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OVERVIEW

Convert elliptic problems to first-order overdetermined form

– Control error via residuals

– Understand solvability of boundary value problem

Generalize classical ADI iteration

– Essentially optimal in simple domains

– Eliminate symmetry and commutativity restrictions

Reconstruct classical potential theory

– Employ Fourier analysis and Ewald summation

– Build fast boundary integral solvers in complex domains
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EXAMPLES OF ELLIPTIC PROBLEMS

Cauchy-Riemann

∂xu = ∂yv ∂yu = −∂xv

Low-frequency Maxwell

∇× E = −
iω

c
H ∇ · E = 4πρ

∇×H =
iω

c
E +

4π

c
j ∇ ·H = 0

Linear elasticity

∂iσij + Fj = 0 σij −
1

2
Cijkl (∂kul + ∂luk) = 0

Laplace/Poisson/Helmholtz/Yukawa/ . . .

∆u+ su = f

Stokes

−∆u+∇p = f ∇ · u = 0
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PART 1. CONVERTING TO FIRST-ORDER SYSTEMS

Higher-order system of partial differential equations

· · ·+
∑
ijl

aijkl∂i∂jvl +
∑
jl

bjkl∂jvl +
∑
l

cklvl = fk in Ω

∑
l

αklvl +
∑
jl

βkjl∂jvl + · · · = gk on Γ = ∂Ω

Seek new solution vector u = (v, ∂1v, . . . , ∂dv, . . .)
T

Vector u satisfies first-order system

Au =
∑
j

Aj∂ju+A0u = f in Ω

Bu = g on Γ

Sparse matrices Aj, A0, B localize algebraic structure
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SQUARE BUT NOT ELLIPTIC

Robin boundary value problem for 2D Poisson equation

∆v = f in Ω

αv + β∂nv = g on Γ

3× 3 square system

Au =

 ∂1 −1 0
∂2 0 −1
0 ∂1 ∂2


 v
∂1v
∂2v

 =

 0
0
f



Bu =
[
α βn1 βn2

]  v
∂1v
∂2v

 = g

System not elliptic (in sense of Protter): principal part

∑
j

kjAj =

 k1 0 0
k2 0 0
0 k1 k2

 singular for all k!
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OVERDETERMINED BUT ELLIPTIC

∆v = f in Ω

Overdetermined 4× 3 elliptic system

Au =


∂1 −1 0
∂2 0 −1
0 −∂2 ∂1
0 ∂1 ∂2


 v
∂1v
∂2v

 =


0
0
0
f



Compatibility conditions ⇒ overdetermined but elliptic

∑
j

kjAj =


k1 0 0
k2 0 0
0 −k2 k1
0 k1 k2

 full-rank ⇒ injective for k 6= 0

Analysis: controls derivatives ∂ju in terms of u and f

Computation: controls error via residuals
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LOCAL SOLVABILITY FOR NORMAL DERIVATIVE

Ellipticity of first-order system

Au =
∑
j

Aj∂ju+A0u = f in Ω

implies any normal part An =
∑
j njAj is left-invertible

A†n = (A∗nAn)−1A∗n −→ A†nAn = I

Determines any directional derivative

∂nu =
∑
i

ni∂iu = A†n (f −AT∂Tu−A0u)

in terms of tangential derivatives

AT∂Tu =
∑
j

Aj∂ju−An∂nu =
∑
ij

Ai
(
δij − ninj

)
∂ju

and zero-order data
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SOLVE BOUNDARY VALUE PROBLEM

With full tangential data plus elliptic system can integrate

∂nu = A†n (f −AT∂Tu−A0u)

inward to solve boundary value problem

Boundary conditions

Bu =
[
α βn1 βn2

]  v
∂1v
∂2v

 = g BB∗ = I

determine local projection B∗Bu = B∗g on the boundary

Boundary value problem constrains (I −B∗B)u on boundary

Contrast: hyperbolic systems blind ⊥ characteristics
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PART 2. ALTERNATING DIRECTION IMPLICIT

Separable second-order equations in rectangles

−∆u = Au+Bu = −∂2
1u− ∂

2
2u = f

efficiently solved by essentially optimal ADI iteration

(h+A)(h+B)um+1 = (h−A)(h−B)um + 2f

when A and B are commuting positive Hermitian operators

Fast damping over geometric range

a ≥ 0 →
∣∣∣∣h− ah+ a

∣∣∣∣ ≤ 1

1

2
≤
b

h
≤ 2 →

∣∣∣∣h− bh+ b

∣∣∣∣ ≤ 1

3

implies O(ε) error reduction in O(logN log ε) sweeps
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ADI FOR POISSON SYSTEM

Choose arbitrary sweep direction n and normalize∑
j

Aj∂ju =
∑
ij

Ai(ninj + δij − ninj)∂ju = An∂nu+AT∂Tu

Left-invert An by ellipticity and damp on scale 1/h

hum+1 + ∂nu
m+1 +B0u

m+1 = hum −BT∂Tum +A†nf

Error mode eikTx damped by matrix symbol

ρ(k) =
∏
h

∏
n

(h+ ikn +B0)−1 (h− ikTBT )

Spectral radius 0.9M with M = O(logN) sweeps
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SPECTRAL RADIUS FOR POISSON SYSTEM

h = 1 h = 4

h = 16 h = 64

11



BIG PICTURE

Given operators A and B with

cheap resolvents (hI −A)−1 and (hI −B)−1

find an efficient scheme for the solution of

(A+B)u = f

Underlies many computational problems where either

– A is sparse and B is low-rank or

– A and B are both sparse but in different bases or

– fast schemes deliver A−1 and B−1 or . . .

Challenging when A and B don’t commute

Solution very unlikely in this generality
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ADI SQUARED

A and B may not be invertible (or even square), so square

(A+B)∗(A+B)u = (A+B)∗f = g

Solve corresponding heat equation

∂tu = −(A+B)∗(A+B)u+ g

to get u as t→∞

Discretize time and split(
I + hA∗A

) (
I + hB∗B

)
um+1 =

(
I − h(A∗B +B∗A)

)
um + g

to get u+O(h) as t→∞

Alternate directions for symmetric symbol

ρ = (I + hB∗B)−1 (I + hA∗A)−1 (I − 2h(A∗B +B∗A)) (I + hA∗A)−1 (I + hB∗B)−1

Similar with more operators A, B, C, D, . . .
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POISSON/YUKAWA/HELMHOLTZ

Second-order equation → overdetermined first-order system

∆u+ su = f → (A+B + C)u = A1∂1u+A2∂2u+A0u = f

with high-frequency zero-order operator C = O(s)

Fourier mode (k1, k2) of error damped with symbol

ρ = (I + hC∗C)−1 (I + hB∗B)−1 (I + hA∗A)−1 ·
(I − 2h(A∗B +A∗C +B∗A+B∗C + C∗A+ C∗B)) ·
(I + hA∗A)−1 (I + hB∗B)−1 (I + hC∗C)−1

ρ̂ =
1

(1 + hk2
1)2(1 + hk2

2)2(1 + hs2)2

 1 ih(s+ 1)bk1 ih(s+ 1)bk2

−ih(s+ 1)bk1 b2 0
−ih(s+ 1)bk2 0 b2


where b = (1 + hs2)/(1 + h)

Eigenvalues of ρ̂ bounded by 1 and controlled by h for all real s
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SPECTRAL RADIUS FOR HELMHOLTZ WITH s = 1

h = 1/64 h = 1/16

h = 1/4 h = 1
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PART 3. POTENTIAL THEORY

Given fundamental matrix Gx(y) of adjoint system

−
d∑

j=1

∂jGx(y)Aj +Gx(y)A0 = δx(y)I in box Q ⊃ Ω

Gauss theorem∫
Ω
∂j
(
Gx(y)Aju(y)

)
dy =

∫
Γ
nj(γ)Gx(γ)Aju(γ) dγ

and general jump condition δx → 1
2δγ as x→ γ ∈ Γ

implies universal boundary integral equation

1

2
u(γ) +

∫
Γ
Gγ(σ)An(σ)u(σ) dσ = Ωf(γ) on Γ

with normal part An(γ) =
∑
nj(γ)Aj and volume potential

Ωf(γ) =
∫

Ω
Gγ(y)f(y) dy
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PROJECTED INTEGRAL EQUATION

Project out boundary condition Bu = g with P (γ) = I −B∗B

Solve well-conditioned square integral equation

1

2
µ(γ) +

∫
Γ
P (γ)Gγ(σ)An(σ)µ(σ)dσ = ρ(γ)

for locally projected unknown µ = Pu with data

ρ(γ) = P (γ)Ωf(γ)− P (γ)ΓB∗g(γ)

and layer potential

Γg(γ) =
∫

Γ
Gγ(σ)An(σ)g(σ) dσ

Recover u = µ+B∗g locally on Γ and then globally

u(x) = Ωf(x) + Γu(x) in Ω

Need algorithms for computing ρ, µ and u
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PERIODIC FUNDAMENTAL SOLUTION

Fourier series in cube Q ⊃ Γ gives fundamental matrix

Gx(y) =
∑
k∈Zd

e−ikTxs(k)−1a∗(k)eikTy

where s = a∗a is positive definite Hermitian matrix and

a(k) = i
d∑

j=1

kjAj +A0

Diverges badly since s(k)−1a∗(k) = O(|k|−1)

Local filter e−τs gives exponential convergence

Gx(y) =
∑
|k|≤N

e−ikTxe−τs(k)s(k)−1a∗(k)eikTy

+ tiny truncation error O(e−τN
2
)

+ big but local filtering error O(τ)
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GENERALIZED EWALD SUMMATION

Fundamental matrix is smooth rapidly-converging series

Gτ(x) =
∑

e−τs(k)s(k)−1a∗(k)e−ikTx = e−τSS−1A∗

plus local asymptotic series for correction

Lτ = (I − e−τS)S−1A∗ =

(
τ −

τ2

2!
S +

τ3

3!
S2 − · · ·

)
A∗

with local differential operators A∗ and S = A∗A

Implies local corrections and Ewald formulas

(with special function kernels) for Laplace, Stokes, . . .

Convergence independent of data smoothness

yields volume and layer potentials

Splits integral equation into sparse plus low-rank A+B
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LOCAL CORRECTION BY GAUSS

Gauss theorem differentiates indicator function ω(x) of set Ω∫
Ω
∂judx =

∫
Γ
njudγ ⇔ ∂jω = njδΓ

Geometry in second-order derivatives

∂j∂kω(x) = (∂jnk)δΓ + njnk∂nδΓ

Volume potential of discontinuous function fω splits

Ωf(x) =
∫

Ω
Gx(y)f(y) dy = Q(fω) = Qτ(fω) + Lτ(fω)

Local correction Lτ satisfies product rule

Lτ(fω)(x) = τ

(A∗f(x))ω(x)−
∑
j

A∗jf(x)nj(x)δΓ(x)

+O(τ2)
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SPECTRAL INTEGRAL EQUATION

Fourier series for fundamental matrix separates variables

Gτ(x− y) =
∑

e−ikTxe−τs(k)s(k)−1a∗(k)eikTy

Converts integral equation to semi-separated form(
1

2
+MRT

)
µ(γ) = ρ(γ)

– T computes Fourier coefficients of (Anµ)δΓ
– R applies filtered inverse of elliptic operator in Fourier space
– M evaluates and projects Fourier series on Γ

Solve in Fourier space by identity(
1

2
+MRT

)−1
= 2− 2MR

(
1

2
+ TMR

)−1
T

Compresses integral operator to low-rank matrix

(TMR)kq =
∫

Γ
An(σ)P (σ)e−i(k−q)Tσ dσ e−τs(q)s(q)−1a∗(q)
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NONUNIFORM FAST FOURIER TRANSFORM

Standard FFT works on uniform equidistant mesh

Nonuniform FFT works on arbitrary point sources:

– form coefficients for small source for large target spans

– butterfly: merge source and shorten target span recursively

– evaluate total of large source fields in small target spans

Integral operator and density ρ require Fourier coefficients

of soup of piecewise polynomials Pj on simplices Tj
(points, segments, triangles, tetrahedra, . . . )

f̂(k) =
∑
j

∫
Tj

eikTxPj(x) dx
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GEOMETRIC NONUNIFORM FFT

Geometric NUFFT evaluates Fourier coefficients of

soup in arbitrary dimension and codimension

Follow model of NUFFT for point sources, but

– integrate polynomials over d-dimensional source simplices

– and d-dimensional target simplices

– to apply exact transform in D dimensions

Dimensional recursion evaluates Galerkin matrix element

F (k, d, S, P, α, σ) =
∫
S

(x− σ)α eikTxP (x) dx

in terms of

– lower-dimensional simplex faces F (k, d− 1, ∂jS, P, α, σ)

– lower-degree differentiated polynomials F (k, d, S, ∂jP, α, σ)

– lower-order moments F (k, d, S, P, α− ej, σ)
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CONCLUSION

Solve general elliptic problems

in first-order overdetermined form

with

– fast iterations in simple domains

or

– projected boundary integral equation

– generalized Ewald summation

– geometric nonuniform fast Fourier transforms
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