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Abstra
tThis paper presents a fast algorithm whi
h evaluates a d-dimensionalGaussian 
onvolution sum with s
ales whi
h vary from point to point. Thisalgorithm evaluates the sum of N Gaussians at M arbitrarily distributedpoints in C(N +M) work, where C depends only on the pre
ision requiredand the essential minimum of the s
ales. It a
hieves a speedup of 1776 withd = 2, N =M = 100; 000 random uniformly distributed points in [0; 1℄2, ands
ales bounded below by 1/100, and breaks even at less than 50 points.
1 Introdu
tionMnay numeri
al 
al
ulations require the evaluation of d-dimensional Gaus-sian 
onvolution sums having one of the two formsSf(ti) = NXj=1 fje�jti�sj j2=Æj(1)or Tf(ti) = NXj=1 fje�jti�sj j2=Æi(2)at a 
olle
tion of M points t = ti 2 Rd. Here sj are given points in Rd,jxj2 = x21 + � � � + x2d, and Æi are given positive real numbers with a lowerbound Æm. The di�eren
e between (1) and (2) is that in (1) the \s
ale" Ædepends on the sour
e index j, while in (2) Æ depends on the target index i.Sin
e this 
al
ulation requires the appli
ation of an M �N matrix to anN�ve
tor, it would seem to require O(MN) 
omputational work, making itCPU-intensive whenM and N are large. Sin
e we begin with O(N) data andget O(M) output values, it is natural to seek an algorithm whi
h requiresonly O(N +M) work. Fortunately, the matrix has enough stru
ture to makethis possible.This paper presents an algorithm for evaluating (1) and (2) in O(M +N)time, with the 
onstant fa
tor in O(N +M) depending only on the pre
isiondesired and the lower bound Æm of the s
ales Æi or Æj. Our algorithm isan extension of the s
heme presented in [5℄, whi
h treated the spe
ial 
ase2



when Æj = Æ are all the same. It 
ombines Taylor or Hermite expansion withs
aling and dire
t evaluation, after organizing either sour
es or targets intoa 
onvenient data stru
ture. The algorithms for sour
e-dependent (1) andtarget-dependent (2) s
ales are similar in organization.x2 of the paper reviews the ne
essary fa
ts about Hermite expansions,x3 presents the sour
e-dependent s
ale algorithm and x4 treats the target-dependent 
ase. x5 presents numeri
al examples whi
h show that our algo-rithm is mu
h faster than dire
t evaluation for large-s
ale problems, a
hievinga speedup of 2400 when N =M = 100; 000 and the s
ales are not too small.x6 presents our 
on
lusions.
2 Hermite expansionsThis se
tion des
ribes the properties of Hermite expansions we will need.Good referen
es for this material are [1, 2, 4℄ and parti
ularly Hille's 
lassi
alpaper [6℄.The Hermite polynomials Hn(t) are de�ned by the Rodrigues formulaHn(t) = (�1)net2Dne�t2 t 2 Rwhere D = d=dt. This implies the generating fun
tione2ts�s2 = 1Xn=0 snn!Hn(t) :Multiplying through by e�t2 givese�(t�s)2 = 1Xn=0 snn!hn(t);where the Hermite fun
tions hn(t) are de�ned byhn(t) = e�t2Hn(t):(3)(Note that these are not the usual orthonormal Hermite fun
tions; theseHermite fun
tions form a biorthogonal set with Hermite polynomials, ratherthan themselves forming an orthogonal set.) In pra
ti
e, we will use a shifted3



and s
aled version of this formula: for s0 2 R and Æ > 0, we havee�(t�s)2=Æ = e�(t�s0�(s�s0))2=Æ= 1Xn=0 1n!  s� s0pÆ !n hn  t� s0pÆ != e�(t�s0)2=Æ 1Xn=0 1n!  s� s0pÆ !nHn  t� s0pÆ ! :This formula tells us how to evaluate the Gaussian �eld e�(t�s)2=Æ at thetarget t due to the sour
e at s, as an Hermite expansion 
entered at s0. Thuswe 
an shift a Gaussian 
entered at s to a sum of Hermite polynomials timesa Gaussian, all 
entered at s0.We 
an also inter
hange t and s to writee�(t�s)2=Æ = 1Xn=0 1n!hn  s� t0pÆ ! t� t0pÆ !n :(4)Looked at this way, the expansion expresses a Gaussian with target t as aTaylor series about a nearby target t0; the 
oeÆ
ients of the Taylor seriesare the Hermite fun
tions evaluated at t0. Thus the same expansion servesas both a near-�eld (Taylor) and a far-�eld (Hermite) expansion.The �nal one-dimensional results we will need are the re
urren
e relationhn+1(t) = 2t hn(t)� 2nhn�1(t) t 2 R;for Hermite fun
tions and Cramer's inequality for Hermite polynomials:jHn(t)j � K2n=2pn!et2=2where K is a numeri
al 
onstant less than 1.09 in value.In summarizing the extensions of these fa
ts to d > 1 dimensions, we will�nd it 
onvenient to adopt multiindex notation. A d-dimensional multiindex� = (�1; �2; : : : ; �d) is a d-tuple of nonnegative integers, playing the role ofa multidimensional index. For any multiindex � and any t 2 Rd, we de�nej�j = �1 + �2 + : : :+ �d�! = �1!�2! : : : �d!t� = t�11 t�22 : : : t�dd4



D� = ��11 ��22 : : : ��ddwhere �i is di�erentiation with respe
t to the ith 
oordinate in Rd. If p is aninteger, we say � � p if �i � p for 1 � i � d.The multidimensional Hermite polynomials and Hermite fun
tions arethen de�ned by H�(t) = H�1(t1) : : :H�d(td)h�(t) = e�jtj2H�(t) = h�1(t1) : : : h�d(td)(5)where jtj2 = t21 + : : :+ t2d.The Hermite expansion of a Gaussian in Rd is then simplye�jt�sj2 = X��0 (t� s0)��! h�(s� s0) :(6)Cramer's inequality implies1�! jh�(t)j � K e�jtj2=2 2j�j=2 1p�! ;(7)where K is less than (1:09)d.We 
an now present the two key expansions on whi
h our algorithms rely.First, s
ale the Hermite expansion (6) by Æj to gete�jt�sj j2=Æj = X��0 1�!h� 0�sj � tCqÆj 1A0�t� tCqÆj 1A�= X��0 1�!  t� tCpÆ !�  ÆÆj!j�j=2 h� 0�sj � tCqÆj 1A :(8)This expresses a Gaussian 
entered at sj as a Taylor series about an arbitrarytarget tC , with a s
aling fa
tor Æ independent of j. By Cramer's inequality,the error in trun
ating the Taylor series (8) after the �rst pd terms is boundedby jEpj � K Xsome �i�p 1p�!2j�j=20� jt� tC j1qÆj 1Aj�j :Here jtj1 = max1�i�d jtij. Suppose t lies in a box C with 
enter tC and sidesof length rp2Æ � rq2Æj parallel to the axes. Then Stirling's formula impliesthat jEpj � rpp1� rp(9) 5



whenever r2p = er2Æ=Æj(p + 1) < 1. This error bound de
reases very rapidlyas p in
reases. If r = 1 and Æj = Æ, then jEpj � 10�4 when p = 12 and jEpj �10�6 when p = 17. Even if r = 2, a

ura
y 10�4 is attained with p = 24 anda

ura
y 10�6 with p = 31. In pra
ti
e, this error bound overestimates theerror by two orders of magnitude or more.This error bound is more useful than the (erroneous) bound used in [5℄,be
ause that bound required r < 1. The 
urrent bound allows us to user � 1 if we use more terms in the Hermite series. This is pra
ti
ally usefulbe
ause we 
an 
luster the points into larger groups and use longer ve
tors,whi
h makes the 
ode run mu
h faster on ve
tor pro
esors.Our se
ond formula is the dual of the �rst, obtained by s
aling with atarget-dependent s
ale Æi rather than Æj and shifting to a sour
e 
enter sBrather than a target 
enter tC . We �nde�jti�sj j2=Æi = X��0 1�!  ÆÆi!j�j=2 h�  ti � sBpÆi ! sj � sBpÆ !� :(10)This expresses a Gaussian 
entered at sj as a s
aled Hermite series 
enteredat a nearby sour
e box 
enter sB, with 
oeÆ
ients independent of i. If thesour
e sj lies inside a box of side length rp2Æi 
entered at sB, then the errorin trun
ating the Hermite series after the �rst pd terms is bounded by (9).These two formulas provide the basis for the two fast algorithms developedin this paper.
3 Sour
e-dependent S
alesIn this se
tion, we present our algorithm for evaluatingSf(ti) = NXj=1 fje�jti�sj j2=Æj(11)at M targets ti. We assume (by s
aling the Æj's if ne
essary) that all thetargets lie in the unit box B0 = [0; 1℄d, for 
onvenien
e of exposition. Thesour
es sj may lie anywhere in Rd.Our algorithm requires O(M+N) work; the 
onstant fa
tor in O(M+N)depends only on the pre
ision � and the minimum Æm of the s
ales Æj.6



Choose 
uto�s a and b and split the s
ales into three groups; 0 � Æ � a,a < Æ < b, and b � Æ. We treat ea
h group by an appropriate method, and
hoose a and b to minimize the work required.First 
onsider 0 � Æ � a. Gaussians with small s
ales de
ay rapidly awayfrom the sour
e, so ea
h of these sour
es 
an a�e
t only targets whi
h arequite nearby. Hen
e we treat these sour
es by dire
t evaluation, with a datastru
ture 
onstru
ted as in [11℄.To do this, let R be the range of the longest-range Gaussian in this group;thus e�R2=a � � and R = p�a log �. Divide [0; 1℄d into nd boxes of sidelength � R, so n = b1=R
. Sort the targets ti into boxes by lo
ation. Nowrun through the sour
es sj. Put sj into a box, B say, by lo
ation, andlet kj = bq�Æj=a
. Then sj a�e
ts boxes with indi
es within kj of B, toa

ura
y �. Run through these boxes, in
rementing Sf(ti) at ea
h target tiin ea
h box. This 
on
ludes the treatment of sour
es with 0 � Æj � a.Now 
onsider the large s
ales, with b � Æj < 1. These Gaussians havevery long ranges, so dire
t evaluation is very expensive. For the same reason,however, they are very smooth. If b is 
hosen large enough, all these sour
es
an be in
orporated into a single pd-term trun
ated Taylor expansion aboutthe box 
enter t0 = (1=2; : : : ; 1=2) of [0; 1℄d. with error less than F� whereF = P jfjj. Indeed, (8) implies thatXÆj�b fje�jt�sj j2=Æj = X��pC�  t� t0pÆ !� + Epwhere C� = 1�! XÆj�b ÆÆj!j�j=2 h� 0�sj � t0qÆj 1Aand Ep � F rpp1� rp rp = s ep+ 1r < 1:Here r = 1=p2Æ � 1=p2b and F = P jfjj.Thus the large varian
es are very easy to deal with; we simply form pd
oeÆ
ients C� at a 
ost of O(pdN) work and evaluate the Taylor series at Mtargets, with a total 
ost of O(pd(M +N)). The 
oeÆ
ient pd depends onlyon the desired pre
ision �.Finally, we must deal with the intermediate sour
es with a < Æj < b. Wetreat these by a 
ombination of the previous two methods. The targets are7



sorted into boxes and ea
h sour
e 
ontributes to a Taylor expansion about the
enter of ea
h box within range. When ea
h Taylor expansion is 
omplete,it is evaluated at ea
h target in the box.We begin by sorting the targets into boxes C say, with 
enters tC andsides of lengths rp2Æ parallel to the axes. Here Æ = mina�Æj�b Æj � a. Nowea
h sour
e is 
onverted into a Taylor expansion (8) about the 
enter tC ofea
h target box C within range Rj = q�Æj log � of sj. Thus we have, fort 2 C, Xjsj�tC j�Rj fje�jt�sj j2=Æj = X��pC�  t� tCpÆ !� + Epwhere C� = 1�! XÆj�b ÆÆj!j�j=2 h� 0�sj � tCqÆj 1Aand Ep satis�es the error boundEp � F rpp1� rpwith rp = q ep+1r < 1: We 
hoose r and p to make jEpj � F�. After ea
hsour
e has 
ontributed to all Taylor expansions in range, ea
h Taylor expan-sion is evaluated at the targets ti in its box.Two slight re�nements of this pro
edure redu
e the overhead 
onsiderablyin pra
ti
e. First, it is ineÆ
ient to form a Taylor series and evaluate it fora box 
ontaining only a few targets. Thus a breakpoint MT is introdu
ed,boxes with more than MT targets re
eive Taylor expansions, while dire
tevaluation is more eÆ
ient for boxes with fewer than MT targets. Typi
allyMT = 8 or 10 is a reasonable value when single pre
ision a

ura
y is desired.The right value of MT 
an be determined by the program when it is run, ina reasonably straightforward way.The se
ond re�nement is introdu
ed in order to avoid a needlessly a

u-rate 
omputation. If a s
aling fa
tor Æ = min Æj is used to determine the boxsize, then many sour
es will have Æj mu
h larger than Æ. For these sour
es,pd terms is far too many to provide the desired a

ura
y, and p should be re-du
ed. Hen
e we 
an 
ompute how many terms are ne
essary for ea
h sour
eindependently, and in
rement only those 
oeÆ
ients. Thus we 
ompute qdterms where q is 
hosen to satisfy the error estimaterqqj1� rqj � �8



with rqj = rqeÆ=Æj(q + 1). The small overhead required to 
ompute q forea
h sour
e is 
ompensated for by the redu
tion in e�ort required to evaluateHermite 
oeÆ
ients. In pra
ti
e, this re�nement often produ
es a fa
tor oftwo speedup in the 
al
ulation.A third re�nement is possible; one 
an subdivide the 
enter interval (a; b)further, in order to avoid treating longer-range smoother Gaussians on waste-fully small s
ales. A geometri
 subdivision as in [12℄ is possible, or some otherproblem-dependent subdivision may be more appropriate.The algorithm is 
ompleted by the 
hoi
e of the 
uto�s a and b. If thes
ales Æj are distributed in a fairly uniform way over the interval [Æm; ÆM ℄,then one 
an take a = Æm + O(1=N) and b �xed, say b = 1=10. The 
hoi
eof a is made be
ause we 
an a�ord to have only a �xed number of sour
esbelow a. The 
hoi
e of b = 1=10 is about the smallest for whi
h we 
an makethe Hermite series a

urate with a pra
ti
al number of terms, like 20d or 30d.The 
hoi
e of a is more important when there are a few outlying s
ales Æj,with all the rest lying 
onsiderably higher. Then we should 
hoose a to bethe essential minimum of the Æj's, in other words the smallest lower boundfor all but a �xed number of the s
ales as N ! 1. Thus only the outlierswill be less than a. This 
an substantially improve the performan
e of themedium s
ales, be
ause we 
an take larger boxes, and the 
ost of evaluatinga few sour
es dire
tly is then worth it.
4 Target-dependent S
alesIn this se
tion, we des
ribe how to evaluateTf(ti) = NXj=1 fje�jti�sj j2=Æiat M points ti 2 Rd, under the assumption (for 
onvenien
e) that all thesour
es sj lie in [0; 1℄d. The algorithm is stru
turally dual to the algorithmof x3, so we 
on
entrate on the di�eren
es.We divide the Æi's into three sets in the same way as before, and treatea
h set of targets as a group.For targets with 0 � Æi � a, we sort the sour
es into boxes rather thanthe targets, and apply dire
t evaluation.9



For the middle interval a < Æi < b), we use the Hermite expansion (10)with Æ = mina�Æi�b Æi � a. We impose a box stru
ture on the sour
es and
olle
t all the sour
es in ea
h box B (with 
enter sB and sides of length rp2Æparallel to the axes) into a s
aled Hermite expansion about the box 
enter,valid everywhere in [0; 1℄d:TBf(ti) = Xsj2B fje�jti�sj j2=Æi = X��pB�  ÆÆi!j�j=2 h�  ti � sBpÆi !� + Epwhere B� = 1�! Xsj2B fj  sj � sBpÆ !�and we make Ep � F� by 
hoi
e of r and p. Then we evaluate a �xed numberof Hermite expansions at ea
h target ti:Tf(ti) = XjsB�tij�Ri TBf(ti);with Ri = p�Æi log �. Some overhead 
an be avoided if we form Hermiteseries only for boxes with more than say NS sour
es; boxes with fewer thanNS sour
es are handled by dire
t evaluation. Also, targets with Æi mu
hlarger than Æ need only evaluate a smaller Hermite series, sin
e the errorde
ays faster for them.Finally, the sour
es with Æi � b are handled by forming all of them into asingle Hermite expansion about the 
enter of [0; 1℄d and evaluating it at ea
htarget.The parameters a, b and NS are 
hosen in a way very like the sour
e-dependent algorithm.
5 Numeri
al ResultsIn this se
tion, we present some numeri
al results showing the speedupsa
hievable by our algorithms. We tested the sour
e-dependent algorithmon sets of N = M sour
es and targets in d = 2 dimensions; the target-dependent algorithm will exhibit highly similar statisti
s. We used randomuniformly distributed strengths on [0; 1℄, with sour
e and target points uni-formly distributed either on [0; 1℄d or on a 
ir
le in [0; 1℄d. The s
ales wereuniformly distributed on [Æm; ÆM ℄ for various 
hoi
es of Æm and ÆM .10



Tables 1-4 present results for the sour
e-dependent s
ale fast Gauss trans-form for four examples. The time taken by the fast algorithm is re
ordedin the 
olumn headed Tf , the time required to evaluate the Gaussian sumdire
tly under Td, and the error produ
ed by the fast algorithm | relative toF = P jfjj | under the heading Ep=F . All 
omputations were 
arried outin double pre
ision arithmeti
 with the error toleran
e � set to 10�4. (Thiswas enough to a
hieve an a
tual error well below 10�6 in every 
ase.) Thisrequired p = 10 with r = 1 for sour
es with a � Æj � b and p = 24 forÆj > b. In Table 1, we used sour
e and target points uniformly distributedon [0; 1℄d and s
ales Æj uniformly distributed between Æm = 0:1 and ÆM = 1:0.We took a = 0, b = 0:125, and MT = 8. The results show a beautifullylinear growth of 
omputation time with N for the fast algorithm, againsta quadrati
 time for dire
t evaluation. A speedup of 2275 is obtained withN = 102400, indi
ating a proje
ted breakeven point of 45.Case N =M Tf Td Ep=F1 100 0.05 0.10 0.222e-062 200 0.09 0.40 0.163e-063 400 0.18 1.60 0.551e-074 800 0.36 6.80 0.110e-075 1600 0.76 25.60 0.449e-076 3200 1.45 99.20 0.128e-077 6400 2.88 406.40 0.186e-078 12800 5.75 1638.40 0.957e-089 25600 11.45 6553.60 0.554e-0810 51200 22.96 26060.80 0.114e-0711 102400 45.94 104499.20 0.836e-08Table 1: Times and errors for 0:1 � Æj � 1:0, with targets and sour
esdistributed uniformly in the unit box.In Table 2, we used points randomly 
hosen on a 
ir
le with radius 0.29and 
enter (0.6,0.7), with the same parameters as in Table 1. The non-uniformity of the sour
es and targets did not slow down the algorithm.Table 3 presents times and errors for the same 
al
ulation as in Example2, but with the minimum s
ale redu
ed to Æm = 0:01. This slows down thealgorithm only slightly; the speedup goes down to 1776 with 102,400 points.11



Case N =M Tf Td Ep=F1 100 0.06 0.10 0.115e-062 200 0.10 0.40 0.553e-063 400 0.16 1.60 0.439e-064 800 0.37 6.40 0.403e-065 1600 0.71 24.00 0.352e-066 3200 1.43 102.40 0.335e-067 6400 2.83 409.60 0.181e-068 12800 5.69 1632.00 0.255e-069 25600 11.38 6528.00 0.226e-0610 51200 22.62 26214.40 0.155e-0611 102400 45.43 104192.00 0.254e-06Table 2: Times and errors for 0:1 � Æj � 1:0, with targets and sour
esdistributed uniformly on a 
ir
le.
Case N =M Tf Td Ep=F1 100 0.06 0.10 0.145e-062 200 0.12 0.40 0.564e-063 400 0.24 1.60 0.420e-064 800 0.45 6.40 0.252e-065 1600 0.90 25.60 0.311e-066 3200 1.81 102.40 0.275e-067 6400 3.60 400.00 0.170e-068 12800 7.28 1657.60 0.238e-069 25600 14.54 6502.40 0.201e-0610 51200 29.03 26291.20 0.144e-0611 102400 58.86 104499.20 0.236e-06Table 3: Times and errors for 0:01 � Æj � 1:0, with targets and sour
esdistributed uniformly on a 
ir
le.

12



Table 4 is similar to Table 3, but with Æj's lying between 0.002 and 0.2.Even with these fairly small s
ales, we still a
hieve a respe
table speedup of500 with N = 102; 400.Case N = M Tf Td Ep=F1 100 0.14 0.10 0.112e-072 200 0.36 0.30 0.180e-063 400 0.73 1.40 0.123e-064 800 1.55 6.00 0.110e-065 1600 3.18 25.60 0.623e-076 3200 6.59 102.40 0.683e-077 6400 13.22 409.60 0.460e-078 12800 26.88 1644.80 0.936e-079 25600 54.15 6720.00 0.634e-0710 51200 107.85 26470.40 0.266e-0711 102400 216.64 108083.20 0.720e-07Table 4: Times and errors for 0:002 � Æj � 0:2, with targets and sour
esdistributed uniformly on a 
ir
le.
6 Con
lusionsWe have presented fast algorithms whi
h evaluate d-dimensional Gaussian
onvolution sums (1) and (2) with s
ales dependent either on the sour
e or thetarget. Su
h sums are frequently evaluated in statisti
al 
omputations[3, 10℄and also o

ur in numeri
al solution of the heat equation [9, 8℄ and otherappli
ations[7℄. Our algorithms evaluate these sums in O(M + N) work,with a 
onstant fa
tor depending on the pre
ision required and the minimums
ale whi
h o

urs.Numeri
al results indi
ate that our method 
an speed up large 
al
ula-tions by several orders of magnitude; in one example, the 
omputation timewas redu
ed to one minute instead of the 1.2 days required by dire
t eval-uation. Thus this algorithm 
an be extremely useful in redu
ing the timerequired to 
arry out large-s
ale 
omputations. We are 
urrently applying a13



variant of this algorithm to problems in 
rystal growth, where it is used toevaluate free-spa
e heat potentials.
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