
FAST STABLE DEFERRED CORRECTION METHODS FORTWO-POINT BOUNDARY VALUE PROBLEMS�JOHN STRAINyAbstra
t. Simple, high-order a

urate, adaptive methods for linear two-point boundary valueproblems are generated by iterated deferred 
orre
tion of the se
ond-order midpoint rule with high-order un
entered di�eren
e formulas on an adaptive mesh. A fast stru
tured QR fa
torizationprodu
es robust solutions of the ensuing linear systems. The methods solve problems with gen-eral nonseparated boundary 
onditions as eÆ
iently as separated ones. Numeri
al experiments onwell-resolved problems show that the methods a
hieve high-order a

ura
y despite some previously
onje
tured order barriers. EÆ
ien
y and a

ura
y 
ompare favorably with several standard 
odeson a gallery of diÆ
ult test problems.Key words. deferred 
orre
tion, two-point boundary value problems, adaptive mesh, midpointmethod, QR-fa
torization, Airy fun
tions, Bessel fun
tionsAMS subje
t 
lassi�
ations. 65L10, 65L12, 65L50, 65F05, 65F501. Introdu
tion. Numeri
al methods for solving two-point boundary value prob-lems in ordinary di�erential equations have been extensively developed: 
lassi
almethods su
h as shooting [26℄, 
ollo
ation [2, 3, 28℄, �nite di�eren
es and deferred
orre
tion [7, 25℄ are analyzed in [4, 32℄. More re
ent developments in
lude spe
tralintegral [22, 24, 31℄, rational pseudospe
tral [6℄, Lobatto deferred 
orre
tion [5, 12℄and mono-impli
it Runge-Kutta deferred 
orre
tion [9, 14, 13, 15, 34, 36, 35℄ methods.Several widely available 
odes based on these approa
hes 
an solve routine problemsa

urately and eÆ
iently. However, the solution of extremely diÆ
ult problems withwidely separated s
ales, high-frequen
y os
illations, and boundary and internal layers,is still an area of a
tive resear
h.In this paper, we develop a simple, fast, and e�e
tive numeri
al method for high-a

ura
y solution of diÆ
ult linear boundary value problems. The method 
ombinesiterated deferred 
orre
tion (x2.4) of the simple midpoint rule (x2.1), high-order un-
entered di�eren
e formulas (x2.3), a robust adaptive mesh re�nement strategy (x2.5),and a fast stable stru
tured QR fa
torization (x2.2) for the solution of linear systems.We fo
us on linear problems be
ause appropriate 
ontinuation strategies for New-ton's method e�e
tively redu
e nonlinear problems to linear ones. While most 
odesfor two-point boundary value problems require spe
ial separated boundary 
onditions,our method solves general separated and nonseparated problems with equal eÆ
ien
y.It 
omputes 
omplex high-a

ura
y solutions to diÆ
ult sti� and os
illatory problems(x3.1) on both equidistant (x3.2) and adaptive (x3.3) meshes, in CPU time 
omparableto several popular publi
 domain 
odes (x3.5). Experiments on a well-resolved prob-lem demonstrate optimal orders of a

ura
y (x3.4), higher than predi
ted by 
lassi
al
onvergen
e theory [16, 29℄.2. The numeri
al method. Our high-order adaptive deferred 
orre
tion methodis 
onstru
ted in the following way. First, we de�ne boundary value problems (BVPs)and the midpoint rule, and formulate them as linear operator equations. Se
ond,we develop a fast stable solution method for the operator version of the midpoint� Resear
h supported by Air For
e OÆ
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rule. Third, we derive high-order dis
retizations whi
h are a

urate but 
ostly tosolve. Fourth, we employ iterated deferred 
orre
tion as a fast approximate methodfor solving high-order dis
retizations. Fifth, we use error estimates produ
ed in the
ourse of iterated deferred 
orre
tion to devise a robust strategy for adaptively re-�ning the mesh to solve diÆ
ult problems eÆ
iently. Finally, we 
ombine these �veingredients into a 
omplete algorithm.2.1. The midpoint rule. Consider a linear two-point boundary value problem(BVP) y0 � C(t)y = f(t); a < t < b(1) Ay(a) +By(b) = gfor a ve
tor-valued fun
tion y : [a; b℄!Rq . Here C(t) is a 
ontinuous q � q matrix-valued fun
tion on the interval I = [a; b℄ and A, B are �xed q � q matri
es. We willoften �nd it 
onvenient to treat the BVP as a single operator equationLy = � y0 � C(t)yAy(a) +By(b) � = � fg � = F;(2)where L maps C1(I ;Rq) 
ontinuously to the Cartesian produ
t spa
e C0(I ;Rq)�Rq.Given an n-point mesh a = t1 < t2 < � � � < tn = b, a stable se
ond-order a

uratedis
retization of Eq. (1) is provided by the midpoint ruleuj+1 � ujhj � Cj uj+1 + uj2 = fj 1 � j < n;(3) Au1 +Bun = g:Here uj approximates y(tj), ea
h mesh size hj = tj+1� tj is bounded by h = maxj hj ,the midpoint tj+1=2 = tj + hj=2, and the midpoint data is fj = f(tj+1=2) and Cj =C(tj+1=2). We often treat the numeri
al method as a N �N matrix-ve
tor equationMhu = Fh where N = nq,u = (u1(t1); u2(t1); : : : ; uq(t1); u1(t2); : : : ; uq(tn))T ;Fh = (f1(t3=2); : : : ; fq(t3=2); : : : ; fq(tn�1=2); g1; : : : ; gq)T ;Mh = 12 2666664 �2h1 � C1 2h1 � C1 0 0 � � � 00 �2h2 � C2 2h2 � C2 0 � � � 0... ... ... ... ... ...0 0 � � � 0 �2hn�1 � Cn�1 2hn�1 � Cn�1A 0 � � � 0 0 B
3777775 :Under reasonable assumptions on the operator L and mesh sizes hj [4, 32℄,the midpoint rule is stable (the matrix norm kM�1h k is bounded independently ofthe maximum mesh size h!0) and se
ond-order a

urate (the error is bounded bymaxj kuj � y(tj)k = O(h2)). These basi
 properties ensure that the solution 
an be
omputed to arbitrary a

ura
y � with n = O(1=h) = O(��1=2) mesh points tj on[a; b℄ as �!0. The standard Gaussian elimination approa
h used in most BVP solvers[8℄ requires O(N3) = O(��3=2) work and storage to 
ompute the solution u, and la
ksstability when the ill-
onditioning of the BVP is inherited by the midpoint rule ma-trix Mh. Thus a
hieving high a

ura
y in reasonable CPU times will require stablesolution methods whi
h respe
t the sparsity stru
ture of Mh, whi
h has at most 2qnonzero elements among the nq elements in ea
h row.2



2.2. Stable eÆ
ient solution methods. The midpoint dis
retization matrixMh has the blo
k \half-arrowhead" sparsity stru
tureMh = 266666664 D1 S1 0 0 � � � 0 00 D2 S2 0 � � � 0 00 0 D3 S3 � � � 0 0... ... ... ... ... ... ...0 0 � � � 0 0 Dn�1 Sn�1B1 0 0 � � � 0 0 Bn
377777775where Di, Si and Bi are q � q blo
ks.An implementation of Gaussian elimination for the solution of Mhu = Fh shouldideally be both eÆ
ient and stable. EÆ
ien
y requires that the sparsity stru
ture ofMh be respe
ted as in [8℄, but stability usually requires pivoting, whi
h destroys thesparsity stru
ture.The requirements of eÆ
ien
y and stability are 
ompatible if Mh is blo
k bidi-agonal (B1 = 0), or when the rows and 
olumns of Mh 
an be rearranged into blo
kbidiagonal form. Su
h a rearrangement is possible i� the boundary 
onditions areseparated: for ea
h index p = 1 to q either row p of A = B1 or row p of B = Bn iszero. Intuitively, ea
h boundary 
ondition restri
ts the 
omponents of y(a) or y(b)but does not intertwine them. Numbering the boundary 
onditions on y(a) �rst andy(b) last among the N equations makesMh blo
k tridiagonal, so Gaussian elimination
an be both eÆ
ient and stable [25℄.However, many pra
ti
al problems present nonseparated boundary 
onditions forwhi
h Gaussian elimination be
omes extremely ineÆ
ient. Thus we use a fast solutionte
hnique whi
h handles general separated and nonseparated boundary 
onditionswith equal eÆ
ien
y. We use Householder transformations [18℄ to 
ompute the QRfa
torization QR = Mh, with Q orthogonal and R upper triangular, whereupon uis easily 
omputed as R�1QTFh. Orthogonal fa
torization is more attra
tive thanGaussian elimination for solving the possibly ill-
onditioned sparse linear systemsprodu
ed by dis
retization of diÆ
ult BVPs, be
ause it provides superior stabilityproperties while eliminating pivoting and ex
essive �ll-in. The resulting fa
tors Qand R 
an be stored in the spe
ial arrowhead matrix

Mh = 26666666664
D1 S1 0 0 � � � 0 R10 D2 S2 0 � � � 0 R20 0 D3 S3 � � � 0 R3... ... ... ... ... ... ...0 0 � � � 0 Dn�2 Sn�2 Rn�20 0 � � � 0 0 Dn�1 Sn�1B1 B2 B3 B4 � � � Bn�1 Bn

37777777775 ;where the nonzero 
omponents of the Householder ve
tors are stored in the Bj blo
ks,the subdiagonal parts of the Dj blo
ks and an extra ve
tor b 
ontaining the diagonal
omponents. The QR fa
torization requires O(Nq2) time and 4Nq storage, makingit essentially optimal with respe
t to the problem size N . On
e the matrix Mh isfa
torized, subsequent linear systems with di�erent right-hand sides 
an be solved atonly O(Nq) 
ost per solve. Fast updating of the fa
torization is also possible [19℄,fa
ilitating 
ontinuation methods as in [12℄.3



A

ura
y � 
an now be obtained in O(Nq) = O(��1=2) work and storage, 
or-responding to roughly three times the work for ea
h additional digit of a

ura
y.This 
ost/bene�t ratio is a

eptable for low a

ura
y, but high a

ura
y requires dis-
retization methods with higher orders of a

ura
y than the se
ond-order midpointrule.2.3. Higher-order dis
retizations. The midpoint rule 
an be improved by us-ing better approximations of the midpoint derivatives y0(tj+1=2) and values y(tj+1=2).Su
h approximations 
an be generated by un
entered higher-order polynomial inter-polation y0(tj+1=2) � P 0j(tj+1=2); y(tj+1=2) � Pj(tj+1=2):Here Pj is a (q-ve
tor valued) polynomial of degree at least 2p� 1 whi
h interpolatesthe values uk at 2p points tk, 
entered at tj+1=2 to the extent possible without 
rossingthe endpoints of the interval:Pj(tk) = uk lj � k � rj = lj + 2p� 1where lj = 8<: 1 1 � j < p;j � p+ 1 p � j � n� p;n� 2p+ 1 n� p < j < n:While Pj(t) and P 0j(t) 
an be evaluated by standard te
hniques su
h as Lagrangeor Newton interpolation [33℄, their values at tj+1=2 
an be evaluated by 
onvenientdi�eren
e formulas su
h asy0(tj+1=2) � rjXk=lj �jkuk; y(tj+1=2) � rjXk=lj �jkuk:Stable eÆ
ient routines for the 
omputation of the 
oeÆ
ients �jk and �jk have beenprovided by Fornberg [21℄. The resulting higher-order dis
retizations of the BVP (1)have the formLhu = � (Prjk=lj �jkuk � CjPrjk=lj �jkuk)Au1 +Bun � = � (fj)g � = Fh:Lh is formally order-2p a

urate, and therefore asymptoti
ally more eÆ
ient thanlow-order dis
retizations for 
omputing highly a

urate solutions to well-
onditionedsmooth problems. Obtaining a

ura
y � with a method of order 2p requires on theorder of n = O(��1=2p) mesh points, whi
h is extremely eÆ
ient whenever the errortoleran
e � is suÆ
iently stringent and the 
onstants implied by the O() symbol arenot too large. However, the matrix Lh has a bandwidth proportional to p and there-fore requires O(np3) = O(Np2) CPU time and storage. For a 20th order method, afa
tor of order 100 is often a

eptable in CPU time but not in storage. Deferred 
or-re
tion, like Krylov subspa
e methods [27℄, greatly redu
es the storage requirementsfor solution of high-order dis
retizations.2.4. Iterated deferred 
orre
tion. Deferred 
orre
tion iterates with a low-order pre
onditioner to solve a high-order dis
retization at low 
ost. The approa
h4




omes in many variants [7, 5, 9, 12, 14, 13, 15, 25, 34, 36, 35℄, some based on 
om-pli
ated asymptoti
 error expansions [4℄. The simplest one 
an be summarized asapproximately solving for the error in a 
omputed solution from a residual equation,and then subtra
ting the error to get an improved solution.Consider a numeri
al solution u whi
h is interpolated by a pie
ewise polynomialPj(t) on the interval [tj ; tj+1℄ to give a residual�(t) = F � LP = � C(t)Pj(t) + f(t)� P 0j(t)g �AP (a)�BP (b) � :At mesh midpoints tj+1=2, the residual 
omponents are�j = CjPj(tj+1=2) + fj � P 0j(tj+1=2)= Cj rjXk=lj �jkuk + fj � rjXk=lj �jkuk; 1 � j < n;�n = g �Au1 �Bun:Sin
e the residual satis�es LP = F � � by de�nition and the exa
t solution satis�esLy = F , subtra
tion gives L(y � P ) = �. Therefore the 
orre
tion 
 = y � P whi
hmakes P into the exa
t solution y = P + 
 satis�es the 
orre
tion equationL
 = �:The 
orre
tion equation 
an be solved eÆ
iently by the midpoint rule Mh
1 = � withthe fa
torized matrix Mh, yielding a relatively se
ond-order a

urate approximation
1 to the 
orre
tion 
. The 
orre
ted solution u + 
1 is formally two orders morea

urate than u, if the residual has been 
omputed with suÆ
ient a

ura
y.The 
orre
tion pro
edure 
an be repeated, formally gaining two additional ordersof a

ura
y per repetition, as long as the error is suÆ
iently smooth and the residualhas been 
omputed with suÆ
ient a

ura
y. However, several theoreti
al analyses[4, 16, 29℄ have shown that when un
entered di�eren
es are used near the ends of theinterval, m 
orre
tions may not yield the expe
ted order of a

ura
y 2(m + 1) form > 2. Instead, the order of a

ura
y in
reases like the sequen
e 2, 4, 6, 7, 8, 9, 10,11, 12, . . . . This result assumes the mesh is smooth in the strong sense thatmaxj ���� hjhj�1 � 1���� � O(h);and polynomial interpolation of variable degree 2k + 1 is used for ea
h 
orre
tionnumber k = 1 to m. Our numeri
al experiments (x3.4), by 
ontrast, demonstratethat the use of a �xed degree 2m + 1 of polynomial interpolation at ea
h 
orre
tionk = 1 to m yields the full order 2(m + 1) on an equidistant mesh. This does not
ontradi
t the analyses of [4, 16, 29℄ sin
e we are using a �xed high interpolationdegree 2m + 1 at every 
orre
tion step, while the analyses of [4, 16, 29℄ address theuse of the minimum possible degree 2k + 1 at 
orre
tion step k.Deferred 
orre
tion also provides a sequen
e of approximate 
orre
tions whi
hallow us iteratively to generate a suitable adaptive mesh for resolving the solutionwith maximal eÆ
ien
y. 5



2.5. Adaptive mesh re�nement. Many BVPs have 
oeÆ
ients or solutionswhi
h 
hange rapidly over small fra
tions of the 
omputational domain. Su
h rapid
on
entrated variations 
annot be eÆ
iently resolved by global equidistant meshes;instead, a nonequidistant mesh tailored to these variations must be built adaptivelyduring the solution pro
ess. We employ a natural strategy to build this adaptivemesh: given an error estimate e(t) = O(hp) for a solution u 
omputed with meshsizes h(t) � h, and a desired error toleran
e �, we 
hoose new mesh sizes~h(t) = � 
�maxfe(t); 
�g�1=p h(t)at ea
h point t 2 [a; b℄. Here 
 = 10�1 is a fudge fa
tor designed to avoid 
y
ling. Thenew mesh size is 
hosen to make the new error at ea
h point less than 
�, assumingthat the error estimate de
reases like O(hp) as h!0. In deferred 
orre
tion, the �nal
omputed 
orre
tion norm k
mk is a natural error estimate e(t). Sin
e it de
reaseslike O(h2m), we put p = 2m and e(t) = k
m(t)k. Setting e(t) = k
m(t)k vastlyoverestimates the a
tual O(h4) error if we use only the �rst 
orre
tion norm k
1k ofsize O(h2); but the deferred 
orre
tion approa
h is most useful when high a

ura
y isrequired, and then our 
omputational experien
e indi
ates that the O(h2m) 
orre
tionnorm k
mk is an reliably 
onservative estimate of the a
tual O(h2m+2) error.Numeri
al experiments have suggested several improvements of this basi
 strat-egy. First, we require that ~h(t) � 0:8h(t) at every t, to ensure that the mesh generationpro
ess terminates rapidly rather than 
y
ling near its end. Se
ond, we dis
ourageextreme gradients in the mesh by requiring ~h(t) � h(t)=10, so mesh sizes 
annot de-
rease too suddenly. Finally, we have observed that deferred 
orre
tion rarely 
animprove a se
ond-order solution whi
h is 
ompletely ina

urate. Therefore we 
on-stru
t an initial mesh (for higher-order deferred 
orre
tion method) on whi
h the �rstO(h2) 
orre
tion 
1 is no larger than 10% of the solution maximum. This amountsto determining a preliminary mesh by the fourth-order method with � = 10�1, whi
h
osts less than using a high-order method on a preliminary mesh. Given one-digit a
-
ura
y on the initial 
orre
tion with a preliminary mesh, deferred 
orre
tion usuallydoes a good job of the subsequent 
orre
tion and mesh re�nement steps.2.6. Adaptive deferred 
orre
tion algorithm. Our algorithm 
an be sum-marized as follows:Initialize mesh of intervalsDo until error estimate is below toleran
e or workspa
e is exhaustedInitialize u = 0Build and fa
torize Mh = QR for the 
urrent meshDo j = 0, 1, . . . , m 
orre
tions to order p = 2m+ 2Compute residual � = F � LP from interpolant P to uSolve 
orre
tion equation Mh
j = � with saved QR fa
torization of MhUpdate u u+ 
jEnd doRe�ne mesh by shrinking intervals where k
mk is too largeEnd doThe initial 
omputation of the basi
 se
ond-order solution by the midpoint rule hasbeen eliminated from the algorithm by viewing it as a 
orre
tion u = 
0 to the zerosolution. 6



3. Implementation and numeri
al results. We implemented our deferred
orre
tion approa
h in a double pre
ision Fortran 77 
ode bvpd
. The 
ode is designedfor easy adaptability to a wide variety of boundary value problems: the user providessubroutines for evaluating the right-hand side and boundary 
onditions, and spe
i�esa few numeri
al parameters su
h as the error toleran
e �, the number of 
orre
tionsm, and the type of mesh. The 
ode was 
ompiled with the GNU Fortran 77 
ompilerg77, using the -O optimization 
ag, and run on one 450MHz CPU of a Sun Ultra 60under Solaris 8. Spe
ial QR fa
torization routines were 
oded to take advantage ofthe blo
k arrowhead stru
ture of the matrix Mh.We tested bvpd
 on a gallery of highly 
hallenging test problems (x3.1) takenfrom arti
les [11, 22, 24, 31℄ on other methods for solving two-point boundary valueproblems. Results are reported in x3.2 and x3.3.We verify high-order a

ura
y of the method on a straightforward but nontrivialbeam problem in x3.4. As dis
ussed in x2.4, our results do not 
ontradi
t order barriersproved in [16, 29℄, be
ause we use high-order un
entered di�eren
es throughout the
orre
tion pro
ess.For 
omparison, the results of solving the same test problems with four standardBVP 
odes from Netlib (www.netlib.org) are presented in x3.5.3.1. Test problems. We study the performan
e of bvpd
 and the four Netlib
odes on the following 
olle
tion of 
hallenging test problems for two-point BVPs.Some of these test problems have been studied by sophisti
ated spe
tral integralmethods with ex
ellent results [22, 24, 30, 31℄. Comparisons of earlier numeri
almethods for two-point BVPs are reported in [11℄.3.1.1. Beam equation. A standard elasti
ity problem [31℄ 
an be transformedinto the �rst-order systemy0 � 2664 0 1 0 00 0 1 00 0 0 1�KEI 0 0 0 3775 y = 2664 000qEI 3775 ; a = 0 < t < b = L;2664 1 0 0 00 1 0 00 0 0 00 0 0 0 3775 y(a) + 2664 0 0 0 00 0 0 00 0 1 01 0 0 0 3775 y(b) = 0;where L = 1:2� 102, k = 2:604� 103, E = 3� 107, q = 4:34� 104 and I = 3 � 103are material 
onstants. The exa
t solution is a 
ombination of exponential fun
tionsvarying on s
ales of order (K=EI)1=4 � 10�2.3.1.2. Sti� equation. The model sti� boundary value problem of [31℄ is givenby y0 � � 998 1998�999 �1999 � y = f(t); a = 0 < t < b = 1;� 1 00 0 � y(a) + � 0 00 1 � y(b) = g:Here f(t) and g are determined so that the exa
t solution is given byy(t) = � 2v1 � v2�v1 + v2 �7



wherev(t) = �3e�t + 3(e�t � 1 + t); 5e�1000t + 4� 10�6(e�1000t � 1 + 1000t)�T :3.1.3. Boundary layer. A boundary layer of width � = 10�4 is present in theboundary value problem [22℄y0 � � 0 11�2 0 � y = f(t); a = �1 < t < b = 1� 1 00 0 � y(a) + � 0 01 0 � y(b) = g:Here f(t) and g are determined so that the exa
t solution is given by y(t) = (u(t); u0(t))Twhere u(t) = 
os(�t) + e�(1+t)=�1 + e�2=� + e�(1�t)=�:The �rst 
omponent of the solution is shown in Fig. 1(a).3.1.4. Bessel system. A ve
tor of six Bessel fun
tions and derivatives J�(t)with orders � near � = 10 satis�es the boundary value problem [31℄ on [0; 600℄y0 � 266666664 0 1 0 0 0 0(��t)(�+t)+�t2 0 �1t 0 0 00 0 0 1 0 00 0 (��t)(�+t)��t2 0 �1t 00 0 0 0 0 10 0 1t 0 (��t)(�+t)�5�+6t2 0
377777775 y = f(t);26666664 1 0 0 0 0 00 0 1 0 0 01 0 0 0 1 00 0 0 0 0 00 0 0 0 0 00 0 0 0 0 0

37777775 y(a) + 26666664 0 0 0 0 0 00 0 0 0 0 00 0 0 0 0 00 1 0 0 0 00 0 0 1 0 00 0 0 0 0 1
37777775 y(b) = g:Here f(t) and g have been determined so that the exa
t solution is given byy(t) = �J�(t); J 0�(t); J��1(t); J 0��1(t); J��2(t); J 0��2(t)�T :The �rst 
omponent of the solution is shown in Fig. 1(b).3.1.5. Airy turning point. An appropriate 
ombination of Airy fun
tions [1℄satis�es the quantum-me
hani
al \turning point problem" [23, 11, 24℄y0 � � 0 1t� 0 � y = 0; a = �1 < t < b = 1� 1 00 0 � y(a) + � 0 01 0 � y(b) = � 11 �with � = 10�6. Here the exa
t solution is given by y(t) = (u(t); u0(t)) whereu(t) = C1Ai(Æt) + C2Bi(Æt)8



Æ = ��1=3 = 100, C1 = 5:6576000136230 and C2 = 1:6552936963622� 10�289 are
onstants. This problem 
ontains almost every possible diÆ
ulty: dense os
illations,sti�ness, a turning point where the solution 
hanges 
hara
ter, and a sharp boundarylayer at the right edge. The �rst 
omponent of the solution is shown in Fig. 1(
).3.1.6. Paraboli
 
ylinder fun
tions. An appropriate paraboli
 
ylinder fun
-tion satis�es the highly ill-
onditioned boundary value problem [17, 24℄y0 � � 0 1�1� t� � y = 0; a = �1 < t < b = 1� 1 00 0 � y(a) + � 0 01 0 � y(b) = � 12 �with � = 1=70. Here the exa
t solution is given by y(t) = (u(t); u0(t))T whereu(t) = t2 + 32M � 12��M � t22��with M the paraboli
 
ylinder fun
tion [1℄M(x) = 1Xn=0 �12n� 1 xnn! :Sin
e the 
ondition number of this test problem is about � = 1015 and the besta

ura
y expe
ted from any ba
kward stable numeri
al method in double pre
ision isof order O(�� 10�14) = O(1), our 
ode does very well to obtain six-digit a

ura
y inless than 1 se
 of CPU time.3.2. Equidistant mesh results. We verify the high-order a

ura
y of bvpd
by solving the six test problems of x3.1 on equidistant n-point meshes. We used ordersp = 2 through 20 and n = 16 through 65536 to solve ea
h test problem and plottedthe error vs. CPU time in Fig. 2. The plots exhibit the expe
ted order of 
onvergen
eto 12-digit a

ura
y, ex
ept for the ill-
onditioned paraboli
 
ylinder problem (3.1.6).Our high-order methods obtain mu
h better a

ura
y per unit CPU time thanlow-order methods, up to about order 12 or so. For example, 4 
orre
tions (10thorder) gives 12-digit a

ura
y on the Airy problem (3.1.5), in the 10 CPU se
 thatthe un
orre
ted se
ond-order midpoint rule requires to get three-digit a

ura
y. Twofa
tors 
ontribute to this highly stable behavior: the stability of QR fa
torization, andthe similarity between deferred 
orre
tion and iterative improvement for the solutionof ill-
onditioned linear systems [18℄.The inevitable roundo� error begins to redu
e a

ura
y for very large N , be
ausethe linear system Mh
 = � has 
ondition number � = O(N) � 105. Sin
e theba
kward error is on the order of � times the residual, we 
annot expe
t better than12-digit a

ura
y with N = 65536 even if the residual � approa
hes ma
hine pre
ision.3.3. Adaptive mesh results. We verify the reliability of the adaptive meshstrategy in bvpd
 by solving ea
h test problem in x3.1 on a sequen
e of adaptivelygenerated meshes with toleran
es � = 10�3 through 10�10, using orders p = 4 through20. The resulting errors vs. CPU times are plotted in Fig. 3. Table 1 presents adaptivemesh statisti
s at orders p = 4, 8, 12 and 16, whi
h 
learly demonstrate the superioreÆ
ien
y of high-order methods with p � 8 even for rather 
oarse toleran
es su
h as� = 10�6. 9



Table 1Statisti
s for the adaptive method with toleran
e � = 10�6 and orders p = 4, 8, 12 and 16:number of mesh points N , mesh ratio R = maxj hj=minhj , a

umulated CPU time T = T1+� � �+TS ,maximum error E = maxjku(tj )�y(tj )k and error estimate C = maxtk
(t)k at ea
h step 0, 1, . . . ,of the adaptive re�nement pro
edure. (High-order results agree with low-order results for the �rstfew steps, and are not repeated in the tables. Asterisks denote 
ases where the fourth-order methodterminated early due to la
k of spa
e.)Example p Step N R T E C3.1.1 0 491 1 .06 .16-11 .38-54 1 4709 1.41 .57 .16-13 .43-78 1 1163 1.34 .23 .16-13 .62-1312 1 823 1.19 .22 .51-14 .32-1416 1 710 1.13 .28 .16-13 .19-143.1.2 0 491 1 .01 .45-1 .14-04 1 1493 1.14 .05 .44-3 .81-22 13822 1.23 .36 .24-7 .77-43 127979 1.33 3.23 .57-11 .77-68 2 3209 5.23 .19 .79-10 .36-912 2 2355 2.84 .27 .77-9 .26-816 2 2066 2.18 .41 .39-8 .13-73.1.3 0 491 1 .02 .38+1 .11+14 1 1617 1.86 .08 .89-0 .14+12 5133 3.49 .28 .97-2 .58-13 51319 3.49 2.2 .54-6 .42-34 500000 3.49 22 .12-8 .20-4*8 3 11159 16.2 .94 .40-10 .69-912 3 8171 10.5 1.14 .34-8 .21-716 3 7152 7.65 1.63 .87-9 .55-83.1.4 0 491 1 .15 .15+1 .58-04 1 2196 1.74 .83 .44-0 .63-02 7769 3.14 3.20 .45-1 .78-13 77655 4.44 27.1 .34-5 .11-34 500000 6.28 29.5 .35-5 .11-3*8 3 77501 16.4 32.1 .89-10 .22-812 3 31780 9.82 18.1 .16-5 .17-54 46995 9.82 40.1 .31-6 .34-616 3 21246 7.09 15.9 .14+1 .98-04 29245 6.89 33.6 .86-4 .92-45 38913 6.88 56.8 .65-6 .71-63.1.5 0 491 1 .01 .73+1 .10+14 1 1745 1.71 .07 .66+1 .98+02 6926 2.99 .30 .11+1 .11+13 29091 5.26 1.23 .16-2 .64-14 290866 5.26 10.6 .15-6 .62-35 500000 2.29 26.7 .13-6 .55-4*8 4 221324 24.4 13.4 .27-9 .26-812 4 100594 15.7 11.4 .56-9 .22-816 4 69594 11.5 14.0 .39-9 .16-810



Our strategy obtains high a

ura
y in CPU times 
omparable to the nonadaptive
ode for all test problems. It also 
ompares favorably with the best Netlib 
odestested (x3.5). For example, both with and without an adaptive mesh, bvpd
 obtains12-digit a

ura
y on a boundary layer of width 10�4 (3.1.3) in CPU time 
omparableto mirkd
 (order 2, 4 or 6) or twpbvp.3.4. High-order 
onvergen
e on the beam problem. We demonstrate high-order 
onvergen
e on the beam problem (3.1.1) with 0 through 9 deferred 
orre
tionsteps on an equidistant n-point mesh, in quadruple-pre
ision arithmeti
 with ma
hinepre
ision about 10�28. For this high-pre
ision 
onvergen
e study, we 
ompiled bvpd
with the Sun Fortran 
ompiler f77 and 
ompiler 
ags -xtypemap=real:64,double:128.The quadruple pre
ision exe
utable runs orders of magnitude slower than double pre-
ision, but allows us to verify higher orders of 
onvergen
e.Table 2 
learly indi
ates that orders p = 2 through 20 are a
hieved after m =p=2�1 
orre
tion steps, and suggests that the 
lassi
al 
onvergen
e analysis of deferred
orre
tion with un
entered di�eren
e formulas [16, 29℄ may be in
omplete.Table 2Order-p errors in the beam problem (3.1.1) on a uniform n-point mesh.p n = 512 1024 2048 4096 8192 16384 32768 655362 6.6-1 1.2-0 4.3-0 5.8-1 3.1-1 1.0-1 2.9-2 7.3-34 3.9-2 3.6-3 1.9-4 8.3-6 4.7-7 2.8-8 1.7-9 1.1-106 2.4-2 1.1-4 6.1-6 6.9-8 3.7-10 8.1-12 1.5-13 2.4-158 2.1-2 1.2-4 1.3-6 4.4-9 8.4-12 1.2-14 2.0-17 5.4-2010 1.4-2 4.3-5 1.7-7 1.8-10 9.5-14 3.4-17 1.0-20 2.7-2412 1.1-2 1.2-5 2.3-8 7.8-12 1.2-15 1.1-19 8.5-24 5.8-2814 1.6-2 5.6-6 3.2-9 3.4-13 1.4-17 3.6-22 7.1-27 3.0-2916 4.4-2 1.8-6 4.4-10 1.5-14 1.8-19 1.2-24 5.8-30 5.0-3018 6.3-2 7.1-7 6.3-11 6.6-16 2.2-21 3.9-27 9.4-30 1.8-2920 3.2-2 2.6-7 8.9-12 3.0-17 2.7-23 1.5-29 1.4-29 2.2-293.5. Comparison 
odes. We 
ompared bvpd
 to four freely-available Fortran77 
odes from Netlib|
olnew, mirkd
, musl, and twpbvp. Su
h 
omparisons areintended to evaluate the potential usefulness of our simple te
hnique for solving dif-�
ult problems. Fig. 4 exhibits base-10 log-log plots of the maximum error vs. CPUmillise
onds required by ea
h Netlib 
ode to solve ea
h test problem with toleran
es� = 10�2, 10�4, . . . , 10�10.
olnew [3℄, an updated version of 
olsys [2℄, uses 
ollo
ation at Gaussian points[28℄ with an improved basis repla
ing the B-splines of 
olsys. It solves extremelygeneral linear and nonlinear multipoint BVPs of mixed orders up to four, requiresseparated boundary 
onditions, and automati
ally generates a mesh on whi
h theerror is approximately equidistributed. The results of 
olnew are indi
ated by a \C"in Fig. 4.mirkd
 [20℄ solves nonlinear �rst-order BVPs with separated boundary 
onditionsby deferred 
orre
tion of mono-impli
it Runge-Kutta methods of orders 2, 4 or 6.The mesh is adapted to equidistribute an approximate residual or \defe
t" 
omputedfrom a C1 interpolant, so the \d
" in the name stands for \defe
t 
ontrol" ratherthan deferred 
orre
tion. The results of mirkd
 with order 2, 4 or 6 are indi
ated bya \2", \4" or \6" respe
tively in Fig. 4. The o

asional very short lines are due to11



the ex
essive a

ura
y obtained by mirkd
 for some problems.musl [26℄ uses an adaptive multiple shooting approa
h to solve nonsti� lineartwo-point BVPs, with results indi
ated by a \M" in Fig. 4.twpbvp [10, 15, 12℄ implements two deferred 
orre
tion steps based on 6th and8th order MIRK formulas, yielding an 8th order solution. The mesh is su

essivelydoubled to a
hieve a user-spe
i�ed a

ura
y toleran
e and re�ned to equidistributethe last 
orre
tion. Results are indi
ated with a \T" in Fig. 4.Some of the Netlib 
omparison 
odes obtained suboptimal a

ura
y or failed toprodu
e a solution at all. The 
ollo
ation 
ode 
olnew was not intended for sti�problems and failed to solve half of the test problems. The shooting method musl didwell on the beam equation (3.1.1) and the sti� problem (3.1.2) but failed on all theother test problems. By 
ontrast, the two 
odes mirkd
 (operating in order-6 mode)and twpbvp were able to attain at least 6-digit a

ura
y in every test problem in ourgallery.3.6. Con
lusions. We have developed and tested a simple, fast, stable deferred
orre
tion method for the numeri
al solution of two-point boundary value problems.The method handles nonseparated boundary 
onditions and ill-
onditioned BVPs witha stable eÆ
ient sparse QR fa
torization. Numeri
al results show that the method
an solve some extremely 
hallenging problems with eÆ
ien
y 
omparable to standardNetlib 
odes.The deferred 
orre
tion framework displays 
onsiderable promise as a high-orderautomati
 solver. Useful extensions 
ould well solve di�erential-algebrai
 problemsand ellipti
 boundary value problems in higher dimensions.A
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(a) Boundary layer problem (3.1.3)

(b) Bessel system (3.1.4)

(
) Airy turning point (3.1.5)

Fig. 1. The �rst 
omponent of the solutions of the boundary layer problem (3.1.3), the Besselsystem (3.1.4), and Airy turning point problem (3.1.5), with the relative density of the adaptivemesh produ
ed by bvpd
 for error toleran
e � = 10�3.14



Beam equation (3.1.1) Sti� system (3.1.2)
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Boundary layer (3.1.3) Bessel system (3.1.4)
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Airy turning point (3.1.5) Cylinder fun
tions (3.1.6)

  0   1   2   3   4   5   6   7

  2 

  4 

  6 

  8 

 10 

 12 

 14 

0

1

2

3

4
5 6

7
8
9

  0   1   2   3   4   5   6   7 

  2 

  4 

  6 

  8 

 10 

 12 

 14 

0

1

2
34

5
6
7
8

9

Fig. 2. Base-10 logarithm of error vs. logarithm of CPU millise
onds with 0 to 9 steps ofdeferred 
orre
tion yielding s
hemes of orders 2 through 20 on uniform meshes.15



Beam equation (3.1.1) Sti� system (3.1.2)
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Boundary layer (3.1.3) Bessel system (3.1.4)
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Airy turning point (3.1.5) Cylinder fun
tions (3.1.6)
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Fig. 3. Base-10 log-log plot of error vs. CPU millise
onds with 1 to 9 steps of deferred 
orre
tionyielding s
hemes of orders 4 through 20 on adaptive meshes.16



Beam equation (3.1.1) Sti� system (3.1.2)
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Boundary layer (3.1.3) Bessel system (3.1.4)
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Airy turning point (3.1.5) Cylinder fun
tions (3.1.6)
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Fig. 4. Base-10 logarithm of error vs. logarithm of CPU millise
onds with three standardadaptive 
odes from Netlib: \C" indi
ates results for 
olnew, \M" for musl, \T" for twpbvp, andnumerals 2 through 6 indi
ate mirkd
 results of the 
orresponding order.17


