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Abstract. Simple, high-order accurate, adaptive methods for linear two-point boundary value
problems are generated by iterated deferred correction of the second-order midpoint rule with high-
order uncentered difference formulas on an adaptive mesh. A fast structured QR factorization
produces robust solutions of the ensuing linear systems. The methods solve problems with gen-
eral nonseparated boundary conditions as efficiently as separated ones. Numerical experiments on
well-resolved problems show that the methods achieve high-order accuracy despite some previously
conjectured order barriers. Efficiency and accuracy compare favorably with several standard codes
on a gallery of difficult test problems.
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1. Introduction. Numerical methods for solving two-point boundary value prob-
lems in ordinary differential equations have been extensively developed: classical
methods such as shooting [26], collocation [2, 3, 28], finite differences and deferred
correction [7, 25] are analyzed in [4, 32]. More recent developments include spectral
integral [22, 24, 31], rational pseudospectral [6], Lobatto deferred correction [5, 12]
and mono-implicit Runge-Kutta deferred correction [9, 14, 13, 15, 34, 36, 35] methods.
Several widely available codes based on these approaches can solve routine problems
accurately and efficiently. However, the solution of extremely difficult problems with
widely separated scales, high-frequency oscillations, and boundary and internal layers,
is still an area of active research.

In this paper, we develop a simple, fast, and effective numerical method for high-
accuracy solution of difficult linear boundary value problems. The method combines
iterated deferred correction (§2.4) of the simple midpoint rule (§2.1), high-order un-
centered difference formulas (§2.3), a robust adaptive mesh refinement strategy (§2.5),
and a fast stable structured QR factorization (§2.2) for the solution of linear systems.
We focus on linear problems because appropriate continuation strategies for New-
ton’s method effectively reduce nonlinear problems to linear ones. While most codes
for two-point boundary value problems require special separated boundary conditions,
our method solves general separated and nonseparated problems with equal efficiency.
It computes complex high-accuracy solutions to difficult stiff and oscillatory problems
(83.1) on both equidistant (§3.2) and adaptive (§3.3) meshes, in CPU time comparable
to several popular public domain codes (§3.5). Experiments on a well-resolved prob-
lem demonstrate optimal orders of accuracy (§3.4), higher than predicted by classical
convergence theory [16, 29].

2. The numerical method. Our high-order adaptive deferred correction method
is constructed in the following way. First, we define boundary value problems (BVPs)
and the midpoint rule, and formulate them as linear operator equations. Second,
we develop a fast stable solution method for the operator version of the midpoint
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rule. Third, we derive high-order discretizations which are accurate but costly to
solve. Fourth, we employ iterated deferred correction as a fast approximate method
for solving high-order discretizations. Fifth, we use error estimates produced in the
course of iterated deferred correction to devise a robust strategy for adaptively re-
fining the mesh to solve difficult problems efficiently. Finally, we combine these five
ingredients into a complete algorithm.

2.1. The midpoint rule. Consider a linear two-point boundary value problem
(BVP)

(1) y —=Cltyy=ft), a<t<bd
Ay(a) + By(b) = g
for a vector-valued function y : [a,b]—=R?. Here C(t) is a continuous ¢ X ¢ matrix-

valued function on the interval I = [a,b] and A, B are fixed ¢ x ¢ matrices. We will
often find it convenient to treat the BVP as a single operator equation

) w={ ) o | =10 =7

where I maps C' (I; R?) continuously to the Cartesian product space C°(I; RY) x RY.
Given an n-point mesh a = t; < ts < --- < t,, = b, a stable second-order accurate
discretization of Eq. (1) is provided by the midpoint rule

3) MR oMY o 1< <n,
7

Auy + Bu, = g.
Here u; approximates y(¢;), each mesh size h; = t;41 —t; is bounded by h = max; h;,
the midpoint #;,1/5 = t; + h;/2, and the midpoint data is f; = f(t;11/2) and C; =
C(tj+1/2). We often treat the numerical method as a N x N matrix-vector equation
Mpu = Fy, where N = nq,
u = (ul(tl)aUQ(tl)a s 7uq(t1)vu1(t2)7 s 7uq(tn))T7
Fh = (fl(t3/2)a sy fq(t3/2)7 ceey fq(tn—l/Q)agla s 7gq)Ta
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Under reasonable assumptions on the operator L and mesh sizes h; [4, 32],
the midpoint rule is stable (the matrix norm ||, '|| is bounded independently of
the maximum mesh size h—0) and second-order accurate (the error is bounded by
max; ||u; — y(¢;)|| = O(h?)). These basic properties ensure that the solution can be
computed to arbitrary accuracy € with n = O(1/h) = O(e~'/?) mesh points t; on
[a,b] as e=0. The standard Gaussian elimination approach used in most BVP solvers
[8] requires O(N?) = O(e~3/2) work and storage to compute the solution u, and lacks
stability when the ill-conditioning of the BVP is inherited by the midpoint rule ma-
trix Mp,. Thus achieving high accuracy in reasonable CPU times will require stable
solution methods which respect the sparsity structure of M}, which has at most 2¢
nonzero elements among the ng elements in each row.
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2.2. Stable efficient solution methods. The midpoint discretization matrix

My}, has the block “half-arrowhead” sparsity structure

Dy S 0 0 0 0

0 Dy Sy 0 0 0

0 0 D3 S; 0 0

My = ) . ) ) : .
0 o -+ 0 0 Dp_-1 Sp-1
B 0 0 0 0 B,

where D;, S; and B; are ¢ X ¢q blocks.

An implementation of Gaussian elimination for the solution of Mpu = F} should
ideally be both efficient and stable. Efficiency requires that the sparsity structure of
My, be respected as in [8], but stability usually requires pivoting, which destroys the
sparsity structure.

The requirements of efficiency and stability are compatible if M}, is block bidi-
agonal (B; = 0), or when the rows and columns of M}, can be rearranged into block
bidiagonal form. Such a rearrangement is possible iff the boundary conditions are
separated: for each index p = 1 to ¢ either row p of A = By or row p of B = B,, is
zero. Intuitively, each boundary condition restricts the components of y(a) or y(b)
but does not intertwine them. Numbering the boundary conditions on y(a) first and
y(b) last among the N equations makes M}, block tridiagonal, so Gaussian elimination
can be both efficient and stable [25].

However, many practical problems present nonseparated boundary conditions for
which Gaussian elimination becomes extremely inefficient. Thus we use a fast solution
technique which handles general separated and nonseparated boundary conditions
with equal efficiency. We use Householder transformations [18] to compute the QR
factorization QR = Mj,, with @) orthogonal and R upper triangular, whereupon u
is easily computed as R~'QT F},. Orthogonal factorization is more attractive than
Gaussian elimination for solving the possibly ill-conditioned sparse linear systems
produced by discretization of difficult BVPs, because it provides superior stability
properties while eliminating pivoting and excessive fill-in. The resulting factors @
and R can be stored in the special arrowhead matrix

[ Dy S O 0 0 Ry
0 Dy Sy 0 0 R,
0 0 D3 53 0 R3
My, = : : ' f : : f
0 0 0 Dnpo Sh2 Rno
0 0 0 0 Dn—l Sn—l
| B1 Bs Bs B B,1  Bap

where the nonzero components of the Householder vectors are stored in the B; blocks,
the subdiagonal parts of the D; blocks and an extra vector b containing the diagonal
components. The QR factorization requires O(N¢?) time and 4Nq storage, making
it essentially optimal with respect to the problem size N. Once the matrix M} is
factorized, subsequent linear systems with different right-hand sides can be solved at
only O(Ngq) cost per solve. Fast updating of the factorization is also possible [19],
facilitating continuation methods as in [12].
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Accuracy € can now be obtained in O(N¢q) = O(e~'/?) work and storage, cor-
responding to roughly three times the work for each additional digit of accuracy.
This cost/benefit ratio is acceptable for low accuracy, but high accuracy requires dis-
cretization methods with higher orders of accuracy than the second-order midpoint
rule.

2.3. Higher-order discretizations. The midpoint rule can be improved by us-
ing better approximations of the midpoint derivatives y'(¢;,1/2) and values y(t;11/2)-
Such approximations can be generated by uncentered higher-order polynomial inter-
polation

Y (tjz1/2) = Pj(tjq1/2), Y(tjr1/2) = Pj(tjr1/2)-

Here P; is a (g-vector valued) polynomial of degree at least 2p — 1 which interpolates
the values uy, at 2p points ¢y, centered at ¢ /> to the extent possible without crossing
the endpoints of the interval:

Pj(tk):uk ljSkS’I‘j:lj+2p—].
where

1 1<j<p,
liji=¢ j—p+1 p<j<n-—p,
n—2p+1 n—p<j<n.

While P;(t) and Pj(t) can be evaluated by standard techniques such as Lagrange
or Newton interpolation [33], their values at t;,;/, can be evaluated by convenient
difference formulas such as

(tjs1/2) Z kU (tjs1/2) Z Bikur.

Stable efficient routines for the computation of the coefficients a;; and 3;; have been
provided by Fornberg [21]. The resulting higher-order discretizations of the BVP (1)
have the form

Ly = [ (Ch, aijZI—_l-CéuZnZsz Bikur) ] _ [ (J;j) } _F,

Ly, is formally order-2p accurate, and therefore asymptotically more efficient than
low-order discretizations for computing highly accurate solutions to well-conditioned
smooth problems. Obtaining accuracy € with a method of order 2p requires on the
order of n = O(e~'/?’) mesh points, which is extremely efficient whenever the error
tolerance € is sufficiently stringent and the constants implied by the O() symbol are
not too large. However, the matrix Lj; has a bandwidth proportional to p and there-
fore requires O(np®) = O(Np?) CPU time and storage. For a 20th order method, a
factor of order 100 is often acceptable in CPU time but not in storage. Deferred cor-
rection, like Krylov subspace methods [27], greatly reduces the storage requirements
for solution of high-order discretizations.

2.4. Tterated deferred correction. Deferred correction iterates with a low-
order preconditioner to solve a high-order discretization at low cost. The approach
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comes in many variants 7, 5, 9, 12, 14, 13, 15, 25, 34, 36, 35|, some based on com-
plicated asymptotic error expansions [4]. The simplest one can be summarized as
approximately solving for the error in a computed solution from a residual equation,
and then subtracting the error to get an improved solution.

Consider a numerical solution « which is interpolated by a piecewise polynomial
P;(t) on the interval [t;,t;41] to give a residual

B _ [ ctPi(t) + £t) — Py(t)
p(t)y=F —LP = [ g — AP(a) — BP(b)

At mesh midpoints #; /s, the residual components are
pj = CiPj(tiy1/2) + fi — Pj(tjs1/2)

Tj Tj
:CjZﬁijk+fj—Zajkuk, 1<j<n,
k=l ;

k=l;
pn = g — Aur — Buy,.

Since the residual satisfies LP = F — p by definition and the exact solution satisfies
Ly = F, subtraction gives L(y — P) = p. Therefore the correction ¢ = y — P which
makes P into the exact solution y = P + ¢ satisfies the correction equation

Le=p.

The correction equation can be solved efficiently by the midpoint rule Mpec; = p with
the factorized matrix My, yielding a relatively second-order accurate approximation
c1 to the correction ¢. The corrected solution u + ¢; is formally two orders more
accurate than wu, if the residual has been computed with sufficient accuracy.

The correction procedure can be repeated, formally gaining two additional orders
of accuracy per repetition, as long as the error is sufficiently smooth and the residual
has been computed with sufficient accuracy. However, several theoretical analyses
[4, 16, 29] have shown that when uncentered differences are used near the ends of the
interval, m corrections may not yield the expected order of accuracy 2(m + 1) for
m > 2. Instead, the order of accuracy increases like the sequence 2, 4, 6, 7, 8, 9, 10,

11, 12, .... This result assumes the mesh is smooth in the strong sense that
hj
J j—1

and polynomial interpolation of variable degree 2k + 1 is used for each correction
number £ = 1 to m. Our numerical experiments (§3.4), by contrast, demonstrate
that the use of a fixed degree 2m + 1 of polynomial interpolation at each correction
k = 1 to m yields the full order 2(m + 1) on an equidistant mesh. This does not
contradict the analyses of [4, 16, 29] since we are using a fixed high interpolation
degree 2m + 1 at every correction step, while the analyses of [4, 16, 29] address the
use of the minimum possible degree 2k + 1 at correction step k.

Deferred correction also provides a sequence of approximate corrections which
allow us iteratively to generate a suitable adaptive mesh for resolving the solution
with maximal efficiency.



2.5. Adaptive mesh refinement. Many BVPs have coefficients or solutions
which change rapidly over small fractions of the computational domain. Such rapid
concentrated variations cannot be efficiently resolved by global equidistant meshes;
instead, a nonequidistant mesh tailored to these variations must be built adaptively
during the solution process. We employ a natural strategy to build this adaptive
mesh: given an error estimate e(t) = O(hP) for a solution u computed with mesh
sizes h(t) < h, and a desired error tolerance €, we choose new mesh sizes

h(r) = (m)ww)

at each point ¢ € [a, b]. Here y = 10~ is a fudge factor designed to avoid cycling. The
new mesh size is chosen to make the new error at each point less than e, assuming
that the error estimate decreases like O(h?) as h—0. In deferred correction, the final
computed correction norm ||¢y,|| is a natural error estimate e(t). Since it decreases
like O(h*™), we put p = 2m and e(t) = ||em(t)]]. Setting e(t) = |l (t)]| vastly
overestimates the actual O(h*) error if we use only the first correction norm ||e;|| of
size O(h?); but the deferred correction approach is most useful when high accuracy is
required, and then our computational experience indicates that the O(h*™) correction
norm ||, || is an reliably conservative estimate of the actual O(h>™*2) error.

Numerical experiments have suggested several improvements of this basic strat-
egy. First, we require that iL(t) < 0.8h(t) at every t, to ensure that the mesh generation
process terminates rapidly rather than cycling near its end. Second, we discourage
extreme gradients in the mesh by requiring i(t) > h(t)/10, so mesh sizes cannot, de-
crease too suddenly. Finally, we have observed that deferred correction rarely can
improve a second-order solution which is completely inaccurate. Therefore we con-
struct an initial mesh (for higher-order deferred correction method) on which the first
O(h?) correction ¢; is no larger than 10% of the solution maximum. This amounts
to determining a preliminary mesh by the fourth-order method with e = 10~!, which
costs less than using a high-order method on a preliminary mesh. Given one-digit ac-
curacy on the initial correction with a preliminary mesh, deferred correction usually
does a good job of the subsequent correction and mesh refinement steps.

2.6. Adaptive deferred correction algorithm. Our algorithm can be sum-
marized as follows:
Initialize mesh of intervals
Do until error estimate is below tolerance or workspace is exhausted
Initialize u =0
Build and factorize M), = QR for the current mesh
Do j=0,1, ..., m corrections to order p = 2m + 2
Compute residual p = F — LP from interpolant P to u
Solve correction equation Mjyc; = p with saved QR factorization of M,
Update u ¢+ u +¢;
End do
Refine mesh by shrinking intervals where ||¢p,|| is too large
End do
The initial computation of the basic second-order solution by the midpoint rule has
been eliminated from the algorithm by viewing it as a correction u = ¢y to the zero
solution.



3. Implementation and numerical results. We implemented our deferred
correction approach in a double precision Fortran 77 code bvpdc. The code is designed
for easy adaptability to a wide variety of boundary value problems: the user provides
subroutines for evaluating the right-hand side and boundary conditions, and specifies
a few numerical parameters such as the error tolerance e, the number of corrections
m, and the type of mesh. The code was compiled with the GNU Fortran 77 compiler
g77, using the -0 optimization flag, and run on one 450MHz CPU of a Sun Ultra 60
under Solaris 8. Special QR factorization routines were coded to take advantage of
the block arrowhead structure of the matrix M.

We tested bvpdc on a gallery of highly challenging test problems (§3.1) taken
from articles [11, 22, 24, 31] on other methods for solving two-point boundary value
problems. Results are reported in §3.2 and §3.3.

We verify high-order accuracy of the method on a straightforward but nontrivial
beam problem in §3.4. As discussed in §2.4, our results do not contradict order barriers
proved in [16, 29], because we use high-order uncentered differences throughout the
correction process.

For comparison, the results of solving the same test problems with four standard
BVP codes from Netlib (www.netlib.org) are presented in §3.5.

3.1. Test problems. We study the performance of bvpdc and the four Netlib
codes on the following collection of challenging test problems for two-point BVPs.
Some of these test problems have been studied by sophisticated spectral integral
methods with excellent results [22, 24, 30, 31]. Comparisons of earlier numerical
methods for two-point BVPs are reported in [11].

3.1.1. Beam equation. A standard elasticity problem [31] can be transformed
into the first-order system

0 1.0 0 0
, o o1o0| | o B B
Yy — 0 00 1]YT 0 , a=0<t<b=1L,
= 000 =
1000 000 0
0100 000 0
0000 Y@y 1 o VD=0
000 0 1000

where L = 1.2 x 10%, k = 2.604 x 10>, E = 3 x 107, ¢ = 4.34 x 10* and I = 3 x 10°
are material constants. The exact solution is a combination of exponential functions
varying on scales of order (K/EI)'/* ~ 1072

3.1.2. Stiff equation. The model stiff boundary value problem of [31] is given
by

b | 998 1998
—-999 —-1999

Y }yzf(t), a=0<t<b=1,
R R AT CEr

Here f(t) and g are determined so that the exact solution is given by

vi=| 2]

—V1 + U2
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where
w(t) = (et +3(e™ — 14 1),5¢7 0% 4 4 x 1078(e~19% — 1 4 1000¢))" .

3.1.3. Boundary layer. A boundary layer of width e = 10~ is present in the
boundary value problem [22]

y'—[g é]y:f(t), a=-1<t<b=1

K g}y<a>+{$¥g}y@:g.

Here f(t) and g are determined so that the exact solution is given by y(t) = (u(t),u'(t))”
where

e—(1+t)/e

2 4 e—=t)/e
iy te '

u(t) = cos(wt)

The first component of the solution is shown in Fig. 1(a).

3.1.4. Bessel system. A vector of six Bessel functions and derivatives .J, (%)
with orders v near v = 10 satisfies the boundary value problem [31] on [0, 600]

0 1 0 0 0 0
CRPATIET -1 0 0 0
0 0 0 1 0 0

!

_ = f(t

Y 0 0 (Vft)(t1;+t)71/ 0 _Tl 0 Y f( )7
0 0 0 0 0 1

_ 0 0 1 0 Lotlnssere g J
10000 0 000000
001000 000000
1000 10 000000
000000|YDt| o1 000 0]|¥b=9
000000 0007100
000000 00000 1

Here f(t) and g have been determined so that the exact solution is given by

T
y(t) = (Jo(t), 1, (8), Jy1 (1), T, 1 (1), Tu—2(t), T, 5 (1)) -
The first component of the solution is shown in Fig. 1(b).

3.1.5. Airy turning point. An appropriate combination of Airy functions [1]
satisfies the quantum-mechanical “turning point problem” [23, 11, 24]

0
o o ]u@ | ] o ]e=] 1]

with e = 1076, Here the exact solution is given by y(t) = (u(t),u'(t)) where

y’—[? 1}3/20, a=-1<t<b=1

U(t) = ClAl((st) + CQBI((St)
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6 = e /3 =100, C, = 5.6576000136230 and Cy = 1.6552936963622 x 1028 are
constants. This problem contains almost every possible difficulty: dense oscillations,
stiffness, a turning point where the solution changes character, and a sharp boundary
layer at the right edge. The first component of the solution is shown in Fig. 1(c).

3.1.6. Parabolic cylinder functions. An appropriate parabolic cylinder func-
tion satisfies the highly ill-conditioned boundary value problem [17, 24]

y'—{i 1}y:0, a=-1<t<b=1

€

o o ]u@+ ] o ]e=] ]

with € = 1/70. Here the exact solution is given by y(t) = (u(t),u'(t))T where

o

u(t) = % + ﬁM (;—D

with M the parabolic cylinder function [1]

M _ > -1 g
(w)_zzn—lﬁ‘
n=0

Since the condition number of this test problem is about & = 10'® and the best
accuracy expected from any backward stable numerical method in double precision is
of order O(k x 10~1*) = O(1), our code does very well to obtain six-digit accuracy in
less than 1 sec of CPU time.

3.2. Equidistant mesh results. We verify the high-order accuracy of bvpdc
by solving the six test problems of §3.1 on equidistant n-point meshes. We used orders
p = 2 through 20 and n = 16 through 65536 to solve each test problem and plotted
the error vs. CPU time in Fig. 2. The plots exhibit the expected order of convergence
to 12-digit accuracy, except for the ill-conditioned parabolic cylinder problem (3.1.6).

Our high-order methods obtain much better accuracy per unit CPU time than
low-order methods, up to about order 12 or so. For example, 4 corrections (10th
order) gives 12-digit accuracy on the Airy problem (3.1.5), in the 10 CPU sec that
the uncorrected second-order midpoint rule requires to get three-digit accuracy. Two
factors contribute to this highly stable behavior: the stability of QR factorization, and
the similarity between deferred correction and iterative improvement for the solution
of ill-conditioned linear systems [18].

The inevitable roundoff error begins to reduce accuracy for very large N, because
the linear system Mjyc = p has condition number K = O(N) ~ 10°. Since the
backward error is on the order of k times the residual, we cannot expect better than
12-digit accuracy with N = 65536 even if the residual p approaches machine precision.

3.3. Adaptive mesh results. We verify the reliability of the adaptive mesh
strategy in bvpdc by solving each test problem in §3.1 on a sequence of adaptively
generated meshes with tolerances e = 102 through 1071°, using orders p = 4 through
20. The resulting errors vs. CPU times are plotted in Fig. 3. Table 1 presents adaptive
mesh statistics at orders p =4, 8, 12 and 16, which clearly demonstrate the superior
efficiency of high-order methods with p > 8 even for rather coarse tolerances such as
e=1076.



TABLE 1
Statistics for the adaptive method with tolerance ¢ = 10~% and orders p = 4, 8, 12 and 16:
number of mesh points N, mesh ratio R = max; h; / min hj, accumulated CPU timeT = T1+- - -+Ts,
magimum error E = maxj||u(t;) —y(t;)|| and error estimate C = max¢||c(t)|| at each step 0, 1, ...,
of the adaptive refinement procedure. (High-order results agree with low-order results for the first
few steps, and are not repeated in the tables. Asterisks denote cases where the fourth-order method
terminated early due to lack of space.)

Example P Step N R T E c

3.1.1 0 491 1 .06 .16-11 .38-5
4 1 4709 1.41 Y .16-13 A43-7

8 1 1163 1.34 .23 .16-13 .62-13

12 1 823 1.19 .22 .b1-14 .32-14

16 1 710 1.13 .28 .16-13 .19-14

3.1.2 0 491 1 .01 45-1 .14-0
4 1 1493 1.14 .05 44-3 .81-2

2 13822 1.23 .36 .24-7 774

3 127979 1.33 3.23 57-11 77-6

8 2 3209 5.23 19 .79-10 .36-9

12 2 2355 2.84 27 17-9 .26-8

16 2 2066 2.18 A1 .39-8 A13-7

3.1.3 0 491 1 .02 38+1 A141
4 1 1617 1.86 .08 .89-0 1441

2 5133 3.49 .28 .97-2 .58-1

3 51319 3.49 2.2 .54-6 42-3

4 500000 3.49 22 12-8 .20-4%*

8 3 11159 16.2 94 .40-10 .69-9

12 3 8171 10.5 1.14 .34-8 21-7

16 3 7152 7.65 1.63 .87-9 .55-8

3.14 0 491 1 15 A15+1 .58-0
4 1 2196 1.74 .83 .44-0 .63-0

2 7769 3.14 3.20 45-1 .78-1

3 77655 4.44 27.1 .34-5 11-3

4 500000 6.28 29.5 .35-5 11-3%

8 3 77501 16.4 32.1 .89-10 22-8

12 3 31780 9.82 18.1 16-5 17-5

4 46995 9.82 40.1 .31-6 .34-6

16 3 21246 7.09 15.9 Jd4+1 .98-0

4 29245 6.89 33.6 .86-4 924

5 38913 6.88 56.8 .65-6 .71-6

3.1.5 0 491 1 .01 73+1 10+1
4 1 1745 1.71 .07 .66+1 .98+0

2 6926 2.99 .30 Jd1+1 A1+1

3 29091 5.26 1.23 .16-2 .64-1

4 290866 5.26 10.6 15-6 .62-3

5 500000 2.29 26.7 13-6 .55-4%*

8 4 221324 24.4 134 27-9 .26-8

12 4 100594 15.7 114 .56-9 .22-8

16 4 69594 10 11.5 14.0 .39-9 .16-8




Our strategy obtains high accuracy in CPU times comparable to the nonadaptive
code for all test problems. It also compares favorably with the best Netlib codes
tested (§3.5). For example, both with and without an adaptive mesh, bvpdc obtains
12-digit accuracy on a boundary layer of width 10~* (3.1.3) in CPU time comparable
to mirkdc (order 2, 4 or 6) or twpbvp.

3.4. High-order convergence on the beam problem. We demonstrate high-
order convergence on the beam problem (3.1.1) with 0 through 9 deferred correction
steps on an equidistant n-point mesh, in quadruple-precision arithmetic with machine
precision about 10728, For this high-precision convergence study, we compiled bvpdc
with the Sun Fortran compiler £77 and compiler flags ~xtypemap=real:64,double:128.
The quadruple precision executable runs orders of magnitude slower than double pre-
cision, but allows us to verify higher orders of convergence.

Table 2 clearly indicates that orders p = 2 through 20 are achieved after m =
p/2—1 correction steps, and suggests that the classical convergence analysis of deferred
correction with uncentered difference formulas [16, 29] may be incomplete.

TABLE 2
Order-p errors in the beam problem (3.1.1) on a uniform n-point mesh.

P n = 512 1024 2048 4096 8192 16384 32768 65536
2 6.6-1 1.2-0 4.3-0 9.8-1 3.1-1 1.0-1 2.9-2 7.3-3
4
6

3.9-2 3.6-3 1.9-4 8.3-6 4.7-7 2.8-8 1.7-9 1.1-10

2.4-2 1.1-4 6.1-6 6.9-8 3.7-10  8.1-12 1.5-13  2.4-15
8 2.1-2 1.2-4 1.3-6 4.4-9 8.4-12 1.2-14  2.0-17  5.4-20
10 1.4-2 4.3-5 1.7-7 1.8-10  9.5-14  3.4-17  1.0-20 2.7-24
12 1.1-2 1.2-5 2.3-8 7.8-12 1.2-15 1.1-19  8.5-24  5.828
14 1.6-2 5.6-6 3.2-9 3.4-13 1.4-17  3.6-22 7.1-27  3.0-29
16 4.4-2 1.8-6 4.4-10 1.5-14 1.8-19 1.2-24  5.8-30  5.0-30
18 6.3-2 7.1-7  6.3-11 6.6-16 2.2-21 3.9-27  9.4-30 1.8-29
20 3.2-2 2.6-7 8.9-12  3.0-17  2.7-23 1.5-29 1.4-29  2.2-29

3.5. Comparison codes. We compared bvpdc to four freely-available Fortran
77 codes from Netlib—colnew, mirkdc, musl, and twpbvp. Such comparisons are
intended to evaluate the potential usefulness of our simple technique for solving dif-
ficult problems. Fig. 4 exhibits base-10 log-log plots of the maximum error vs. CPU
milliseconds required by each Netlib code to solve each test problem with tolerances
e=10"2,10"4, ..., 10710,

colnew [3], an updated version of colsys [2], uses collocation at Gaussian points
[28] with an improved basis replacing the B-splines of colsys. It solves extremely
general linear and nonlinear multipoint BVPs of mixed orders up to four, requires
separated boundary conditions, and automatically generates a mesh on which the
error is approximately equidistributed. The results of colnew are indicated by a “C”
in Fig. 4.

mirkdc [20] solves nonlinear first-order BVPs with separated boundary conditions
by deferred correction of mono-implicit Runge-Kutta methods of orders 2, 4 or 6.
The mesh is adapted to equidistribute an approximate residual or “defect” computed
from a C! interpolant, so the “dc” in the name stands for “defect control” rather
than deferred correction. The results of mirkdc with order 2, 4 or 6 are indicated by
a “2” “4” or “6” respectively in Fig. 4. The occasional very short lines are due to
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the excessive accuracy obtained by mirkdc for some problems.

musl [26] uses an adaptive multiple shooting approach to solve nonstiff linear
two-point BVPs, with results indicated by a “M” in Fig. 4.

twpbvp [10, 15, 12] implements two deferred correction steps based on 6th and
8th order MIRK formulas, yielding an 8th order solution. The mesh is successively
doubled to achieve a user-specified accuracy tolerance and refined to equidistribute
the last correction. Results are indicated with a “T” in Fig. 4.

Some of the Netlib comparison codes obtained suboptimal accuracy or failed to
produce a solution at all. The collocation code colnew was not intended for stiff
problems and failed to solve half of the test problems. The shooting method musl did
well on the beam equation (3.1.1) and the stiff problem (3.1.2) but failed on all the
other test problems. By contrast, the two codes mirkdc (operating in order-6 mode)
and twpbvp were able to attain at least 6-digit accuracy in every test problem in our
gallery.

3.6. Conclusions. We have developed and tested a simple, fast, stable deferred
correction method for the numerical solution of two-point boundary value problems.
The method handles nonseparated boundary conditions and ill-conditioned BVPs with
a stable efficient sparse QR factorization. Numerical results show that the method
can solve some extremely challenging problems with efficiency comparable to standard
Netlib codes.

The deferred correction framework displays considerable promise as a high-order
automatic solver. Useful extensions could well solve differential-algebraic problems
and elliptic boundary value problems in higher dimensions.

Acknowledgments. The author thanks the referees for several helpful suggestions.
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(a) Boundary layer problem (3.1.3)

(b) Bessel system (3.1.4)

(c) Airy turning point (3.1.5)

F1G. 1. The first component of the solutions of the boundary layer problem (3.1.3), the Bessel
system (38.1.4), and Airy turning point problem (3.1.5), with the relative density of the adaptive
mesh produced by bvpdc for error tolerance e = 1073,
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Beam equation (3.1.1) Stiff system (3.1.2)
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Fia. 2. Base-10 logarithm of error wvs. logarithm of CPU milliseconds with 0 to 9 steps of
deferred correction yielding schemes of orders 2 through 20 on uniform meshes.
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Beam equation (3.1.1) Stiff system (3.1.2)
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Fic. 3. Base-10 log-log plot of error vs. CPU milliseconds with 1 to 9 steps of deferred correction
yielding schemes of orders J through 20 on adaptive meshes.
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Beam equation (3.1.1)

Stiff system (3.1.2)
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Airy turning point (3.1.5)
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Fi1G. 4. Base-10 logarithm of error vs. logarithm of CPU milliseconds with three standard
adaptive codes from Netlib: “C” indicates results for colnew, “M” for musl, “T” for tupbvp, and
numerals 2 through 6 indicate mirkdc results of the corresponding order.
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