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OVERVIEW

Convert elliptic problems to first-order overdetermined form
— Control error via residuals
— Understand solvability of boundary value problem

Generalize classical ADI iteration
— Essentially optimal in simple domains
— Eliminate symmetry and commutativity restrictions

Reconstruct classical potential theory
— Employ Fourier analysis and Ewald summation
— Build fast boundary integral solvers in complex domains



EXAMPLES OF ELLIPTIC PROBLEMS

Cauchy-Riemann

agju — ay'U ayu — _8x'U

Low-frequency Maxwell

Vsz—%H V.E=4np
VtziﬁE—l—él—wj V-H=0
C C
Linear elasticity
0i0ij + F; =0 T — %Cz’jkl (Opu; + Jug) = 0

Laplace/Poisson/Helmholtz/Yukawa/ ...
Au—+su=f

Stokes
—Au+Vp=Ff V-u=0



PART 1. CONVERTING TO FIRST-ORDER SYSTEMS

Higher-order system of partial differential equations

R E Z aijklc?i@jvl —+ Z bjklc’?jvl + Z CLlV] — fk in €2
171 gl [

Yo+ ) Brdu + - = gy on [ = 052
z 5l

Seek new solution vector v = (v,dqv,...,0,v,... )"
Vector u satisfies first-order system
AUZZAjaju—I—AOUZf in 2

J

Bu =g on [

Sparse matrices A;, Ag, B localize algebraic structure



SQUARE BUT NOT ELLIPTIC

Robin boundary value problem for 2D Poisson equation

Av=Ff in O
av + B0pv = g on
3 x 3 square system
(01 —1 0 | [ v | [ 0 |
Au= |0, 0 -1 oiv | =10
_O 01 82__82v_ _f_

Bu:[a Bn1 5712] o1v | =g
Oov

System not elliptic (in sense of Protter): principal part
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> kjAj=|ky 0O O singular for all k!
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OVERDETERMINED BUT ELLIPTIC
Av=f in Q2

Overdetermined 4 x 3 elliptic system

Compatibility conditions = overdetermined but elliptic
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Analysis: controls derivatives 8ju in terms of v and f

Computation: controls error via residuals
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LOCAL SOLVABILITY FOR NORMAL DERIVATIVE

Ellipticity of first-order system

AuZZAjﬁju—l—AOuzf in 2
J
implies any normal part A, = >j n;A; iIs left-invertible

Al = (A% Ap) "t Ax — Al Ap =1

Determines any directional derivative

Onu = Z n;0;u = A}; (f — ApOru — Agu)
)

in terms of tangential derivatives
J ]
and zero-order data



SOLVE BOUNDARY VALUE PROBLEM

With full tangential data plus elliptic system can integrate

Onu = Al (f — Apdpu — Agu)

inward to solve boundary value problem

Boundary conditions

v
Bu=[oz Bn1 Bng} Nv | =g BB* =1
Oov

determine local projection B*Bu = B*g on the boundary
Boundary value problem constrains (I — B*B)u on boundary

Contrast: hyperbolic systems blind L characteristics



PART 2. ALTERNATING DIRECTION IMPLICIT

Separable second-order equations in rectangles
—Au = Au+ Bu = —8%&—8%11,:]”
efficiently solved by essentially optimal ADI iteration
(h4+ A)(h+ B)u™tt = (h— A)(h — B)u™ + 2f

when A and B are commuting positive Hermitian operators

Fast damping over geometric range

a>0 — h_a§1
h 4+ a
1 b 1
=<2 < —
2= p = h+b—3

implies O(e) error reduction in O(log Nloge) sweeps



ADI FOR POISSON SYSTEM

Choose arbitrary sweep direction n and normalize

J v

Left-invert A, by ellipticity and damp on scale 1/h

Error mode e*' * damped by matrix symbol

p(k) =TI I1 (h + ikn + Bo)~* (h — ik Br)
h N

Spectral radius 0.9 with M = O(log N) sweeps
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SPECTRAL RADIUS FOR POISSON SYSTEM

VY
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BIG PICTURE

Given operators A and B with
cheap resolvents (hI — A)~1 and (hI — B)~1
find an efficient scheme for the solution of

(A+Bu=f

Underlies many computational problems where either
— A is sparse and B is low-rank or

— A and B are both sparse but in different bases or
— fast schemes deliver A—! and Bl or ...

Challenging when A and B don’t commute

Solution very unlikely in this generality
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ADI SQUARED

A and B may not be invertible (or even square), so square

(A+B)*(A+Blu=(A+B)'f=g

Solve corresponding heat equation

oou=—(A+B)*(A+B)u+yg
toget uast— x

Discretize time and split

(I +hA*A) (I +hB*B)u™ Tl = (I — h(A*B+ B*A))u™ + ¢
toget u+ O(h) as t -+ oo
Alternate directions for symmetric symbol

p=({I4+hB*B) '(I+hA*A)' (I —2r(A*B+ B*A)) (I + hA*A) ' (I + hB*B)*

Similar with more operators A, B, C, D, ...
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POISSON/YUKAWA /HELMHOLTZ

Second-order equation — overdetermined first-order system

Au+su=f — (A+B4+Clu= A101u+ Axdru+ Agu=f

with high-frequency zero-order operator C = O(s)

Fourier mode (k1,k>) of error damped with symbol
p = (I+hC*C)y P +hrB*B)'(I+hA*A) L.

(I —2h(A*B + A*C + B*A+ B*C + C*A+ C*B)) -

(I +hA*A) (I 4+ hrB*B)* (I + hC*C)?

. 1 ih(s + )bk ih(s + 1)bk>
o = —th(s + 1)bk b? 0

where b= (1 4+ hs?)/(1 +h)

Eigenvalues of p bounded by 1 and controlled by h for all real s
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SPECTRAL RADIUS FOR HELMHOLTZ WITH s=1
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PART 3. POTENTIAL THEORY

Given fundamental matrix G;(y) of adjoint system

d
— Z 0;Gz(y)Aj; + Gx(y)Ag = 62 (y) I In box @ D €2
=1

Gauss theorem
|05 (Ga)Aju(®)) dy = [ n;(1)G()Aju(x) dy

and general jump condition §; — 36y as 2 -y €T
implies universal boundary integral equation

Su) + [[Gy() An(o)u(o) do = Qf(7) on T

with normal part A,(y) = > n;(v)A; and volume potential

Qf(7) = | G4(0)f () dy
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PROJECTED INTEGRAL EQUATION
Project out boundary condition Bu = g with P(y) =1 — B*B

Solve well-conditioned square integral equation

%u(v) + /r P(v)Gy(0)An(o)pu(o)do = p(v)

for locally projected unknown ;. = Pu with data

p(v) = P(m)Qf(v) — P(v)F B*g()
and layer potential

F9(n) = [ Gy(0)An(0)9(0) do

Recover u = i+ B*g locally on ' and then globally

u(zx) = Qf(x) + MNu(x) inQ

Need algorithms for computing p, ¢ and u
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PERIODIC FUNDAMENTAL SOLUTION

Fourier series in cube @ D[ gives fundamental matrix

Go(y) = 3 e F os(k) La*(k)e® v
kezd
where s = a*a IS positive definite Hermitian matrix and

d
j=1

Diverges badly since s(k) la*(k) = O(|k|~1)

Local filter e~ 7% gives exponential convergence

Galy) = Y e W rem W) ~ta* (k)elk Y
[k|I<N
+ tiny truncation error O(e_TNQ)

+ big but local filtering error O(7)
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GENERALIZED EWALD SUMMATION

Fundamental matrix is smooth rapidly-converging series
Gr(z) = Ze—Ts(k)S(k)—la*(k)e—ika — o T5g—1y*

plus local asymptotic series for correction

2 3
_ —rSya—1 % [ T T g2 _ ...\ g
= —-e™)s 14 _<T TR )A

with local differential operators A* and S = A*A

Implies local corrections and Ewald formulas
(with special function kernels) for Laplace, Stokes, ...

Convergence independent of data smoothness
vields volume and layer potentials

Splits integral equation into sparse plus low-rank A+ B
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LOCAL CORRECTION BY GAUSS

Gauss theorem differentiates indicator function w(xz) of set 2

a-d:/ wdy & O = n.d

Geometry in second-order derivatives

8Jakw(££) — (8]nk)5r —|— njnk(?nér

VVolume potential of discontinuous function fw splits

2f(2) = | Ga(y)f(y) dy = Q(fw) = Qr(fw) + Lr(fw)

Local correction L, satisfies product rule

Lr(fw)(z) =7 ((A*f(:v))w(w) - ZA}ff(w)nj(wwr(w)) + O(r?)
J
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SPECTRAL INTEGRAL EQUATION

Fourier series for fundamental matrix separates variables

Gz —y) = Z e—ikae—Ts(k)S(k)—la*(k)eikTy

Converts integral equation to semi-separated form

(g + MRT) u(y) = p()

— T computes Fourier coefficients of (A,u)dr
— R applies filtered inverse of elliptic operator in Fourier space
— M evaluates and projects Fourier series on [

Solve in Fourier space by identity
—1

1 -1 1
(§—|—MRT) =2—2MR<§—|—TMR) T
Compresses integral operator to low-rank matrix

(TMR), = [ An(o)P(e)e =077 dg e 70 s(g)"a*(g)
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NONUNIFORM FAST FOURIER TRANSFORM
Standard FFT works on uniform equidistant mesh

Nonuniform FFT works on arbitrary point sources:

— form coefficients for small source for large target spans

— butterfly: merge source and shorten target span recursively
— evaluate total of large source fields in small target spans

Integral operator and density p require Fourier coefficients
of soup of piecewise polynomials P; on simplices T;
(points, segments, triangles, tetrahedra, ...)

fy =% | ¥ Pi(2)da
J J
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GEOMETRIC NONUNIFORM FFT

Geometric NUFFT evaluates Fourier coefficients of
soup Iin arbitrary dimension and codimension

Follow model of NUFFT for point sources, but
— integrate polynomials over d-dimensional source simplices

— and d-dimensional target simplices
— to apply exact transform in D dimensions

Dimensional recursion evaluates Galerkin matrix element
NA
F(k,d,S,P,a,o) = /S (x —0)*e* *P(2)dx

in terms of

— lower-dimensional simplex faces F(k,d —1,9,5,P,a,0)

— lower-degree differentiated polynomials F(k,d,S,0;P,a,0)
— lower-order moments F'(k,d, S, P,a —e;,0)
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CONCLUSION

Solve general elliptic problems

in first-order overdetermined form

with

— fast iterations in simple domains

or

— projected boundary integral equation

— generalized Ewald summation

— geometric nonuniform fast Fourier transforms

24



