The Fast Gauss Transform
with Variable Scales *

John Strain '
Courant Institute of Mathematical Sciences
251 Mercer Street
New York, NY 10012

20 April 1990

To appear in SIAM J. Sci. Stat. Comput.

Keywords: Gauss Transform, Fast Algorithms, Hermite Polynomials.
AMS(MOS) Subject Classifications: 65R10,33A65,35K05,62G20,65P05.
Electronic Mail: strain@math.princeton.edu

Running Head: The Fast Gauss Transform

*Supported by DARPA /AFOSR Contract No. F-49620-87-C-0065 and a NSF Mathe-
matical Sciences Postdoctoral Research Fellowship.

fCurrent address: Department of Mathematics, Princeton University, Princeton, NJ
08544

Abstract

This paper presents a fast algorithm which evaluates a d-dimensional
Gaussian convolution sum with scales which vary from point to point. This
algorithm evaluates the sum of N Gaussians at M arbitrarily distributed
points in C'(N + M) work, where C' depends only on the precision required
and the essential minimum of the scales. It achieves a speedup of 1776 with
d =2, N =M = 100,000 random uniformly distributed points in [0, 1]?, and
scales bounded below by 1/100, and breaks even at less than 50 points.

1 Introduction

Mnay numerical calculations require the evaluation of d-dimensional Gaus-
sian convolution sums having one of the two forms

(1) Sf(t;) = XN: fieltmsil* /0
j=1

or
N

(2) TF(t) =3 fre b/
7=1

at a collection of M points t = t; € R%. Here sj are given points in R,
|z|*> = 22 4+ -+ + 22, and §; are given positive real numbers with a lower
bound §,,. The difference between (1) and (2) is that in (1) the “scale” &

depends on the source index j, while in (2) ¢ depends on the target index i.

Since this calculation requires the application of an M x N matrix to an
N —vector, it would seem to require O(M N) computational work, making it
CPU-intensive when M and N are large. Since we begin with O(V) data and
get O(M) output values, it is natural to seek an algorithm which requires
only O(N + M) work. Fortunately, the matrix has enough structure to make
this possible.

This paper presents an algorithm for evaluating (1) and (2) in O(M + N)
time, with the constant factor in O(N + M) depending only on the precision
desired and the lower bound o,, of the scales ; or ;. Our algorithm is
an extension of the scheme presented in [5], which treated the special case

2

when 0; = 0 are all the same. It combines Taylor or Hermite expansion with
scaling and direct evaluation, after organizing either sources or targets into
a convenient data structure. The algorithms for source-dependent (1) and
target-dependent (2) scales are similar in organization.

§2 of the paper reviews the necessary facts about Hermite expansions,
§3 presents the source-dependent scale algorithm and §4 treats the target-
dependent case. §5 presents numerical examples which show that our algo-
rithm is much faster than direct evaluation for large-scale problems, achieving
a speedup of 2400 when N = M = 100, 000 and the scales are not too small.
§6 presents our conclusions.

2 Hermite expansions

This section describes the properties of Hermite expansions we will need.
Good references for this material are [1, 2, 4] and particularly Hille’s classical

paper [6].

The Hermite polynomials H, () are defined by the Rodrigues formula
H,(t) = (—1)"e" D"e" teR

where D = d/dt. This implies the generating function

oo
p2s—s? Zs_
n!

Multiplying through by e ** gives
RGN S
‘ n=0 n’ n(),

where the Hermite functions h,(t) are defined by
(3) ha(t) = e H, ().

(Note that these are not the usual orthonormal Hermite functions; these
Hermite functions form a biorthogonal set with Hermite polynomials, rather
than themselves forming an orthogonal set.) In practice, we will use a shifted

and scaled version of this formula: for so € R and 6 > 0, we have

e (=P[5 o—(t=so—(s=50))>/8

© 1 [(s—5\" t — so
— Sl (T I A (L
Sl w ()
X1 [(s—s0\" t—s
s L (ST S0 g (TS0
’ (ﬁ) (ﬁ)

This formula tells us how to evaluate the Gaussian field e=(=9)°/9 at the
target t due to the source at s, as an Hermite expansion centered at sq. Thus
we can shift a Gaussian centered at s to a sum of Hermite polynomials times
a Gaussian, all centered at sy.

We can also interchange ¢ and s to write

> > 1 s—to) ([t—to)"
(4) e T =% —p, () (:
nz::o n! Vo Vo
Looked at this way, the expansion expresses a Gaussian with target ¢ as a
Taylor series about a nearby target ty; the coefficients of the Taylor series

are the Hermite functions evaluated at ¢;. Thus the same expansion serves
as both a near-field (Taylor) and a far-field (Hermite) expansion.

The final one-dimensional results we will need are the recurrence relation
41 (t) = 2t hy(t) = 2n by (1) t € R,
for Hermite functions and Cramer’s inequality for Hermite polynomials:
|H,,(t)] < K2"2/nle!”/?
where K is a numerical constant less than 1.09 in value.

In summarizing the extensions of these facts to d > 1 dimensions, we will
find it convenient to adopt multiindex notation. A d-dimensional multiindex
a = (a1, qs,...,qq) is a d-tuple of nonnegative integers, playing the role of
a multidimensional index. For any multiindex o and any t € R?, we define

|a|:a1+a2+...+ad
al = aqlas! .. ay!

e

4

D® =081 05% ... 05"
where 0; is differentiation with respect to the ith coordinate in R%. If p is an

integer, we say a > pif a; > p for 1 <i <d.

The multidimensional Hermite polynomials and Hermite functions are
then defined by
H,(t) = Hg,, (t1)...Ha,(ta)

(5) ha(t) = e W HL (1) = ha, (t1) . . . ha, (td)
where |t|> =t +... + 2.

The Hermite expansion of a Gaussian in R? is then simply

(6) el =37 (t = 50)" ha(s — s0) -

a0 o
Cramer’s inequality implies
1 2 1
7 Z|ho (1) < K e t7/22lel/2 _—_
(7) —lha(t) < Ke Nk

where K is less than (1.09)%.
We can now present the two key expansions on which our algorithms rely.

First, scale the Hermite expansion (6) by d; to get

B
o lt-si2 1 [si—tc) (t—tc
z () ()
Lt (NP2 (s —te
" - S () ()

This expresses a Gaussian centered at s; as a Taylor series about an arbitrary
target fo, with a scaling factor ¢ independent of j. By Cramer’s inequality,
the error in truncating the Taylor series (8) after the first p? terms is bounded

by
. t— ol 18]
- _= olpl/2 | IV T ¢Cloo
E,|<K) 3!2 (7) .
some f;>p j

Here ||, = maxj<;<q |t;|. Suppose ¢ lies in a box C' with center ¢ and sides
of length rv/20 < r,/20; parallel to the axes. Then Stirling’s formula implies
that

9 E)| <
() |p|—1_,rp

p

5

whenever 2 = er®0/0;(p 4+ 1) < 1. This error bound decreases very rapidly
as p increases. If r = 1 and 6; = 6, then |E,| < 10~* when p = 12 and |E,| <
10% when p = 17. Even if r = 2, accuracy 10~* is attained with p = 24 and
accuracy 107% with p = 31. In practice, this error bound overestimates the
error by two orders of magnitude or more.

This error bound is more useful than the (erroneous) bound used in [5],
because that bound required » < 1. The current bound allows us to use
r > 1 if we use more terms in the Hermite series. This is practically useful
because we can cluster the points into larger groups and use longer vectors,
which makes the code run much faster on vector procesors.

Our second formula is the dual of the first, obtained by scaling with a
target-dependent scale d; rather than ¢; and shifting to a source center sp
rather than a target center ¢-. We find

sl — 5 L (é)'w (tz‘ - 83) <Sj - SB>5
(10) e g)ﬁ’ 5 hgs NG 7 :

This expresses a Gaussian centered at s; as a scaled Hermite series centered
at a nearby source box center sp, with coefficients independent of 7. If the
source s; lies inside a box of side length r/20; centered at sp, then the error
in truncating the Hermite series after the first p¢ terms is bounded by (9).

These two formulas provide the basis for the two fast algorithms developed
in this paper.

3 Source-dependent Scales

In this section, we present our algorithm for evaluating
N 2

(11) SF(t) = 3 fremmsil /o
7=1

at M targets t;. We assume (by scaling the ¢;’s if necessary) that all the
targets lie in the unit box By = [0, 1]¢, for convenience of exposition. The
sources s; may lie anywhere in R%.

Our algorithm requires O (M + N) work; the constant factor in O(M + N)
depends only on the precision € and the minimum d,, of the scales 9;.

6

Choose cutoffs a and b and split the scales into three groups; 0 < ¢ < a,
a <6 <b,and b < 6. We treat each group by an appropriate method, and
choose a and b to minimize the work required.

First consider 0 < 0 < a. Gaussians with small scales decay rapidly away
from the source, so each of these sources can affect only targets which are
quite nearby. Hence we treat these sources by direct evaluation, with a data
structure constructed as in [11].

To do this, let R be the range of the longest-range Gaussian in this group;
thus e #/* < ¢ and R = /—aloge. Divide [0,1]¢ into n? boxes of side
length > R, so n = |1/R]. Sort the targets ¢; into boxes by location. Now
run through the sources s;. Put s; into a box, B say, by location, and

let k; = [\/—6j/a]. Then s; affects boxes with indices within &; of B, to

accuracy €. Run through these boxes, incrementing Sf(¢;) at each target t;
in each box. This concludes the treatment of sources with 0 < 4; < a.

Now consider the large scales, with b < §; < co. These Gaussians have
very long ranges, so direct evaluation is very expensive. For the same reason,
however, they are very smooth. If b is chosen large enough, all these sources
can be incorporated into a single p?-term truncated Taylor expansion about
the box center ty = (1/2,...,1/2) of [0,1]%. with error less than Fe where
F =3|f;l. Indeed, (8) implies that

B
1275, t—1t
> gt =0 () 4,

d;>b B<p
where 512
1) S; — to
Cs=2 > <—> hs | =
B 9;2b & \/g
and)
T e
E, < F—Z = < 1.
P="1- rp T P+ 17“

Here r = 1/v/26 < 1/v2b and F = ¥ | f;].

Thus the large variances are very easy to deal with; we simply form p?
coefficients C's at a cost of O(p?N) work and evaluate the Taylor series at M
targets, with a total cost of O(p?(M + N)). The coefficient p? depends only
on the desired precision e.

Finally, we must deal with the intermediate sources with a < d; < b. We
treat these by a combination of the previous two methods. The targets are

7

sorted into boxes and each source contributes to a Taylor expansion about the
center of each box within range. When each Taylor expansion is complete,
it is evaluated at each target in the box.

We begin by sorting the targets into boxes C' say, with centers t- and
sides of lengths rv/20 parallel to the axes. Here § = min,<s,<;0; > a. Now
each source is converted into a Taylor expansion (8) about the center t¢ of

each target box C' within range R; = /—d;loge of s;. Thus we have, for
teC,

B
1275, t—1t
I R

lsj—tc|<R; B<p

181/2 o
Cs = i' (é) hs (8; tc)
By \9; \/0;

and E, satisfies the error bound

where

7~p
E, < F—*
1—r,

with r, = /> r < 1. We choose r and p to make |E,| < Fe. After each

source has contributed to all Taylor expansions in range, each Taylor expan-
sion is evaluated at the targets t; in its box.

Two slight refinements of this procedure reduce the overhead considerably
in practice. First, it is inefficient to form a Taylor series and evaluate it for
a box containing only a few targets. Thus a breakpoint Mrp is introduced,
boxes with more than My targets receive Taylor expansions, while direct
evaluation is more efficient for boxes with fewer than My targets. Typically
My = 8 or 10 is a reasonable value when single precision accuracy is desired.
The right value of My can be determined by the program when it is run, in
a reasonably straightforward way.

The second refinement is introduced in order to avoid a needlessly accu-
rate computation. If a scaling factor 6 = min d; is used to determine the box
size, then many sources will have ¢; much larger than 0. For these sources,
p? terms is far too many to provide the desired accuracy, and p should be re-
duced. Hence we can compute how many terms are necessary for each source
independently, and increment only those coefficients. Thus we compute ¢¢
terms where ¢ is chosen to satisfy the error estimate

ng <e
L=y —

8

with r,; = ry/ed/d;(q +1). The small overhead required to compute ¢ for
each source is compensated for by the reduction in effort required to evaluate

Hermite coefficients. In practice, this refinement often produces a factor of
two speedup in the calculation.

A third refinement is possible; one can subdivide the center interval (a, b)
further, in order to avoid treating longer-range smoother Gaussians on waste-
fully small scales. A geometric subdivision as in [12] is possible, or some other
problem-dependent subdivision may be more appropriate.

The algorithm is completed by the choice of the cutoffs a and b. If the
scales §; are distributed in a fairly uniform way over the interval [d,,, 0],
then one can take a = d,, + O(1/N) and b fixed, say b = 1/10. The choice
of a is made because we can afford to have only a fixed number of sources
below a. The choice of b = 1/10 is about the smallest for which we can make
the Hermite series accurate with a practical number of terms, like 207 or 30¢.
The choice of a is more important when there are a few outlying scales 9;,
with all the rest lying considerably higher. Then we should choose a to be
the essential minimum of the d;’s, in other words the smallest lower bound
for all but a fixed number of the scales as N — oo. Thus only the outliers
will be less than a. This can substantially improve the performance of the
medium scales, because we can take larger boxes, and the cost of evaluating
a few sources directly is then worth it.

4 Target-dependent Scales

In this section, we describe how to evaluate
N 2
Tf(t;) = Z fjefltrsj'l /6i
=1

at M points ¢; € R?, under the assumption (for convenience) that all the
sources s; lie in [0,1]%. The algorithm is structurally dual to the algorithm
of §3, so we concentrate on the differences.

We divide the ;s into three sets in the same way as before, and treat
each set of targets as a group.

For targets with 0 < §; < a, we sort the sources into boxes rather than
the targets, and apply direct evaluation.

For the middle interval a < §; < b), we use the Hermite expansion (10)
with 0 = ming<s,<;0; > a. We impose a box structure on the sources and
collect all the sources in each box B (with center sp and sides of length /26
parallel to the axes) into a scaled Hermite expansion about the box center,
valid everywhere in [0, 1]%:

2 SN\
Tpf(t) = 3 fie o/ =3%"By (g) hg (T) + Ep

s;EB B<p

where

1 ——
m=5 55 (")

and we make E,, < F'e by choice of r and p. Then we evaluate a fixed number
of Hermite expansions at each target t;:

Tf(t:)= > Taf(t),
lsp—ti|<R;
with R; = y/—d;loge. Some overhead can be avoided if we form Hermite
series only for boxes with more than say Ng sources; boxes with fewer than
Ng sources are handled by direct evaluation. Also, targets with §; much
larger than ¢ need only evaluate a smaller Hermite series, since the error
decays faster for them.

Finally, the sources with §; > b are handled by forming all of them into a
single Hermite expansion about the center of [0, 1]¢ and evaluating it at each
target.

The parameters a, b and Ng are chosen in a way very like the source-
dependent algorithm.

5 Numerical Results

In this section, we present some numerical results showing the speedups
achievable by our algorithms. We tested the source-dependent algorithm
on sets of N = M sources and targets in d = 2 dimensions; the target-
dependent algorithm will exhibit highly similar statistics. We used random
uniformly distributed strengths on [0, 1], with source and target points uni-
formly distributed either on [0,1]? or on a circle in [0,1]%. The scales were
uniformly distributed on [d,,, 0] for various choices of ¢, and §,;.

10

Tables 1-4 present results for the source-dependent scale fast Gauss trans-
form for four examples. The time taken by the fast algorithm is recorded
in the column headed T}, the time required to evaluate the Gaussian sum
directly under T}, and the error produced by the fast algorithm — relative to
F =3 |fj| — under the heading E,/F. All computations were carried out
in double precision arithmetic with the error tolerance € set to 10~%. (This
was enough to achieve an actual error well below 107% in every case.) This
required p = 10 with » = 1 for sources with a < ¢; < b and p = 24 for
d; > b. In Table 1, we used source and target points uniformly distributed
on [0, 1]? and scales §; uniformly distributed between 4,, = 0.1 and d,; = 1.0.
We took a = 0, b = 0.125, and My = 8. The results show a beautifully
linear growth of computation time with N for the fast algorithm, against
a quadratic time for direct evaluation. A speedup of 2275 is obtained with
N = 102400, indicating a projected breakeven point of 45.

Case || N=M | Ty T, E,/F
1 100 0.05 0.10 0.222e-06
2 200 0.09 0.40 0.163e-06
3 400 0.18 1.60 0.551e-07
4 800 0.36 6.80 0.110e-07
5) 1600 0.76 25.60 0.449e-07
6 3200 1.45 99.20 0.128e-07
7 6400 2.88 406.40 0.186e-07
8 12800 5.75 1638.40 | 0.957e-08
9 25600 | 11.45 | 6553.60 | 0.554e-08
10 51200 | 22.96 | 26060.80 | 0.114e-07
11 102400 | 45.94 | 104499.20 | 0.836e-08

Table 1: Times and errors for 0.1 < ¢; < 1.0, with targets and sources

distributed uniformly in the unit box.

In Table 2, we used points randomly chosen on a circle with radius 0.29
and center (0.6,0.7), with the same parameters as in Table 1. The non-
uniformity of the sources and targets did not slow down the algorithm.

Table 3 presents times and errors for the same calculation as in Example
2, but with the minimum scale reduced to d,, = 0.01. This slows down the
algorithm only slightly; the speedup goes down to 1776 with 102,400 points.

11

Case || N=M | Ty T, E,/F
1 100 0.06 0.10 0.115e-06
2 200 0.10 0.40 0.553e-06
3 400 0.16 1.60 0.439e-06
4 800 0.37 6.40 0.403e-06
it 1600 0.71 24.00 0.352e-06
6 3200 1.43 102.40 | 0.335e-06
7 6400 2.83 409.60 | 0.181e-06
8 12800 | 5.69 1632.00 | 0.255e-06
9 25600 | 11.38 | 6528.00 | 0.226e-06
10 51200 | 22.62 | 26214.40 | 0.155e-06
11 102400 | 45.43 | 104192.00 | 0.254e-06

Table 2: Times and errors for 0.1 < ¢; < 1.0, with targets and sources

distributed uniformly on a circle.

Case || N=M | Ty T, E,/F
1 100 0.06 0.10 0.145e-06
2 200 0.12 0.40 0.564e-06
3 400 0.24 1.60 0.420e-06
4 800 0.45 6.40 0.252e-06
5) 1600 0.90 25.60 0.311e-06
6 3200 1.81 102.40 0.275e-06
7 6400 3.60 400.00 0.170e-06
8 12800 7.28 1657.60 | 0.238e-06
9 25600 | 14.54 | 6502.40 | 0.201e-06
10 51200 | 29.03 | 26291.20 | 0.144e-06
11 102400 | 58.86 | 104499.20 | 0.236e-06

Table 3: Times and errors for 0.01 < §; < 1.0, with targets and sources

distributed uniformly on a circle.

12

Table 4 is similar to Table 3, but with ¢;’s lying between 0.002 and 0.2.
Even with these fairly small scales, we still achieve a respectable speedup of

500 with N = 102, 400.

Case || N=M | 1Ty Ty E,/F
1 100 0.14 0.10 0.112e-07
2 200 0.36 0.30 0.180e-06
3 400 0.73 1.40 0.123e-06
4 800 1.55 6.00 0.110e-06
it 1600 3.18 25.60 0.623e-07
6 3200 6.59 102.40 | 0.683e-07
7 6400 13.22 409.60 | 0.460e-07
8 12800 | 26.88 1644.80 | 0.936e-07
9 25600 | 54.15 | 6720.00 | 0.634e-07
10 51200 | 107.85 | 26470.40 | 0.266e-07
11 102400 | 216.64 | 108083.20 | 0.720e-07

Table 4: Times and errors for 0.002 < ¢; < 0.2, with targets and sources

distributed uniformly on a circle.

6 Conclusions

We have presented fast algorithms which evaluate d-dimensional Gaussian
convolution sums (1) and (2) with scales dependent either on the source or the
target. Such sums are frequently evaluated in statistical computations[3, 10]
and also occur in numerical solution of the heat equation [9, 8] and other
applications[7]. Our algorithms evaluate these sums in O(M + N) work,
with a constant factor depending on the precision required and the minimum
scale which occurs.

Numerical results indicate that our method can speed up large calcula-
tions by several orders of magnitude; in one example, the computation time
was reduced to one minute instead of the 1.2 days required by direct eval-
uation. Thus this algorithm can be extremely useful in reducing the time
required to carry out large-scale computations. We are currently applying a

13

variant of this algorithm to problems in crystal growth, where it is used to
evaluate free-space heat potentials.

14

References

1]

2]

3]

[4]

[5]

(6]

7]

8]

9]

[10]

[11]

[12]

H. Dym and H. P. McKean, Fourier Series and Integrals, Academic
Press, San Diego, 1972.

A. Erdelyi, et. al. Higher Transcendental Functions, vol. II, McGraw-
Hill, New York, 1953.

S. Geman and C. Hwang, Nonparametric Maximum Likelihood Estima-
tion by the Method of Sieves, Ann. Statist., 10 (1982), pp. 401-414.

I. S. Gradshteyn and I. M. Ryzhik, Tables of Integrals, Series, and Prod-
ucts, Academic Press, New York, 1980.

L. Greengard and J. Strain, The Fast Gauss Transform, STAM J. Sci.
Stat. Comput., in press.

E. Hille, A Class of Reciprocal Functions, Ann. Math. 27(1926), pp.
427-464.

N. Lerner, Wick-Wigner Functions and Tomographic Methods,
preprint,1989.

A. MclIntyre, Boundary Integral Solutions of the Heat Equation, Math.
Comp., 46 (1986), pp. 71-79.

P. J. Noon, The Single Layer Heat Potential and Galerkin Boundary
Element Methods for the Heat Equation, Ph.D. Thesis, University of
Maryland, 1988 .

B. W. Silverman, Density Estimation for Statistics and Data Analysis,
Chapman and Hall, London, 1986.

J. Strain, Fast Potential Theory II: Layer Potentials and Discrete Sums,
UC Berkeley Center for Pure and Applied Mathematics Report PAM-
567, April 1990, and submitted to Jour. Comput. Phys.

J. Strain, A Fast Laplace Transform Based on Laguerre Functions, sub-
mitted to Math. Comp.

15

