potential over 20 points on the
curve. Finally, Table 3 presents the error produced by the fast algorithm for wavenumbers k = 0, 1, 2 and 3.

Case fast algorithm direct algorithm
1 1.2 10−4 6.2 10−3

2 3.1 10−5 9.0 10−4

3 9.2 10−6 1.3 10−4

4 2.7 10−6 3.5 10−5

5 8.9 10−7 8.5 10−6

6 2.9 10−7 2.1 10−6

7 1.1 10−7 5.1 10−7

Table 2: Comparison of absolute errors for wavenumber k = 0, using fast and direct algorithms.

Case k = 0 k = 1 k = 2 k = 3
1 1.2 10−4 1.9 10−4 1.1 10−3 7.5 10−3

2 3.1 10−5 5.0 10−5 3.2 10−4 2.5 10−3

3 9.2 10−6 1.5 10−5 1.0 10−4 8.3 10−4

4 2.7 10−6 4.5 10−6 3.0 10−5 2.6 10−4

5 8.9 10−7 1.4 10−6 9.8 10−6 8.6 10−5

6 2.9 10−7 4.2 10−7 3.0 10−6 2.6 10−5

7 1.1 10−7 1.3 10−7 9.5 10−7 8.5 10−6

Table 3: Table of absolute errors produced by the fast algorithm for Cases 1-7, with wavenumbers k =
0, 1, 2, 3.

The following observations can be made from Tables 1-3.

1. The O(∆s5/3) error displayed by the fast algorithm agrees with the error analysis of section 3.2. The
direct algorithm displays O(∆t2 + ∆s2) error, but with a larger constant of proportionality, which

11

accounts for its poorer accuracy in the range of parameters tested..

2. The CPU time requirements of the fast algorithm clearly grow only like NM .

3. By the time N = 640, M = 1280, the fast algorithm is about 88, 000 times faster than the direct
method would have been. Case 7 required about 50 min. on the Multiflo Trace. The direct calculation
would have taken 8 1

2 years.

4. Even for as few as 10 time steps and 20 boundary points, the fast algorithm is about five times faster
than the direct calculation.

5 Conclusions

In this paper, we have developed a fast algorithm for evaluating heat potentials. A detailed description of
the analysis is given only for the single layer potential in two space dimensions, but the outline of the method
is the same in one or three space dimensions. The extension to double layer potentials is straightforward.

Our algorithm evaluates a heat potential at MN points, using density values at MN points, in O(MN)
work. The direct evaluation requires O(M 2N2) work, so the fast algorithm achieves a dramatic speedup:
with 1280 points on the curve and 640 time steps, the fast algorithm ran 88,000 times faster than the direct
calculation would have, and produced an error five times smaller.

12

References

[1] R. Brown, Layer Potentials and Boundary Value Problems for the Heat Equation on Lipschitz Cylinders,
Ph.D. Thesis, University of Minnesota, 1987.

[2] H. Dym and H. P. McKean, Fourier Series and Integrals, Academic Press, San Diego, 1972.

[3] A. Friedman, Partial Differential Equations of Parabolic Type, Prentice-Hall, New Jersey, 1964.

[4] A. McIntyre, Boundary Integral Solutions of the Heat Equation, Math. Comp., 46 (1986), pp. 71-79.

[5] D. Meiron, in preparation.

[6] P. J. Noon, The Single Layer Heat Potential and Galerkin Boundary Element Methods for the Heat
Equation, Ph.D. Thesis, University of Maryland, 1988.

[7] W. Pogorzelski, Integral Equations and Their Applications, Pergamon Press, Oxford, 1966.

[8] J. Strain, A Boundary Integral Approach to Unstable Solidification, J. Comput. Phys., (in press).

[9] J. Sethian and J. Strain, in preparation.

[10] P. R. Wallace, Mathematical Analysis of Physical Problems, Dover, New York, 1984.

13

