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a b s t r a c t

The least-squares projection procedure appears frequently in mathematics, science, and engineering. It
possesses the well-known property that a least-squares approximation (formed via orthogonal projec-
tion) to a given data set provides an optimal fit in the chosen norm. The orthogonal projection of the data
onto a finite basis is typically approached by the inversion of a Gram matrix involving the inner products
of the basis functions. Even if the basis functions have compact support, so that the Gram matrix is sparse,
its inverse will be dense. Thus computing the orthogonal projection is expensive.

An efficient local least-squares algorithm for non-orthogonal projection onto smooth piecewise-
polynomial basis functions is analyzed. The algorithm runs in optimal time and delivers the same order
of accuracy as the standard orthogonal projection. Numerical results indicate that in many computational
situations, the new algorithm offers an effective alternative to global least-squares approximation.

� 2011 Elsevier B.V. All rights reserved.

1. Introduction

In a recent publication [1], an efficient approximate method
for the imposition of Dirichlet boundary conditions in isogeomet-
ric analysis was proposed. Isogeometric analysis [2] uses non-
interpolatory basis functions for both geometry and analysis,
and adjusts ‘‘control point’’ values to impose Dirichlet boundary
conditions. Standard methods for finding the control point values
solve a least-squares (LSQ) problem [3]. This provides optimal
accuracy but increases the computational cost, especially when
dealing with transient Dirichlet boundary conditions, and in cer-
tain classes of non-linear problems. The local least-squares (LLSQ)
method of [1] approximates the global least-squares problem by a
collection of decoupled local least-squares problems, greatly
diminishing the computational cost. Examples in [1] demonstrate
the efficiency and accuracy of the method. However, the theoret-
ical properties of the LLSQ method were not addressed and thus
the true limitations of the method are unknown. In this work,
we carefully examine the LLSQ method and elucidate its theoret-
ical properties. In particular, we analyze the error in the LLSQ
approximation, prove convergence to the global LSQ solution for
model problems under appropriate conditions, and make positive
statements about the overall impact of using LLSQ solutions in
place of LSQ solutions.

In brief, the LLSQ method exploits the finite element concepts of
local basis functions and global basis functions. When we speak of
a global LSQ solution, we mean the projection of a given function
onto the span of the global basis functions. This projection is an
orthogonal projection in the L2 norm which is computationally
expensive. The LLSQ solution proceeds by first computing the
orthogonal projection of the given function onto the span of the lo-
cal basis functions. This inexpensive local computation yields a dis-
continuous approximation. The LLSQ solution then projects the
discontinuous approximation non-orthogonally into the space
spanned by the global basis functions, in a way that is not equiva-
lent to the global LSQ projection. The primary theoretical question
is to clearly ascertain the relation between the resulting approxi-
mations. We answer this question by factorizing the LSQ and LLSQ
projections, identifying the common factors, and bounding the
differences.

2. The least-squares method

The least-squares method [4] is a well-established scheme for
computing the orthogonal projection which best approximates gi-
ven data from a finite dimensional subspace; see e.g. [5, Sections
6.2–6.5] for an elementary introduction and [6, Section 5.3] for a
more in-depth presentation and further references. In summary,
consider a given vector-valued data function u 2 Hs with values
u(x) in the state space Rr , for x in a subset X of Euclidean space
Rd, where the dimension d is 1, 2, or 3 and r is typically O(1).
Here Hs is the usual Sobolev space consisting of functions with
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distributional derivatives up to order s in L2. Suppose one wishes
to project this data onto a finite dimensional subspace F n ¼
spanff1ðxÞ; f2ðxÞ; . . . ; fnðxÞg of L2(X). Here fi(x) are given linearly
independent (but not usually orthogonal) scalar basis functions,
and we seek a projection which is orthogonal in the standard L2

inner product hu;vi ¼
R

X uðxÞ�vðxÞ dx. The global least-squares
projection uF 2 F n of the data u minimizes the squared residual
norm

u�
Xn

i¼1

uifi

�����
�����

2

¼ u�
Xn

i¼1

uifi;u�
Xn

i¼1

uifi

* +
ð1Þ

with respect to the parameters ui 2 Rr . Employing an obvious abuse
of notation, the nr-vector of minimizing components is also denoted
uF 2 Rnr and it satisfies the well-known normal equations

GuF ¼ p; ð2Þ

where the nr � nr Gram matrix has r � r block matrix-valued
components

Gij ¼ hfi; fjiI ð3Þ

and the right hand side has vector-valued components

pi ¼ hfi;ui: ð4Þ

Here I is the r � r identity matrix.

Remarks:

1. Standard solution methods for the normal equations (indepen-
dent of their assembly) exploit the uncoupled nature of the r
components of each vector coefficient ui, but typically do not
exploit sparsity of the Gram matrix. Thus they require O(rn3)
floating point operations.

2. The numerical fidelity of the least-squares solution process in
finite precision arithmetic requires the residual norm in (1) to
be small (consistency of the projection) and the condition num-
ber of the Gram matrix to be controlled (stability, which is
equivalent to uniform linear independence of the basis func-
tions); see [6, Section 5.3].

3. The least-squares solution uF is characterized by the orthogo-
nality of its error: hu � uF, vi = 0 for any v 2 F n. It can also be
written as uF = Fu where F is the orthogonal projection operator
from Hs onto F n. The operator F satisfies F2 = F because it is a
projection, and F is self adjoint, F = F⁄, because it is an orthogo-
nal projection.

4. In order to avoid cumbersome notation and terminology, from
here on, we assume without loss of generality that the state
space is one-dimensional; i.e. r = 1.

3. Compact support

We now assume the functions fi(x) have compact support, so
the Gram matrix elements hfi, fji vanish except for O(n) index pairs
(i, j). This assumption holds for NURBS, B-spline, and standard La-
grange polynomial finite element basis functions, and so forth. A
useful construct for bases with compact support is the notion of
elements, as in finite element analysis. A typical finite element
structure partitions the domain X into elements Xe. On each Xe,
each global basis function fj restricts to a local basis function f e

m de-
fined on Xe and vanishing outside Xe. In this setting, the rectangu-
lar assembly operator A is the Boolean matrix that maps between
local element degrees of freedom vem, representing any function
v ¼

P
e

P
mvemf e

m, and global degrees of freedom vj, where v ¼P
jv jfj. Each column of A contains a single unity-valued entry; all

other entries are zero. Furthermore, due to our compact support
assumption, the rows of A are sparse. This allows us to write

G ¼ AGEA�; ð5Þ
p ¼ ApE; ð6Þ

where GE is a block diagonal matrix whose blocks are computed via
integration over individual elements, and likewise for pE. In other
words, GE and pE represent local (unassembled) element contribu-
tions to the global vectors and matrices and the operator A assem-
bles them. In this notation, the normal equations for the global LSQ
problem become

AGEA�uF ¼ ApE: ð7Þ

Form (7) of the normal equations is the point of departure for the
approximate solution scheme proposed in [1].

4. The local least-squares method

The LLSQ method of [1] rewrites (7) in the form

GEA�uF ¼ pE þ q; ð8Þ

where q 2 ker(A). Here q typically represents highly oscillatory data
not present in F n, and measures the consistency of the given data u
with the chosen function subspace F n. The LLSQ method ignores q
and solves the relation GEA⁄uS = pE. This generates an approximation

uS ¼ ðAA�Þ�1AG�1
E pE ð9Þ

to the LSQ solution uF. Approximation (9) is extremely efficient to
compute because AA⁄ is a diagonal matrix and the inversion of GE

is done element-by-element.
Concretely, the LLSQ method solves a local least-squares prob-

lem on each element with G�1
E to obtain a globally discontinuous

solution, uE ¼ G�1
E pE; it then smooths the discontinuous solution

with the operator (AA⁄)�1A. The diagonal matrix AA⁄ counts the
number of local degrees of freedom corresponding to each global
degree of freedom; so (AA⁄)�1A sets shared degrees of freedom to
the average of the corresponding local degrees of freedom. The re-
sult is a function uS 2 F n, which enjoys the smoothness of the glo-
bal basis. Note uS – uF in general.

The geometric situation is depicted in Fig. 1. The given data is
u 2 Hs = {u 2 L2ju(k) 2 L2 for 0 6 k 6 s}. The span of the local func-
tions f e

m is En, a linear space of discontinuous functions. The combi-
nation of the local least-square solutions on each element
generates uE, the orthogonal projection of u onto En. The LLSQ
method of [1] projects this function non-orthogonally onto
F n ¼ En \ Hs, the span of the global basis functions. The global
LSQ solution uF is the orthogonal projection of both u and uE onto
F n.

4.1. Illustration

To concretely illustrate the LLSQ method in a simple setting,
consider given data u(x) over an interval X = [0,L]. We desire to
approximate u(x) by a function in F 3 ¼ spanff1ðxÞ; f2ðxÞ; f3ðxÞg,
where fj(x) are known functions as depicted in Fig. 2. The classical
global least square solution to this problem generates a function
uFðxÞ 2 F 3 which is the orthogonal projection of u(x) onto F 3 (in
the L2 norm). In this example, uF 2 C0. The LLSQ method of [1] is
a two step process. In step one, one first breaks the domain up into
elements and orthogonally projects u(x) onto E3 ¼ span f 1

1 ðxÞ;
�

f 1
2 ðxÞ; f 2

1 ðxÞ; f 2
2 ðxÞg, where f e

mðxÞ, the local functions over element e,
are the restrictions of the global functions fj(x); the mapping be-
tween the global index j and the local index m of element e is given
by the geometry of the problem and the definition of the global
functions. In finite element parlance, this relation is given by the
assembly operator A. The elements of the basis for E3 are illustrated
in Fig. 3. The result of this step is a function
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uEðxÞ ¼ u1
1f 1

1 ðxÞ þ u1
2f 1

2 ðxÞ þ u2
1f 2

1 ðxÞ þ u2
2f 2

2 ðxÞ 2 E3:

In this example, uE 2 C�1. Step two of the LLSQ method takes uE(x)
and non-orthogonally projects it onto F 3. This last step is non-
orthogonal for reasons of efficiency – an orthogonal projection
would simply generate uF(x) with all its attendant costs (should
one consider a basis of non-trivial size). The final result is a function
uSðxÞ 2 F 3 which we call the skew projection or alternately the LLSQ
solution. In our current example, this final step is executed by aver-
aging the computed coefficients for the shared degrees of freedom
f 1
2 ðxÞ and f 2

1 ðxÞ and assigning the result to the coefficient of f2(x):

uSðxÞ ¼ u1
1f1ðxÞ þ

1
2

u1
2 þ u2

1

� �
f2ðxÞ þ u2

2f3ðxÞ:

5. General analysis

The LLSQ method computes a ‘‘skew projection’’ uS 2 F n by a
two-step procedure: First, project u orthogonally onto En to get
the best approximation uE to u from En. Second, project uE non-
orthogonally onto F n by setting shared degrees of freedom control-
ling the first s derivatives of uE to their average values. The second
step yields a projection S from En to F n defined by uS = SuE. Because
repeating the second step makes no further change in uS, we have
S2 = S. However, S is not orthogonal since shared degrees of freedom
do not correspond to coefficients of a global orthonormal basis:
thus S⁄– S. Indeed, if S were the orthogonal projection from En onto
F n � En, then uS would be exactly the global solution uF. Fig. 1
exhibits the geometry of the three projections E, F and S and sug-
gests three observations that simplify the analysis:

Factorization: The orthogonal projection F onto F n could in prin-
ciple be implemented by projecting first orthogo-
nally onto En and then orthogonally from En to
F n. Symbolically, F = FE. Hence the only difference
between uF = Fu =FEu and uS = SE u is the route from
uE 2 En to the final result in F n.

Projection: Both S and F are projections onto F n, so Sv = Fv = v
for all v 2 F n.

Optimality: The error ku � uEk in orthogonal projection onto
the space En of discontinuous functions is never
larger than the error ku � uFk in orthogonal projec-
tion onto the space F n of continuous functions,
because F n is a subspace of En and orthogonal pro-
jection finds the best approximation.

Applying these three observations in succession shows that the
error ku � uSk in the LLSQ solution uS is controlled by the error
ku � uFk in the global least-squares solution uF, multiplied by a
bounded constant C P 1: By factorization and projection,

u� uS ¼ u� uF þ uF � uS ¼ u� uF þ ðF � SÞuE

¼ u� uF þ ðF � SÞðuE � uFÞ
¼ u� uF þ ðF � SÞðuE � uþ u� uFÞ:

Applying norms of functions and operators, using the triangle
inequality, and applying optimality gives

ku� uSk ¼ ku� uF þ ðF � SÞðuE � uþ u� uFÞk
6 ku� uFk þ kF � SkðkuE � uk þ ku� uFkÞ
6 ð1þ 2kF � SkÞku� uFk 6 Cku� uFk:

Thus C = 1 + 2kF � Sk is proportional to the operator norm of the dif-
ference between orthogonal and skew projections from En onto F n.

Fig. 1. Geometry of orthogonal and skew projections uF and uS of u 2 Hs onto F n .

Fig. 2. Example global basis with three functions fj(x).

Fig. 3. Four local basis functions corresponding to the global basis in Fig. 2.
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If C is bounded independent of the element size, this result shows
that the LLSQ method delivers the same order of accuracy as the
global least-squares solution with considerably less computational
effort.

6. Examples

The two step recipe elaborated upon in the prior section de-
fines the skew projection procedure of the LLSQ method. To
understand its properties, and in particular compute the error
constant C = 1 + 2kF � Sk, we will look at two particular cases.
We will start with Lagrange polynomial finite elements of vari-
able polynomial order and smoothness and examine the behavior
of the LLSQ method as well as one variant that we will define la-
ter. Next we will look at the case of B-spline bases of variable
polynomial order. Our tool of choice, in both cases, will be von
Neumann analysis.

6.1. Lagrange polynomial finite elements

We prove the order-p + 1 convergence of the LLSQ method for
projection of smooth data u from the order-s Sobolev space

Hs ¼ fu 2 L2juðkÞ 2 L2 for 0 6 k 6 sg

onto standard degree-p Hs polynomial finite elements in dimension
d = 1. It is known that the global least-squares approximation uF en-
joys order-p + 1 convergence for p + 1 6 s:

ku� uFk 6 Khpþ1kukHs ¼ Khpþ1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXs

k¼0

kuðkÞk2

vuut ;

where kv k is the L2 norm of v and K is independent of the element
size h. We will show that the LLSQ approximation maintains the
same order of convergence. For simplicity, we assume state space
dimension r = 1, and elements with uniform size 2h, degree p and
smoothness s, and employ classical von Neumann analysis. The
structure and conclusions of the analysis carry over to related basis
functions in multidimensional geometry, but more sophisticated
tools are required.

In this setting, the domain X ¼ R is the whole real line and the
elements Xj = [xj � h, xj + h] are intervals of equal size 2h centered
about points xj = 2jh for all integers j 2 Z. Each element supports
polynomials of degree p P 1, expressed for convenience in a local
orthonormal basis

pjmðxÞ ¼
1ffiffiffi
h
p Pm

x� xj

h

� �
; jx� xjj 6 h; 0 6 m 6 p: ð10Þ

Here we define pjm(x) = 0 for jx � xjj > h, and Pm are orthonormal
Legendre polynomials on the interval [�1,1]:

P0ðxÞ ¼
1ffiffiffi
2
p ; P1ðxÞ ¼

ffiffiffi
3
pffiffiffi

2
p x;

Pmþ1ðxÞ ¼
2mþ 1
mþ 1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mþ 3
2mþ 1

r
xPmðxÞ �

m
mþ 1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mþ 3
2m� 1

r
Pm�1ðxÞ:

Let En ¼ spanfpjmg be the span of these basis functions, so En is the
space of piecewise degree-p polynomials over the elements Xj.
Since pjmðxÞpj0m0 ðxÞ ¼ 0 for j – j0 and hPm; Pm0 i ¼ 0 in L2(�1,1) for
m – m0, the pjm’s form an orthonormal basis for their span. Hence
any v 2 En has the form

vðxÞ ¼
X
j2Z

Xp

m¼0

v jmpjmðxÞ; ð11Þ

where each coefficient vjm is an inner product

v jm ¼ hv ;pjmi ¼
Z xjþh

xj�h
vðxÞpjmðxÞ dx

and for any given element XJ, only the p + 1 terms in Eq. (11) with
j = J are nonzero. The coefficients give an isometry since

kvk2 ¼
Z 1

�1
jvðxÞj2 dx ¼

X
j2Z

Xp

m¼0

jv jmj2:

Functions in En are typically discontinuous, because no interele-
ment continuity or smoothness conditions have been imposed on
the basis functions (10). In compensation, the process of computing
the orthogonal projection uE onto En of an arbitrary function u 2 Hs

is completely local:

uEðxÞ ¼
X
j2Z

Xp

m¼0

ujmpjmðxÞ;

where

ujm ¼ hu;pjmi ¼
Z xjþh

xj�h
uðxÞpjmðxÞ dx:

Because the pjm’s form an orthonormal basis for En, uE = Eu is the
closest function in En to the data u, and defines an orthogonal pro-
jection operator: E = E2 = E⁄.

The global least-squares problem of Eq. (1) projects u orthogo-
nally onto the subspace F n ¼ En \ Hs ¼ En \ Cs�1 of En consisting
of piecewise degree-p polynomials v which satisfy s additional int-
erelement smoothness conditions

lim
�#0

v ðkÞðxj þ h� �Þ ¼ v ðkÞðxj þ h�Þ ¼ v ðkÞðxjþ1 � hþÞ

¼ lim
�#0

v ðkÞðxjþ1 � hþ �Þ

for derivatives of order 0 6 k 6 s � 1. The result of this projection is
the closest function v ¼ uF ¼ Fu 2 F n to the data u, and defines an
orthogonal projection operator: F = F2 = F⁄.

In this concrete setting, the skew projection S which imple-
ments the LLSQ method takes the discontinuous degree-p piece-
wise polynomial

uEðxÞ ¼
X
j2Z

Xp

m¼0

ujmpjmðxÞ ð12Þ

and maps the coefficients ujm to values vjm such that

uSðxÞ ¼
X
j2Z

Xp

m¼0

v jmpjmðxÞ ¼ SuðxÞ

satisfies the conditions

uðkÞS ðxj þ h�Þ ¼ uðkÞS ðxjþ1 � hþÞ; 0 6 k 6 s� 1; j 2 Z;

on jumps across each interelement interface xj + h� = xj+1 � h+. Since
only p + 1 terms in the sum defining uS are nonzero for each x, these
conditions can be writtenXp

m¼0

PðkÞm ð1Þv jm ¼
Xp

m¼0

PðkÞm ð�1Þv jþ1;m; 0 6 k 6 s� 1; j 2 Z;

where we have scaled out a common power of h. Since Legendre
polynomials are alternately even and odd, PðkÞm ð�1Þ ¼ ð�1Þmþkrkm

where rkm ¼ PðkÞm ð1Þ. Thus these conditions simplify to

Rv j � Lv jþ1 ¼ 0; j 2 Z;

where each vj is a (p + 1)-vector ðv j0;v j1; . . . ; v jpÞT 2 Rpþ1 and R
and L are s � (p + 1) matrices with elements rkm and (�1)m+krkm

respectively. Row k of R defines a shared degree of freedom control-
ling the kth derivative of uS at the right interval endpoint, with the
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rows of L playing the same roles at the left interval endpoint. Note
that R and L are independent of the mesh size h.

Specifically, the LLSQ method sets the shared values for the
skew projection v to their averages from uE(x):

Rv j ¼ Lv jþ1 ¼
1
2
ðRuj þ Lujþ1Þ

for each j 2 Z; here as with v j; uj 2 Rpþ1. Shifting the index j + 1
gives an infinite block tridiagonal system consisting of two linear
systems for each coefficient vector vj:

Rv j ¼
1
2
ðRuj þ Lujþ1Þ

and

Lv j ¼
1
2
ðRuj�1 þ LujÞ:

Thus each vj satisfies a block linear system,

R

L

	 

v j ¼

1
2

0
R

	 

uj�1 þ

1
2

R

L

	 

uj þ

1
2

L

0

	 

ujþ1 ð13Þ

for j 2 Z. Block j of the system consists of 2s equations for the p + 1
coefficients in vj, so we expect a solution if 2s 6 p + 1. (The left-hand
block matrix has full row rank because Hermite interpolation of s
values and derivatives at interval endpoints by a degree-p polyno-
mial has at least one solution for 2s 6 p + 1.) Equality 2s = p + 1 = 2
holds for continuous (H1) piecewise-linear basis functions, but we
cannot expect a solution for H3 cubic polynomials with 2s = 6 >
p + 1 = 4. Instead, quintic polynomials are required to achieve H3

or C2 smoothness. The LLSQ method sets shared degrees of freedom
to specified average values rather than simply matching them be-
tween elements, so it requires about twice the polynomial degree
to achieve a specified level of smoothness vis-a-vis the global
least-squares computation.

Classical von Neumann analysis applies Fourier series analysis
to block-diagonalize Eq. (13). For any sequence of vector coeffi-
cients uj 2 Rpþ1, we consider the associated Fourier series

ûðhÞ ¼ 1ffiffiffiffiffiffiffi
2p
p

X
j2Z

ujeijh

where i ¼
ffiffiffiffiffiffiffi
�1
p

and the Fourier coefficients uj 2 Rpþ1 are given by
the standard orthogonality formula

uj ¼
1ffiffiffiffiffiffiffi
2p
p

Z p

�p
e�ijhûðhÞdh:

Because both orthogonal Legendre coefficients and the Fourier
transform are isometries of the L2 inner product, the L2 norm of
our original piecewise polynomial uE 2 En is the same as the dis-
crete l2 norm of its vector coefficients and the L2(�p,p) norm of û:Z 1

�1
juEðxÞj2dx ¼

X
j2Z
kujk2 ¼

Z p

�p
kûðhÞk2 dh;

where kuk is the standard Euclidean norm of u 2 Rpþ1. Similarly, in-
ner product relationships such as adjoints and norms of operators
are preserved.

The shifted sequence uj+1 corresponds to multiplying the Fou-
rier series corresponding to uj by e�ih, so the Fourier transform of
Eq. (13) yields

R

L

	 

v̂ðhÞ ¼ 1

2
0
R

	 

eihþ1

2
R

L

	 

þ1

2
L

0

	 

e�ih

� �
ûðhÞ ¼ 1

2
Rþe�ihL
LþeihR

" #
ûðhÞ:

6.1.1. LLSQ skew projection case
If the block matrix on the left is square and invertible, then the

skew projection S is uniquely determined by these equations and

v̂ðhÞ ¼ 1
2

R
L

	 
�1 Rþ e�ihL

Lþ eihR

" #
ûðhÞ ¼ bSðhÞûðhÞ ¼ cSuðhÞ;

where bS is the (p + 1) � (p + 1) matrix symbol of S. If 2s < p + 1 then
S is underdetermined and several possible skew projections exist.

Among these a natural choice (in the context of orthogonality)
involves the pseudoinverse or right inverse defined by B�

= B⁄(BB⁄)�1 for a matrix B with full row rank:

bSðhÞ ¼ 1
2

R

L

	 
y Rþ e�ihL

Lþ eihR

" #
:

Back in real space, this choice defines S by

Suj ¼
R

L

	 
y 1
2

0
R

	 

uj�1 þ

1
2

R

L

	 

uj þ

1
2

L

0

	 

ujþ1

� �
: ð14Þ

6.1.2. Alternate skew projection
Another natural choice would be to set a subvector of vj equal to

the corresponding entries of uj, and use the remaining degrees of
freedom in vj to satisfy the smoothness conditions. Setting the
low-order entries of vj to those of uj and satisfying smoothness
conditions with the high-order entries gives another skew projec-
tion T with symbol

bT ðhÞ ¼ R
J

L

264
375
�1 1

2 ðRþ e�ihLÞ
J

1
2 ðLþ eihRÞ

264
375;

where J is the (p + 1 � 2s) � (p + 1) matrix consisting of the top
p + 1 � 2s rows of the (p + 1) � (p + 1) identity matrix.

6.1.3. Explicit computations
For continuous (H1) piecewise-linear polynomials with s = p = 1,

the skew projection S is uniquely determined by Eq. (13). Using the
values

r00 ¼ P0ð1Þ ¼
1ffiffiffi
2
p ; r01 ¼ P1ð1Þ ¼

ffiffiffi
3
pffiffiffi

2
p

gives

R

L

	 

¼

r00 r01

r00 �r01

	 

¼

P0ð1Þ P1ð1Þ
P0ð�1Þ P1ð�1Þ

	 

¼ 1ffiffiffi

2
p 1

ffiffiffi
3
p

1 �
ffiffiffi
3
p

" #

and

bSðhÞ ¼ 1
2
ffiffiffi
3
p

ffiffiffi
3
p
ð1þ cos hÞ 3i sin h

�i sin h
ffiffiffi
3
p
ð1� cos hÞ

" #
:

Clearly bSðhÞ2 ¼ bSðhÞ, and bSðhÞ� – bSðhÞ. Hence S is a non-orthogonal
projection. Since det bSðhÞ ¼ 0 and trace bSðhÞ ¼ 1, its eigenvalues
are 1 and 0, with 1 corresponding to the invariant subspace F n. In
Fourier space, it is straightforward to compute the orthogonal
projection F from En onto the range of S (which is F n). Indeed,
F = S(S⁄S)�1S⁄ = F2 = F⁄ is the orthogonal projection operator with
the same range as S. Since the Fourier transform preserves inner
products and therefore adjoints, F is represented by the matrix sym-
bol bF ¼ bSðbS�bSÞ�1bS�. A brief calculation shows that

bF ¼ 1
2ð2þ cos hÞ

3ð1þ cos hÞ
ffiffiffi
3
p

i sin h

�
ffiffiffi
3
p

i sin h 1� cos h

" #
:

Clearly bFðhÞ2 ¼ bFðhÞ; det bFðhÞ ¼ 0; trace bFðhÞ ¼ 1, and bFðhÞ� ¼ bFðhÞ.
Hence F is an orthogonal projection. Since bF is a rational function
rather than a trigonometric polynomial, it is the symbol of a non-
local operator F which will be expensive to apply. We see that the
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error constant C = 1 + 2kF � Sk is independent of the element size. A
tedious calculation shows that

ðbS � bFÞðbS � bFÞ� ¼ sin2 h
6ð2þ cos hÞ

3ð1þ cos hÞ
ffiffiffi
3
p

i sin h

�
ffiffiffi
3
p

i sin h 1� cos h

" #
¼ sin2ðhÞ

3
bF

has eigenvalues 0 and sin2(h)/3, so kbS � bFk ¼ j sin hj=
ffiffiffi
3
p
6 1=

ffiffiffi
3
p

and

C ¼ 1þ 2kF � Sk ¼ 1þ 2 max
jhj6p
kbFðhÞ � bSðhÞk2 ¼ 1þ 2=

ffiffiffi
3
p
6 3:

Since this is independent of the element size h, the LLSQ projection
S delivers the same order of accuracy as the global least-squares
projection F.

It may be worth noting that the LLSQ method is related to some
recent investigations [7] into banded matrices with banded in-
verses. Indeed, the LSQ method solves a banded system with a
non-banded inverse, while the LLSQ method approximates the
non-banded inverse by a banded matrix, with an accuracy inde-
pendent of the matrix size.

The general case of arbitrary polynomial order p and smooth-
ness s with 2s 6 p + 1 proceeds similarly. Numerically computed
upper bounds for the constant C, covering polynomial degrees
p = 1,3,5, . . . ,15 and smoothness 0 6 s 6 b(p + 1)/2c are reported
in Tables 1 and 2 for the skew projections S and T based on pseud-
oinversion and high-order modification, respectively. The error
constants are independent of the element size h, and remain small
as long as the level of smoothness s remains well below its maxi-
mum. Along each row of values with fixed smoothness s and
increasing polynomial degree p, the error constants rapidly ap-
proach an asymptote of moderate value. Along table diagonals
where a fixed percentage of the available degrees of freedom are
devoted to smoothness, the error constants grow factorially, but
the rapid convergence of approximations constructed from high-
order smooth basis functions provides considerable compensation.
The skew projection S based on pseudoinversion is slightly better
than the alternative T, as expected.

6.2. B-spline basis

As a second example, we now consider the case where we wish
to project onto the space of functions spanned by a B-spline basis
defined on a uniform knot vector. Our approach will be to con-
struct a map between the B-spline basis and our Legendre basis
and then to leverage our prior analysis. The primary difference in
the B-spline setting is that the averaging operation of the LLSQ
method can no longer be interpreted as a simple setting of inter-
element jump values. Instead, it corresponds to an averaging oper-
ator with a stencil extending over p + 1 elements.

We begin by noting that the skew projection can be written as:

wðxÞ ¼ uSðxÞ ¼
X
j2Z

wjbpðx� 2jhÞ ¼ SuðxÞ

but is formally computed by first creating the discontinuous piece-
wise polynomial given by Eq. (12) and then projecting onto the Hp

piecewise degree-p B-spline basis fbpðx� 2jhÞj j 2 Zg. This basis is
defined by

bpðxÞ ¼
pþ 1

p

Xpþ1

i¼0

cipðx� tiÞpþ;

where ti = (2i � 1)h,

cip ¼
Y

06j6pþ1
j – i

1
tj � ti

;

and (t)+ = max(t, 0). It consists of translates of a single function bp(x),
which is a degree-p polynomial on each interval tj < x < tj+1 and van-
ishes identically for x < t0 and x > tp+1.

Since the piecewise Legendre polynomials pjm form an ortho-
normal basis for piecewise degree-p polynomials, the coefficients
bjm such that

bpðxÞ ¼
Xp

m¼0

bjmpjmðxÞ for tj 6 x 6 tjþ1

must be given by the formula

bjm ¼
Z tjþ1

tj

pjmðxÞbpðxÞ dx ¼
ffiffiffi
h
p Z 1

�1
PmðfÞbpðð2jþ fÞhÞ df:

Since pjm and bp are polynomials of degree 6p on the interval of
integration, the q-point Gauss–Legendre integration formulaZ 1

�1
f ðfÞ df ¼

Xq

k¼1

akf ðfkÞ

(where ak and fk are tabulated in [8]) is exact whenever q P p + 1.
Hence

bjm ¼
ffiffiffi
h
p Xq

k¼1

akPmðfkÞbpðð2jþ fkÞhÞ:

Using these coefficients and the characteristic function vj(x) which
is 1 for tj 6 x 6 tj+1 and 0 otherwise, we have

bpðxÞ ¼
Xp

j¼0

Xp

m¼0

bjmpjmðxÞvjðxÞ;

and inverting the relationship expresses the Legendre polynomials
in terms of the bp restricted to each interval of support:

pjmðxÞ ¼
Xp

k¼0

bmkbpðxþ 2ðk� jÞhÞvjðxÞ;

where b = {bkj} is the (p + 1) � (p + 1) inverse matrix to {bjk} and
jx � xjj 6 h. Thus a discontinuous polynomial uE(t) is transformed
to the segmented B-spline basis by

Table 1
Error bounds dCe for skew projection S onto piecewise polynomials of degrees p and
smoothness Hs.

s p

1 3 5 7 9 11 13 15

1 3 4 4 4 4 4 4 4
2 10 7 6 6 6 6 6
3 56 33 27 25 23 22
4 383 199 153 132 121
5 2844 1318 953 791
6 21,869 9176 6250
7 171,924 65,915
8 1,372,945

Table 2
Error bounds dCe for skew projection T onto piecewise polynomials of degrees p and
smoothness Hs.

s p

1 3 5 7 9 11 13 15

1 3 4 4 5 5 5 5 6
2 10 8 10 13 16 20 24
3 56 40 51 68 92 122
4 383 243 305 424 599
5 2844 1621 1962 2737
6 21,869 11,311 13,102
7 171,924 81,359
8 1,372,945
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uEðxÞ ¼
X
j2Z

Xp

m¼0

ujmpjmðxÞ ¼
X
j2Z

Xp

m¼0

ujm

Xp

k¼0

bmkbpðx� xj þ xkÞvjðxÞ

¼
X
j2Z

Xp

k¼0

Xp

m¼0

bmkujþk;mvjþkðxÞ
 !

bpðx� xjÞ

¼
X
j2Z

Xp

k¼0

wjkvjþkðxÞ
 !

bpðx� xjÞ:

The segmented B-spline basis functions are vk+j(x)bp(x � xj) for j 2 Z

and 0 6 k 6 p, and the coefficients of uE in this basis are

wjk ¼
Xp

m¼0

bmkujþk;m:

The LLSQ method proceeds to average and spread the coefficients
over the support of each smooth unsegmented basis function
bp(x � xj):

wjkvjþkðxÞ ! wj ¼
1

pþ 1

Xp

k¼0

wjk

 ! Xp

k¼0

vjþkðxÞ
 !

:

Given the averaged coefficients, the skew projection w = Su can be
reassembled in the piecewise Legendre basis by

wðxÞ ¼
X
j2Z

wjbpðx� xjÞ ¼
X
j2Z

wj

Xp

k¼0

Xp

m¼0

bkmpkmðx� xjÞ

¼
X
j2Z

Xp

m¼0

Xp

k¼0

bkmwj�k

 !
pjmðxÞ

¼
X
j2Z

Xp

m¼0

Xp

k¼0

bkm
1

pþ 1

Xp

l¼0

Xp

n¼0

bnluj�kþl;n

 !
pjmðxÞ:

Here we have interchanged summation over j, shifted the infinite
sum by k, and interchanged the sums again. Fourier analysis of this
last result yields the matrix symbol bSðhÞ of the skew projection such
that

cSuðhÞm ¼
Xp

n¼0

bSðhÞmnûðhÞn

where

bSðhÞmn ¼
Xp

k¼0

Xp

l¼0

bkm
1

pþ 1
bnle

iðk�lÞh

¼ 1
pþ 1

Xp

k¼0

bkmeikh

 ! Xp

l¼0

bnle
�ilh

 !
:

The separated form of bS is a natural consequence of the low-rank
structure of averaging and spreading.

6.2.1. Numerical computations
In the first row of Table 3 we report the error constants C = 1 + 2

kS � Fk for B-spline polynomial degrees 1 through 6. These are
computed from the norms of the operators derived in the previous
section. The values are larger than the error constants of Table 2 in
compensation for the lower degree of the B-spline basis functions,
but still remain moderate in size and independent of the element
size. Thus the local skew projection provides the same order of
accuracy as the global projection onto the space of B-splines. The
error constants are relatively tight. To illustrate this point, in the
second row of Table 3 we show computed values of C for specially
chosen data functions u(x). These functions were determined by
the right singular vector corresponding to the maximum singular
value of bSðhÞ � bFðhÞ for each value of p. Fig. 4 shows a graph of
one such function used for the case p = 3 on the interval [0,10];
the knots tj are uniformly spaced 1 unit apart.

As a second numerical B-spline demonstration, we consider the
smooth data function u(x) = cos(6px/L) over the interval [0,L] and
project it onto the B-spline basis for p = 1, 2, 3, 4. Fig. 5 shows
the errors ku � uFk and ku � uSk versus the reciprocal of the num-
ber of knot spacings (i.e. h). For each value of p, one observes that
the rate of convergence for the skew projection (solid line) and the

0 1 2 3 4 5 6 7 8 9 10
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

x

u(
x)

Fig. 4. Example data function u(x) for the case p = 3 which results in a near maximal value for C.

Table 3
(First row) Error bounds dCe for skew projection S onto B-splines of degree p. (Second
row) Computed values.

p

1 2 3 4 5 6

3 10 67 854 12,205 253,587
1.3 8.2 50 657 8113 166,991
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full least squares projection (dashed line) is the same and that the
separation of the error curves remains nearly constant for all val-
ues of h. For p = 1, 2 this constant is very close to 1 so the two error
curves are not distinguishable from each other. For p = 3 the value

is approximately 20 and for p = 4 it is approximately 50 – all con-
sistent with the error bounds in Table 3. The deviation for the LLSQ
method on the finest knot spacing for p = 4 is due to round-off
errors.
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Fig. 5. Convergence curves for ku � uFk (dashed curves) and ku � uSk (solid curves) versus the reciprocal of the number of knot spacings (i.e. h).
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Fig. 6. (Upper left) One-quarter cylindrical shell domain over which the projection is performed. (Upper right and lower row) Convergence curves for ku � uFk (dashed
curves) and ku � uSk (solid curves) versus normalized knot spacing (i.e. h/L) for a two-dimensional NURBS example.
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6.3. NURBS example

As a final example we consider the case of a non-uniform ra-
tional B-spline basis (NURBS) for a surface embedded in R3. This
case is also directly applicable to the original motivation for the
development of the LLSQ, viz., isogeometric analysis. Due to the
technical complexity associated with providing proofs in this case
we consider the problem from a purely numerical standpoint.

Consider the projection of the data function

uðx; yÞ ¼ sinð3px=
ffiffiffi
2
p

RÞ sinð2py=LÞ

onto F and E, where these spaces are defined by a tensor product of
NURBS functions that exactly map one-quarter of a cylindrical shell
as shown in Fig. 6 (upper left). The radius of curvature of the shell is
R = 5 units and the length of the shell is L = pR/2 units. Also shown
in Fig. 6 are the convergence curves for the cases of a uniformly re-
fined NURBS basis in both directions of orders p = 2, 3, 4. In each
case, one observes that the rate of convergence for the skew projec-
tion (solid line) and the full least square projection (dashed line)
match each other and that the separation of the curves, for each or-
der, remains essentially constant for all values of h. The separation
ratios are further noted to be compatible with the theoretical B-
spline constants C – in this case roughly 1.1, 10, and 35 for p = 2,
3, and 4, respectively. Given the intimate relation between the
two bases, this is not unexpected. Again, we see a deviation of the
LLSQ method on the finest knot spacing for p = 4 due to round-off
errors.

7. Conclusions

The LLSQ method was introduced in [1] and shown to be effec-
tive on a series of problems arising in isogeometric analysis of sol-
ids but without rigorous justification. In the present work we have
examined the methodology in detail and shown in general that the
LLSQ method possesses an error that is bounded by a constant
times the global least square error. For two special cases in one
dimension we have shown that the constant is bounded and

independent of the element size used to define the local basis func-
tions at the heart of the LLSQ method. Using similar tools but with
far more involved algebra the results shown carry over to higher
dimensions. As a simple illustration, we have provided a numerical
example employing a NURBS basis in two-dimensions demonstrat-
ing good behavior. Considering the original motivation of isogeo-
metric analysis in [1], we can also conclude that using the LLSQ
method to enforce Dirichlet boundary conditions will not change
the expected rates of global convergence for an isogeometric anal-
ysis. Since in higher dimensions the LLSQ method is more efficient
than the LSQ method, we view it as a practical method for this
purpose.
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