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AbstratThis paper presents a fast algorithm whih evaluates a d-dimensionalGaussian onvolution sum with sales whih vary from point to point. Thisalgorithm evaluates the sum of N Gaussians at M arbitrarily distributedpoints in C(N +M) work, where C depends only on the preision requiredand the essential minimum of the sales. It ahieves a speedup of 1776 withd = 2, N =M = 100; 000 random uniformly distributed points in [0; 1℄2, andsales bounded below by 1/100, and breaks even at less than 50 points.
1 IntrodutionMnay numerial alulations require the evaluation of d-dimensional Gaus-sian onvolution sums having one of the two formsSf(ti) = NXj=1 fje�jti�sj j2=Æj(1)or Tf(ti) = NXj=1 fje�jti�sj j2=Æi(2)at a olletion of M points t = ti 2 Rd. Here sj are given points in Rd,jxj2 = x21 + � � � + x2d, and Æi are given positive real numbers with a lowerbound Æm. The di�erene between (1) and (2) is that in (1) the \sale" Ædepends on the soure index j, while in (2) Æ depends on the target index i.Sine this alulation requires the appliation of an M �N matrix to anN�vetor, it would seem to require O(MN) omputational work, making itCPU-intensive whenM and N are large. Sine we begin with O(N) data andget O(M) output values, it is natural to seek an algorithm whih requiresonly O(N +M) work. Fortunately, the matrix has enough struture to makethis possible.This paper presents an algorithm for evaluating (1) and (2) in O(M +N)time, with the onstant fator in O(N +M) depending only on the preisiondesired and the lower bound Æm of the sales Æi or Æj. Our algorithm isan extension of the sheme presented in [5℄, whih treated the speial ase2



when Æj = Æ are all the same. It ombines Taylor or Hermite expansion withsaling and diret evaluation, after organizing either soures or targets intoa onvenient data struture. The algorithms for soure-dependent (1) andtarget-dependent (2) sales are similar in organization.x2 of the paper reviews the neessary fats about Hermite expansions,x3 presents the soure-dependent sale algorithm and x4 treats the target-dependent ase. x5 presents numerial examples whih show that our algo-rithm is muh faster than diret evaluation for large-sale problems, ahievinga speedup of 2400 when N =M = 100; 000 and the sales are not too small.x6 presents our onlusions.
2 Hermite expansionsThis setion desribes the properties of Hermite expansions we will need.Good referenes for this material are [1, 2, 4℄ and partiularly Hille's lassialpaper [6℄.The Hermite polynomials Hn(t) are de�ned by the Rodrigues formulaHn(t) = (�1)net2Dne�t2 t 2 Rwhere D = d=dt. This implies the generating funtione2ts�s2 = 1Xn=0 snn!Hn(t) :Multiplying through by e�t2 givese�(t�s)2 = 1Xn=0 snn!hn(t);where the Hermite funtions hn(t) are de�ned byhn(t) = e�t2Hn(t):(3)(Note that these are not the usual orthonormal Hermite funtions; theseHermite funtions form a biorthogonal set with Hermite polynomials, ratherthan themselves forming an orthogonal set.) In pratie, we will use a shifted3



and saled version of this formula: for s0 2 R and Æ > 0, we havee�(t�s)2=Æ = e�(t�s0�(s�s0))2=Æ= 1Xn=0 1n!  s� s0pÆ !n hn  t� s0pÆ != e�(t�s0)2=Æ 1Xn=0 1n!  s� s0pÆ !nHn  t� s0pÆ ! :This formula tells us how to evaluate the Gaussian �eld e�(t�s)2=Æ at thetarget t due to the soure at s, as an Hermite expansion entered at s0. Thuswe an shift a Gaussian entered at s to a sum of Hermite polynomials timesa Gaussian, all entered at s0.We an also interhange t and s to writee�(t�s)2=Æ = 1Xn=0 1n!hn  s� t0pÆ ! t� t0pÆ !n :(4)Looked at this way, the expansion expresses a Gaussian with target t as aTaylor series about a nearby target t0; the oeÆients of the Taylor seriesare the Hermite funtions evaluated at t0. Thus the same expansion servesas both a near-�eld (Taylor) and a far-�eld (Hermite) expansion.The �nal one-dimensional results we will need are the reurrene relationhn+1(t) = 2t hn(t)� 2nhn�1(t) t 2 R;for Hermite funtions and Cramer's inequality for Hermite polynomials:jHn(t)j � K2n=2pn!et2=2where K is a numerial onstant less than 1.09 in value.In summarizing the extensions of these fats to d > 1 dimensions, we will�nd it onvenient to adopt multiindex notation. A d-dimensional multiindex� = (�1; �2; : : : ; �d) is a d-tuple of nonnegative integers, playing the role ofa multidimensional index. For any multiindex � and any t 2 Rd, we de�nej�j = �1 + �2 + : : :+ �d�! = �1!�2! : : : �d!t� = t�11 t�22 : : : t�dd4



D� = ��11 ��22 : : : ��ddwhere �i is di�erentiation with respet to the ith oordinate in Rd. If p is aninteger, we say � � p if �i � p for 1 � i � d.The multidimensional Hermite polynomials and Hermite funtions arethen de�ned by H�(t) = H�1(t1) : : :H�d(td)h�(t) = e�jtj2H�(t) = h�1(t1) : : : h�d(td)(5)where jtj2 = t21 + : : :+ t2d.The Hermite expansion of a Gaussian in Rd is then simplye�jt�sj2 = X��0 (t� s0)��! h�(s� s0) :(6)Cramer's inequality implies1�! jh�(t)j � K e�jtj2=2 2j�j=2 1p�! ;(7)where K is less than (1:09)d.We an now present the two key expansions on whih our algorithms rely.First, sale the Hermite expansion (6) by Æj to gete�jt�sj j2=Æj = X��0 1�!h� 0�sj � tCqÆj 1A0�t� tCqÆj 1A�= X��0 1�!  t� tCpÆ !�  ÆÆj!j�j=2 h� 0�sj � tCqÆj 1A :(8)This expresses a Gaussian entered at sj as a Taylor series about an arbitrarytarget tC , with a saling fator Æ independent of j. By Cramer's inequality,the error in trunating the Taylor series (8) after the �rst pd terms is boundedby jEpj � K Xsome �i�p 1p�!2j�j=20� jt� tC j1qÆj 1Aj�j :Here jtj1 = max1�i�d jtij. Suppose t lies in a box C with enter tC and sidesof length rp2Æ � rq2Æj parallel to the axes. Then Stirling's formula impliesthat jEpj � rpp1� rp(9) 5



whenever r2p = er2Æ=Æj(p + 1) < 1. This error bound dereases very rapidlyas p inreases. If r = 1 and Æj = Æ, then jEpj � 10�4 when p = 12 and jEpj �10�6 when p = 17. Even if r = 2, auray 10�4 is attained with p = 24 andauray 10�6 with p = 31. In pratie, this error bound overestimates theerror by two orders of magnitude or more.This error bound is more useful than the (erroneous) bound used in [5℄,beause that bound required r < 1. The urrent bound allows us to user � 1 if we use more terms in the Hermite series. This is pratially usefulbeause we an luster the points into larger groups and use longer vetors,whih makes the ode run muh faster on vetor proesors.Our seond formula is the dual of the �rst, obtained by saling with atarget-dependent sale Æi rather than Æj and shifting to a soure enter sBrather than a target enter tC . We �nde�jti�sj j2=Æi = X��0 1�!  ÆÆi!j�j=2 h�  ti � sBpÆi ! sj � sBpÆ !� :(10)This expresses a Gaussian entered at sj as a saled Hermite series enteredat a nearby soure box enter sB, with oeÆients independent of i. If thesoure sj lies inside a box of side length rp2Æi entered at sB, then the errorin trunating the Hermite series after the �rst pd terms is bounded by (9).These two formulas provide the basis for the two fast algorithms developedin this paper.
3 Soure-dependent SalesIn this setion, we present our algorithm for evaluatingSf(ti) = NXj=1 fje�jti�sj j2=Æj(11)at M targets ti. We assume (by saling the Æj's if neessary) that all thetargets lie in the unit box B0 = [0; 1℄d, for onveniene of exposition. Thesoures sj may lie anywhere in Rd.Our algorithm requires O(M+N) work; the onstant fator in O(M+N)depends only on the preision � and the minimum Æm of the sales Æj.6



Choose uto�s a and b and split the sales into three groups; 0 � Æ � a,a < Æ < b, and b � Æ. We treat eah group by an appropriate method, andhoose a and b to minimize the work required.First onsider 0 � Æ � a. Gaussians with small sales deay rapidly awayfrom the soure, so eah of these soures an a�et only targets whih arequite nearby. Hene we treat these soures by diret evaluation, with a datastruture onstruted as in [11℄.To do this, let R be the range of the longest-range Gaussian in this group;thus e�R2=a � � and R = p�a log �. Divide [0; 1℄d into nd boxes of sidelength � R, so n = b1=R. Sort the targets ti into boxes by loation. Nowrun through the soures sj. Put sj into a box, B say, by loation, andlet kj = bq�Æj=a. Then sj a�ets boxes with indies within kj of B, toauray �. Run through these boxes, inrementing Sf(ti) at eah target tiin eah box. This onludes the treatment of soures with 0 � Æj � a.Now onsider the large sales, with b � Æj < 1. These Gaussians havevery long ranges, so diret evaluation is very expensive. For the same reason,however, they are very smooth. If b is hosen large enough, all these souresan be inorporated into a single pd-term trunated Taylor expansion aboutthe box enter t0 = (1=2; : : : ; 1=2) of [0; 1℄d. with error less than F� whereF = P jfjj. Indeed, (8) implies thatXÆj�b fje�jt�sj j2=Æj = X��pC�  t� t0pÆ !� + Epwhere C� = 1�! XÆj�b ÆÆj!j�j=2 h� 0�sj � t0qÆj 1Aand Ep � F rpp1� rp rp = s ep+ 1r < 1:Here r = 1=p2Æ � 1=p2b and F = P jfjj.Thus the large varianes are very easy to deal with; we simply form pdoeÆients C� at a ost of O(pdN) work and evaluate the Taylor series at Mtargets, with a total ost of O(pd(M +N)). The oeÆient pd depends onlyon the desired preision �.Finally, we must deal with the intermediate soures with a < Æj < b. Wetreat these by a ombination of the previous two methods. The targets are7



sorted into boxes and eah soure ontributes to a Taylor expansion about theenter of eah box within range. When eah Taylor expansion is omplete,it is evaluated at eah target in the box.We begin by sorting the targets into boxes C say, with enters tC andsides of lengths rp2Æ parallel to the axes. Here Æ = mina�Æj�b Æj � a. Noweah soure is onverted into a Taylor expansion (8) about the enter tC ofeah target box C within range Rj = q�Æj log � of sj. Thus we have, fort 2 C, Xjsj�tC j�Rj fje�jt�sj j2=Æj = X��pC�  t� tCpÆ !� + Epwhere C� = 1�! XÆj�b ÆÆj!j�j=2 h� 0�sj � tCqÆj 1Aand Ep satis�es the error boundEp � F rpp1� rpwith rp = q ep+1r < 1: We hoose r and p to make jEpj � F�. After eahsoure has ontributed to all Taylor expansions in range, eah Taylor expan-sion is evaluated at the targets ti in its box.Two slight re�nements of this proedure redue the overhead onsiderablyin pratie. First, it is ineÆient to form a Taylor series and evaluate it fora box ontaining only a few targets. Thus a breakpoint MT is introdued,boxes with more than MT targets reeive Taylor expansions, while diretevaluation is more eÆient for boxes with fewer than MT targets. TypiallyMT = 8 or 10 is a reasonable value when single preision auray is desired.The right value of MT an be determined by the program when it is run, ina reasonably straightforward way.The seond re�nement is introdued in order to avoid a needlessly au-rate omputation. If a saling fator Æ = min Æj is used to determine the boxsize, then many soures will have Æj muh larger than Æ. For these soures,pd terms is far too many to provide the desired auray, and p should be re-dued. Hene we an ompute how many terms are neessary for eah soureindependently, and inrement only those oeÆients. Thus we ompute qdterms where q is hosen to satisfy the error estimaterqqj1� rqj � �8



with rqj = rqeÆ=Æj(q + 1). The small overhead required to ompute q foreah soure is ompensated for by the redution in e�ort required to evaluateHermite oeÆients. In pratie, this re�nement often produes a fator oftwo speedup in the alulation.A third re�nement is possible; one an subdivide the enter interval (a; b)further, in order to avoid treating longer-range smoother Gaussians on waste-fully small sales. A geometri subdivision as in [12℄ is possible, or some otherproblem-dependent subdivision may be more appropriate.The algorithm is ompleted by the hoie of the uto�s a and b. If thesales Æj are distributed in a fairly uniform way over the interval [Æm; ÆM ℄,then one an take a = Æm + O(1=N) and b �xed, say b = 1=10. The hoieof a is made beause we an a�ord to have only a �xed number of souresbelow a. The hoie of b = 1=10 is about the smallest for whih we an makethe Hermite series aurate with a pratial number of terms, like 20d or 30d.The hoie of a is more important when there are a few outlying sales Æj,with all the rest lying onsiderably higher. Then we should hoose a to bethe essential minimum of the Æj's, in other words the smallest lower boundfor all but a �xed number of the sales as N ! 1. Thus only the outlierswill be less than a. This an substantially improve the performane of themedium sales, beause we an take larger boxes, and the ost of evaluatinga few soures diretly is then worth it.
4 Target-dependent SalesIn this setion, we desribe how to evaluateTf(ti) = NXj=1 fje�jti�sj j2=Æiat M points ti 2 Rd, under the assumption (for onveniene) that all thesoures sj lie in [0; 1℄d. The algorithm is struturally dual to the algorithmof x3, so we onentrate on the di�erenes.We divide the Æi's into three sets in the same way as before, and treateah set of targets as a group.For targets with 0 � Æi � a, we sort the soures into boxes rather thanthe targets, and apply diret evaluation.9



For the middle interval a < Æi < b), we use the Hermite expansion (10)with Æ = mina�Æi�b Æi � a. We impose a box struture on the soures andollet all the soures in eah box B (with enter sB and sides of length rp2Æparallel to the axes) into a saled Hermite expansion about the box enter,valid everywhere in [0; 1℄d:TBf(ti) = Xsj2B fje�jti�sj j2=Æi = X��pB�  ÆÆi!j�j=2 h�  ti � sBpÆi !� + Epwhere B� = 1�! Xsj2B fj  sj � sBpÆ !�and we make Ep � F� by hoie of r and p. Then we evaluate a �xed numberof Hermite expansions at eah target ti:Tf(ti) = XjsB�tij�Ri TBf(ti);with Ri = p�Æi log �. Some overhead an be avoided if we form Hermiteseries only for boxes with more than say NS soures; boxes with fewer thanNS soures are handled by diret evaluation. Also, targets with Æi muhlarger than Æ need only evaluate a smaller Hermite series, sine the errordeays faster for them.Finally, the soures with Æi � b are handled by forming all of them into asingle Hermite expansion about the enter of [0; 1℄d and evaluating it at eahtarget.The parameters a, b and NS are hosen in a way very like the soure-dependent algorithm.
5 Numerial ResultsIn this setion, we present some numerial results showing the speedupsahievable by our algorithms. We tested the soure-dependent algorithmon sets of N = M soures and targets in d = 2 dimensions; the target-dependent algorithm will exhibit highly similar statistis. We used randomuniformly distributed strengths on [0; 1℄, with soure and target points uni-formly distributed either on [0; 1℄d or on a irle in [0; 1℄d. The sales wereuniformly distributed on [Æm; ÆM ℄ for various hoies of Æm and ÆM .10



Tables 1-4 present results for the soure-dependent sale fast Gauss trans-form for four examples. The time taken by the fast algorithm is reordedin the olumn headed Tf , the time required to evaluate the Gaussian sumdiretly under Td, and the error produed by the fast algorithm | relative toF = P jfjj | under the heading Ep=F . All omputations were arried outin double preision arithmeti with the error tolerane � set to 10�4. (Thiswas enough to ahieve an atual error well below 10�6 in every ase.) Thisrequired p = 10 with r = 1 for soures with a � Æj � b and p = 24 forÆj > b. In Table 1, we used soure and target points uniformly distributedon [0; 1℄d and sales Æj uniformly distributed between Æm = 0:1 and ÆM = 1:0.We took a = 0, b = 0:125, and MT = 8. The results show a beautifullylinear growth of omputation time with N for the fast algorithm, againsta quadrati time for diret evaluation. A speedup of 2275 is obtained withN = 102400, indiating a projeted breakeven point of 45.Case N =M Tf Td Ep=F1 100 0.05 0.10 0.222e-062 200 0.09 0.40 0.163e-063 400 0.18 1.60 0.551e-074 800 0.36 6.80 0.110e-075 1600 0.76 25.60 0.449e-076 3200 1.45 99.20 0.128e-077 6400 2.88 406.40 0.186e-078 12800 5.75 1638.40 0.957e-089 25600 11.45 6553.60 0.554e-0810 51200 22.96 26060.80 0.114e-0711 102400 45.94 104499.20 0.836e-08Table 1: Times and errors for 0:1 � Æj � 1:0, with targets and souresdistributed uniformly in the unit box.In Table 2, we used points randomly hosen on a irle with radius 0.29and enter (0.6,0.7), with the same parameters as in Table 1. The non-uniformity of the soures and targets did not slow down the algorithm.Table 3 presents times and errors for the same alulation as in Example2, but with the minimum sale redued to Æm = 0:01. This slows down thealgorithm only slightly; the speedup goes down to 1776 with 102,400 points.11



Case N =M Tf Td Ep=F1 100 0.06 0.10 0.115e-062 200 0.10 0.40 0.553e-063 400 0.16 1.60 0.439e-064 800 0.37 6.40 0.403e-065 1600 0.71 24.00 0.352e-066 3200 1.43 102.40 0.335e-067 6400 2.83 409.60 0.181e-068 12800 5.69 1632.00 0.255e-069 25600 11.38 6528.00 0.226e-0610 51200 22.62 26214.40 0.155e-0611 102400 45.43 104192.00 0.254e-06Table 2: Times and errors for 0:1 � Æj � 1:0, with targets and souresdistributed uniformly on a irle.
Case N =M Tf Td Ep=F1 100 0.06 0.10 0.145e-062 200 0.12 0.40 0.564e-063 400 0.24 1.60 0.420e-064 800 0.45 6.40 0.252e-065 1600 0.90 25.60 0.311e-066 3200 1.81 102.40 0.275e-067 6400 3.60 400.00 0.170e-068 12800 7.28 1657.60 0.238e-069 25600 14.54 6502.40 0.201e-0610 51200 29.03 26291.20 0.144e-0611 102400 58.86 104499.20 0.236e-06Table 3: Times and errors for 0:01 � Æj � 1:0, with targets and souresdistributed uniformly on a irle.
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Table 4 is similar to Table 3, but with Æj's lying between 0.002 and 0.2.Even with these fairly small sales, we still ahieve a respetable speedup of500 with N = 102; 400.Case N = M Tf Td Ep=F1 100 0.14 0.10 0.112e-072 200 0.36 0.30 0.180e-063 400 0.73 1.40 0.123e-064 800 1.55 6.00 0.110e-065 1600 3.18 25.60 0.623e-076 3200 6.59 102.40 0.683e-077 6400 13.22 409.60 0.460e-078 12800 26.88 1644.80 0.936e-079 25600 54.15 6720.00 0.634e-0710 51200 107.85 26470.40 0.266e-0711 102400 216.64 108083.20 0.720e-07Table 4: Times and errors for 0:002 � Æj � 0:2, with targets and souresdistributed uniformly on a irle.
6 ConlusionsWe have presented fast algorithms whih evaluate d-dimensional Gaussianonvolution sums (1) and (2) with sales dependent either on the soure or thetarget. Suh sums are frequently evaluated in statistial omputations[3, 10℄and also our in numerial solution of the heat equation [9, 8℄ and otherappliations[7℄. Our algorithms evaluate these sums in O(M + N) work,with a onstant fator depending on the preision required and the minimumsale whih ours.Numerial results indiate that our method an speed up large alula-tions by several orders of magnitude; in one example, the omputation timewas redued to one minute instead of the 1.2 days required by diret eval-uation. Thus this algorithm an be extremely useful in reduing the timerequired to arry out large-sale omputations. We are urrently applying a13



variant of this algorithm to problems in rystal growth, where it is used toevaluate free-spae heat potentials.
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