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1. Introduction

An algorithm is presented for the fast evaluation of the Fourier transform

f̂(τk) =
N∑

i=1

∫

∆i

exp(iτTk σ)fi(σ) dσ, 1 ≤ k ≤ N, (1)

at arbitrary points τk ∈ RD. Here1 i =
√
−1, polynomial densities fi are defined on

simplices ∆i ⊂ RD, the ambient dimension D ≥ 1, and the simplex dimension d satisfies
0 ≤ d ≤ D. Each ∆i is a d-dimensional simplex consisting of all convex combinations of
d+ 1 given vertices vj ∈ RD:

∆ =





d∑

j=0

θjvj | θj ≥ 0,
d∑

j=0

θj = 1



 . (2)

The algorithm evaluates transform (1) to accuracy ǫ, in work O(N logN logD+1 ǫ),
for arbitrary d and D. It employs a butterfly algorithm: Group source simplices ∆i and
target points τk into hierarchical tree structures, approximate the kernel exp(itT s) by low-
rank expansions, and transform expansions from source-local to target-local form. An
efficient new dimensional recurrence evaluates source-local Fourier transforms of polyno-
mials over simplices. The derivation, analysis and Fortran 77 implementation all operate
with arbitrary ambient dimension D ≥ 1, simplex dimension 0 ≤ d ≤ D, and polynomial
degree deg(fi) = p ≥ 0. Despite this generality, the implementation runs orders of mag-
nitude faster than direct evaluation, and compares favorably with the specialized Fast
Fourier Transform (FFT).

Preliminaries on error bounds, translation lemmas, and hierarchical tree structures
are reviewed in Section 2. Section 3 combines these tools to derive a pointwise (d =
0) butterfly algorithm and analyze error propagation through the algorithm. Section
4 generalizes the algorithm to polynomials fi on simplices of dimension d ≥ 1. An
efficient dimensional recurrence computes exponential-polynomial moments in d ≥ 1
by a combination of simplex quadrature and recurrence d → d − 1. Section 5 verifies
efficiency and accuracy by numerical experiments. Section 6 explores acceleration with
optimized basis functions, application of Galerkin matrices, and extensions to Laplace
and Gauss transforms.

The existing literature [1, 2, 3, 4, 5, 6, 7, 8, 9] applies butterfly algorithms to various
kernels. The data of these algorithms consists of point values at given locations on
curves or surfaces in 1 through 3 dimensions. The approximation technique employed is
usually Chebyshev interpolation [2, 3, 6, 7] and occasionally interpolative decomposition
[4]. They obtain 12-digit accuracy in 1 dimension [4, 7], and 3 to 6 digit accuracy in 2
and 3 dimensions [2, 3, 6, 9].

We apply butterfly algorithms to the Fourier kernel. The data generalizes point
values to polynomials on simplices in arbitrary dimension and codimension. The approx-
imation technique employed is Taylor expansion, which simplifies the generalization to
polynomials and obtains controllable 3 to 12 digit accuracy.

1Notation is summarized in Table 1.
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Table 1: Notation

D Ambient dimension of RD d Simplex dimension

f Degree-p polynomial source density f̂ Fourier transform

p Degree of source density P Number of coefficients
(
p+d
d

)

σ Source point (σ1, . . . , σD)T ∈ RD τ Target point (τ1, . . . , τD)T ∈ RD

∆ Source simplex of dimension d Λ Target simplex of dimension d
NS Number of sources σi or ∆i NT Number of targets τi or Λi

SL L-level source tree TL L-level target tree
S Cubical source cell T Cubical target cell
s Center (s1, . . . , sD)T ∈ RD of S t Center (t1, . . . , tD)T ∈ RD of T

R(S) Radius of S R(T ) Radius of T

ρS Side length R(S)/
√
D ρT Side length R(T )/

√
D

m Order of Taylor expansion M Length
(
m+D
D

)
of Taylor expansion

ǫ Accuracy (Re/m)m R Accuracy radius R(S)R(T )
α Multiindex (α1, . . . , αD) ∈ ND |α| Order |α1|+ · · ·+ |αD|
α! Factorial α1! · · ·αD! tα Monomial tα1

1 · · · tαD

D

tT s Inner product t1s1 + · · ·+ tDsD Cα(S, T ) Coefficients representing S to T
Aαβ(s) Source translation matrix Bαβ(s, t) Target translation matrix
Fαβ(s, t) Error propagation matrix µ(R,m) Stability bound

Gα(d,∆, f, t) Exponential-polynomial moments V Simplex matrix [v1 − v0| · · · |vd − v0]

|∆| Simplex volume
√
det(V TV ) H Hyperplane containing simplex

∂∆ Relative boundary ∪d
j=0∂j∆ n Relative outward unit normal

t‖ Parallel component V (V TV )−1V T t t⊥ Perpendicular component t− t‖
E Moment shift vector z Shift vector −it‖/‖t‖‖2
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Special cases of the piecewise-polynomial Fourier transform (1) in which the simplices
are discrete points (d = 0), line segments (d = 1), triangles (d = 2) or tetrahedra (d = 3)
occur frequently in applications.

Points: When the simplex dimension d = 0, each simplex ∆i is a point σi ∈ RD,
and each polynomial fi is a constant complex number. The piecewise-polynomial Fourier
transform reduces to the pointwise nonuniform Fourier transform

f̂(τk) =

N∑

i=1

exp(iτTk σi)fi, 1 ≤ k ≤ N. (3)

If σi = 2πi/N and τk = k are restricted to equidistant grids and D = 1, transform
(3) reduces to the classical uniform FFT [10]. Several classes of fast algorithms for
unrestricted σi and τk are well-known [11, 12, 13, 14, 15]. Physical applications of
transform (3) include threshold dynamics [16], magnetic resonance imaging [17], and a
host of others. Often these applications involve higher-dimensional objects which are
discretized into pointwise transforms by quadrature formulas with dozens of points per
wavelength.

Lines: When the simplex dimension d = 1, each simplex ∆i is a line segment [ui, vi]
connecting endpoints ui, vi ∈ RD, and parametrized by σ = ui+φ(vi−ui) for 0 ≤ φ ≤ 1.
The piecewise-polynomial Fourier transform reads

f̂(τk) =

N∑

i=1

‖vi − ui‖ exp(iτTk ui)

∫ 1

0

exp(iφτTk (vi − ui))fi(φ) dφ (4)

for 1 ≤ k ≤ N . E.g. Fig. 1 displays two L-level approximate Sierpinski paths [18],
composed of line segments ∆i with simplex dimension d = 1 in ambient dimension
D = 2, and the Fourier transform amplitudes |f̂(t)| of unit data f = 1 on these paths.

As L increases, the Sierpinski paths fill a triangle ∆, and f̂ converges to the Fourier
transform of the indicator function of ∆.

Triangles: When d = 2, each simplex ∆i is a triangle with vertices ui, vi, wi ∈ RD,
parametrized by σ = ui + φ1(vi − ui) + φ2(wi − ui) where φ1 ≥ 0, φ2 ≥ 0, φ1 + φ2 ≤ 1.
The piecewise-polynomial Fourier transform reads

f̂(τk) =
N∑

i=1

√
‖vi − ui‖2‖wi − ui‖2 − ((vi − ui)T (wi − ui))2

exp(iτTk ui)

∫ 1

0

exp(iφ2τ
T
k (wi − ui))

∫ 1−φ2

0

exp(iφ1τ
T
k (vi − ui))fi(φ1, φ2) dφ1 dφ2 (5)

for 1 ≤ k ≤ N . Algorithms for evaluating transform (5) when each fi is a polynomial
are discussed in [19, 20, 21]. Physical applications of this transform include the solution
of linear constant-coefficient p× q elliptic systems

Au(x) =

D∑

j=1

Aj∂ju(x) +A0u(x) = f(x),
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(a) 5-level path (b) 8-fold symmetry

(c) 10-level path (d) 3-fold symmetry

Figure 1: Sierpinski paths and Fourier transform amplitudes
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in a domain Ω ⊂ RD, with r×q full-rank boundary conditions B(γ)u(γ) = g(γ) imposed
on the boundary Γ = ∂Ω. Such systems include Laplace, Helmholtz, Maxwell and Stokes
equations, and can be efficiently solved by integral equation methods based on Ewald
summation [22]. These methods rely on the p× q matrix-valued Fourier transform

∫

Γ

Aν(σ)P (σ)e−iτT σdσ

where Aν(σ) =
∑

j νj(σ)Aj , P (σ) = I−B(σ)∗(B(σ)B(σ)∗)−1B(σ), and ν is the outward
unit normal to Γ. These transforms are usually discretized by quadrature formulas
employing dozens of points per wavelength, making a piecewise-polynomial algorithm an
attractive alternative.
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2. Preliminaries

We present butterfly algorithms as a combination of low-rank approximation and
hierarchical point clustering, via the following techniques:

• The exponential kernel exp(itT s) of Fourier transform (1) is approximated by low-
rank expansion.

• A simple error bound delineates regions where expansion is accurate.

• If sources and targets are all close together, a single global expansion separates the
variables σ and τ . In general, many local expansions are needed, each representing
the effect of a cluster of sources on a cluster of targets.

• Translation lemmas split and merge expansions between different target and source
clusters.

• Hierarchical tree structures organize source and target points into clusters where
low-rank expansion is accurate.

Pointwise algorithms are constructed from these preliminaries in Section 3. The piecewise-
polynomial algorithm of Section 4 brings in two additional techniques: dimensional re-
currence and approximate clustering.

2.1. Low-rank Taylor expansion

The multidimensional Taylor expansion

exp(itT s) =

∞∑

n=0

in
(∑D

j=1 tjsj

)n

n!
=
∑

α≥0

i|α|

α!
tαsα (6)

of the complex exponential kernel follows immediately from the multinomial theorem




D∑

j=1

tj




n

= n!
∑

|α|=n

tα

α!
. (7)

2.2. Error bound

Let Em be the error incurred by terminating expansion (6) after M =
(
m+D
D

)
terms

of order |α| ≤ m. Stirling’s inequality m! ≥ (m/e)m implies that[23]

|Em| =

∣∣∣∣∣∣

∑

|α|>m

i|α|

α!
tαsα

∣∣∣∣∣∣
=

∣∣∣∣∣

∞∑

k=m+1

ik

k!
(tT s)k

∣∣∣∣∣ ≤
∞∑

k=m+1

Rk

k!
≤
(
Re

m

)m

, (8)

whenever |tT s| ≤ R and m ≥ 3.8R. Table 2 lists m and M which guarantee accuracy
ǫ: E.g. with R = 1 the error bound (8) guarantees accuracy ǫ = 10−6 with m = 11 and
accuracy ǫ = 10−12 with m = 16.
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2.3. Separation of variables

A thought experiment involving unrealistically placed targets and sources demon-
strates the utility of low-rank expansion. Suppose all the sources σi and targets τk in the
pointwise transform (3) satisfy |τTk σi| ≤ R, where R and m are chosen to guarantee error
|Em| ≤ ǫ. Then expansion (6) separates the variables τ and σ to speed up the pointwise
transform:

f̂(τk) =

N∑

i=1

exp(iτTk σi)fi =

N∑

i=1

∑

|α|≤m

i|α|

α!
ταk σ

α
i fi + Fm =

∑

|α|≤m

Cατ
α
k + Fm.

Here the M coefficients Cα, defined by

Cα =
i|α|

α!

N∑

i=1

σα
i fi,

encode the sources σi and strengths fi, and |Fm| ≤ ǫ
∑ |fi| bounds the error. O(MN)

work suffices to compute coefficients Cα for |α| ≤ m and evaluate f̂(τk) for 1 ≤ k ≤ N .
Thus the rank-M kernel approximation

exp(itT s) =
∑

|α|≤m

i|α|

α!
tαsα + Em (9)

gives an O(N) algorithm, with a constant factor O(M) depending polylogarithmically
on the accuracy ǫ.

2.4. Local expansions

The sources σi and targets τk are not conveniently clustered in most applications (e.g.
the classical uniform FFT where 0 ≤ τkσi ≤ 2πN → ∞ as N → ∞). Thus we employ
a collection of low-rank expansions. Each expansion represents the Fourier transform of
sources σi in a cubical cell S centered at s with radius R(S), evaluated at targets τk in
a cell T centered at t with radius R(T ):

∑

σi∈S

exp(iτTk σi)fi =
∑

σi∈S

exp(iτTk s+ i(τk − t)T (σi − s) + itTσi − itT s)fi

= exp(itT s)
∑

|α|≤m

i|α|

α!

∑

σi∈S

(σi − s)α exp(itT (σi − s))fi

(τk − t)α exp(i(τk − t)T s) + Fm

=
∑

|α|≤m

Cα(S, T )

(
τk − t

R(T )

)α

exp(i(τk − t)T s) + Fm. (10)

The coefficients Cα(S, T ) are given by

Cα(S, T ) = exp(itT s)
(iR)|α|

α!

∑

σi∈S

(
σi − s

R(S)

)α

exp(itT (σi − s))fi (11)
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where R = R(S)R(T ). The error |Fm| ≤ ǫ
∑ |fi| since all τk ∈ T and σi ∈ S satisfy

|(τk − t)T (σi − s)| ≤ R(S)R(T ) = R where

(
Re

m

)m

≤ ǫ. (12)

Thus the Fourier transform (10) of sources in S, evaluated at targets in T , is approximated
with a kernel

ETS(τ, σ) = exp(−itT s) exp(itTσ) exp(iτT s)
∑

|α|≤m

(
σ − s

R(S)

)α
(iR)|α|

α!

(
τ − t

R(T )

)α

(13)

of rank at most M =
(
m+D
D

)
. The geometry of S and T control the accuracy of this

approximation via inequality (12).

2.5. Translation lemmas

We apply the low-rank approximate kernel (13) to hierarchical clusters of sources and
targets, via a pair of lemmas that translate the coefficients Cα(S, T ) of expansions (10),
to smaller target cells and larger source cells. Lemma 1 follows from expansion (6), while
the error bound follows from inequality (12). Lemma 2 follows from the multinomial
theorem (7).

Lemma 1. (Smaller target cells) Suppose coefficients C(S1, T0) represent sources
σi ∈ S1 to targets τ ∈ T0 with R(S1)R(T0) = R, and a smaller target cell T1 ⊂ T0

has center t1 and radius R(T1) = R(T0)/2. Then the coefficients

Cα(S1, T1) = exp(itT1 s1)
(iR)|α|

α!

∑

σi∈S1

(
σi − s1
R(S1)

)α

exp(itT1 (σi − s1))fi

are given by an upper triangular matrix multiply

Cα(S1, T1) = exp(i(t1 − t0)
T s1)

∑

β≥0

(
β + α

β

)
2−|β|

(
t1 − t0
R(T1)

)β

Cβ+α(S1, T0)

=
∑

β≥α

Bαβ(s1, t1 − t0)Cβ(S1, T0). (14)

The matrix elements Bαβ are given by

Bαβ(s, t) = exp(i(tT s))

(
β

α

)
2|α|−|β|

(
t

R(T1)

)β−α

for β ≥ α. (15)

If |α| ≤ m and |(t1 − t0)
T (σi − s1)| ≤ R/ρ, then the error E incurred by truncating

formula (14) after terms of order |β| ≤ m is bounded by ρ−mǫ
∑ |fi|.

Lemma 2. (Larger source cells) Suppose coefficients C(S1, T1) centered at s1 repre-
sent sources σi ∈ S1 to targets τ ∈ T1, and a larger source cell S0 ⊃ S1 has center s0
and radius R(S0) = 2R(S1) where R(S0)R(T1) = R. Let

C1
α(S0, T1) = exp(itT1 s0)

(iR)|α|

α!

∑

σi∈S1

(
σi − s0
R(S0)

)α

exp(itT1 (σi − s0))fi,
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be the coefficients centered at s0 which represent sources σi ∈ S1 ⊂ S0 to targets τ ∈ T1.
Then

C1
α(S0, T1) =

∑

β≤α

Aαβ(s1 − s0)Cβ(S1, T1) (16)

where the matrix elements Aαβ are given by

Aαβ(s) = 2−|α| (iR)|α−β|

(α− β)!

(
s

R(S1)

)α−β

for β ≤ α. (17)

Usually a larger source cell S0 is the union of n = 2D subcells S1j , with coefficients
C(S1j , T1) representing sources in S1j to targets τ ∈ T1. After Lemma 2 applies matrix
A(s1j − s0) to shift each coefficient vector to the common center s0, all the sources in S0

are represented to T1 by a single coefficient vector

Cα(S0, T1) =

n−1∑

j=0

∑

β≤α

Aαβ(s1j − s0)Cβ(S1j , T1).

2.6. Hierarchical point clustering

Translation lemmas work well within a data structure which clusters sources and
targets σi and τk into cells S and T satisfying inequality (12). Collections of geometric
objects, such as the source simplices and target points in the Fourier transform (1), are
efficiently clustered into local cells by a 2D-ary tree [24]. Algorithm 1 constructs a tree
SL which organizes points σi (Fig. 2). The algorithm is modified for simplices (d > 0) in
Section 4.2.
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Table 2: Order m and number M of coefficients for 3, 6, 9 and 12-digit accuracy in dimensions D = 1
through 3.

R ǫ ⌈| log(ǫ)|⌉ m M =
(
m+1
1

)
M =

(
m+2
2

)
M =

(
m+3
3

)

2/π 10−3 7 6 7 28 84
10−6 14 9 10 55 220
10−9 21 12 13 91 455
10−12 28 14 15 120 680

1 10−3 7 8 9 45 165
10−6 14 11 12 78 364
10−9 21 14 15 120 680
10−12 28 16 17 153 969

π/2 10−3 7 10 11 66 286
10−6 14 13 14 105 560
10−9 21 16 17 153 969
10−12 28 19 20 210 1540

Algorithm 1 Hierarchical point clustering by a 2D-ary tree, Q = [−1, 1]D.

Create level-0 root cell S00 = s00 + ρQ containing all points σi

Make pointers σi ↔ S00 for all i
for l = 1 . . . L− 1

for I = 0 . . . 2Dl − 1
SlI = slI + 2−lρQ
for j = 0 . . . 2D − 1
Create level-l child cell Sl+1,2DI+j = sl+1,2DI+j + 2−l−1ρQ ⊂ SlI

Make pointers σi ↔ Sl+1,2DI+j for σi ∈ Sl+1,2DI+j

(a) Points (b) Tree (c) Cells

Figure 2: Points in two dimensions, a 6-level tree, and nonempty leaf cells.
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3. A pointwise butterfly algorithm

The pointwise Fourier transform (3) can be efficiently approximated by low-rank
expansion and hierarchical point clustering [1, 2, 3, 4, 5, 6, 7, 8, 9]. We derive these
approximations in four steps:

• localize sources and targets into hierarchical tree structures,

• compute source-local coefficients,

• split and merge coefficients systematically in a butterfly scheme,

• evaluate target-local expansions.

Since we employ Taylor expansion in place of the usual Chebyshev expansion or inter-
polative decomposition, the derivation and accompanying error analysis (Section 3.5)
generalize to the piecewise-polynomial Fourier transform (1) in Section 4.

3.1. Localization

Hierarchical tree structures SL and TL cover the source and target regions S and T
by superimposed levels from root l = 0 to leaves l = L (Fig. 3). Let R(S) and R(T )
be the radii of S and T . On level l, the sources σi and targets τk are localized into 2Dl

cubical cells SlI or TlK with radii R(SlI) = 2−lR(S) or R(TlK) = 2−lR(T ), satisfying

S =

2Dl−1⋃

I=0

SlI , T =

2Dl−1⋃

K=0

TlK .

Suppose the number of levels L and the order m of Taylor expansion satisfy

2−lR(S) 2l−LR(T ) ≤ R and

(
Re

m

)m

≤ ǫ. (18)

Then for sources σi in a level-l source cell SlI and targets τk in a level-(L− l) target cell
TL−l,K (Fig. 3), the low-rank approximate kernel (13) will be accurate to ǫ

∑ |fi|.

3.2. Source-local coefficients

For I = 0 to 2DL − 1, source-local coefficients

Cα(SLI , T00) = exp(itT00sLI)
(iR)|α|

α!

∑

σi∈SLI

(
σi − sLI

R(SLI)

)α

exp(itT00(σi − sLI))fi

represent sources σi in each source leaf cell SLI , to targets τk in the target root cell
T00 (Fig. 4). Each source σi contributes to M coefficients in a single leaf cell SLI .
Thus the total cost of computing source-local coefficients is O(NM). Given source-local
coefficients, the pointwise Fourier transform (3) could be expensively approximated at
each target point τk by summing the 2DL source-local expansions:

f̂(τk) =

2DL−1∑

I=0


exp(i(τk − t00)

T sLI)
∑

|α|≤m

Cα(SLI , T00)

(
τk − t00
R(T00)

)α

+ Fm


 .
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S20 S21 S24 S25

S22 S23 S27

S212 S213

S215S214S211

S28 S29

S26

S13

T00S00

T20 T21 T24 T25

T27

T213T212

T26T23

T29

T211

T28

T22

T210 T214 T215

S12 T13T12

T11T10S11S10

S210

C(S2, T0)

C(S1, T1)

C(S0, T2)

l = 1

l = 0

l = 2

SL TL

Figure 3: Expansion coefficients C(Sl, TL−l) accurately represent opposite levels l and L− l of the source
and target trees SL and TL. Here D = L = 2.

S20 S21 S24 S25

S22 S23 S27

S212 S213

S215S214S211

S28 S29

S26

T00

S210

l = 1

l = 0

l = 2

Figure 4: 2DL = 16 source-local coefficient vectors C(S2I , T00) represent sources in each source leaf cell
S2I to all targets.
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3.3. Butterfly scheme

The butterfly scheme recursively converts source-local coefficients C(SL, T0) to target-
local coefficients C(S0, TL), which represent all the sources σi to targets τk in each target
leaf cell TLK :

C(SL, T0) → C(SL−1, T1) → C(SL−2, T2) → · · · → C(S1, TL−1) → C(S0, TL).

For l = L to 1, each step of the scheme converts 2DL coefficients for source level l and
target level L − l, to source parent level l − 1 and target child level L − l + 1, via split
and merge operations. Each step of split and merge halves the target cells, doubles the
source cells, and preserves the error bound (12) (Fig. 5).

3.3.1. Split

On source level l and target level L− l, each of 2D(L−l) target cells TL−l,K splits into
2D children TL−l+1,2DK+k ⊂ TL−l,K . Each coefficient vector C(SlI , TL−l,K) yields 2D

child coefficient vectors

C(SlI , TL−l+1,2DK+k) = B(slI , tL−l+1,2DK+k − tL−l,K)C(SlI , TL−l,K),

via the M ×M matrices B(s, t) defined in Eq. (15). The error in each child coefficient
vector is bounded by 2−mǫ

∑
| fi|, according to Lemma 1.

3.3.2. Merge

Each group of 2D level-l source cell siblings Sl,2DI+i ⊂ Sl−1,I , merges into their
parent Sl−1,I . Fix a level L − l + 1 target child cell T1 = TL−l+1,2DK+k ⊂ TL−l,K and

let J = 2DI. Then each of 2D(L−l+1) source child coefficient vectors C(Sl,J+i, T1) yields
a partial parent coefficient vector

Ci(Sl−1,I , T1) = A(sl,J+i − sl−1,I)C(Sl,J+i, T1),

via the M ×M matrices A(s) defined in Eq. (17). Since the 2D vectors Ci have the same
source center s = sl−1,I , and the same target center t1, the total source parent coefficient
vector is the sum

C(S, T1) =

2D∑

i=1

Ci(S, T1)

=

2D∑

i=1

A(sl,J+i − s)B(sl,J+i, t1 − tL−l,K)C(Sl,J+i, TL−l,K).

3.4. Target-local expansions

L steps of the butterfly scheme yield coefficient vectors C(S00, TLK) for target leaf
cells TLK . Each coefficient vector represents all the sources σi ∈ S00 to any τk ∈ TLK

(Fig. 6):

f̂(τk) = exp
(
i(τk − tLK)T s00

) ∑

|α|≤m

Cα(S00, TLK)

(
τk − tLK

R(TLK)

)α

. (19)

Thus evaluating the pointwise Fourier transform (3) at all targets τk in leaf cells TLK

costs O(MN) work (Algorithm 2).
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S20 S21 S24 S25

S22 S23 S27

S212 S213

S215S214S211

S28 S29

S26

S13

T00S00

T20 T21 T24 T25

T27

T213T212

T26T23

T29

T211

T28

T22

T210 T214 T215

S12 T13T12

T11T10S11S10
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C(S13, T10)
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Figure 5: A single split and merge substep converts 2D = 4 level-2 source leaf/target root coefficient
vectors C(S2,12+i, T00) to 4 source parent/target child coefficient vectors C(S13, T1K ).
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l = 2

Figure 6: 2DL = 16 target-local coefficient vectors C(S00, T2K) represent all sources to each target leaf
cell T2K .
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Algorithm 2 A pointwise butterfly algorithm

Step 1 - Localization

Sort sources σi and targets τk into leaf cells of L-level trees SL and TL

Step 2 - Compute source-local coefficients

for I = 0 . . . 2DL − 1
S = SLI

s = sLI

T = T00

t = t00
for |α| ≤ m

Cα(S, T ) = exp(itT s) (iR)|α|

α!

∑
σi∈S

(
σi−s
R(S)

)α
exp(itT (σi − s))fi

Step 3 - Butterfly scheme

for l = L . . . 1
for I = 0 . . . 2D(l−1) − 1

S = Sl−1,I

s = sl−1,I

J = 2DI

for K = 0 . . . 2D(L−l) − 1
T = TL−l,K

t = tL−l,K

for k = 0 . . . 2D − 1
T1 = TL−l+1,2DK+k

t1 = tL−l+1,2DK+k

C(S, T1) =
∑2D−1

i=0 A(sl,J+i − s)B(sl,J+i, t1 − t)C(Sl,J+i, T )

Step 4 - Evaluate target-local expansions

for K = 0 . . . 2DL − 1
S = S00

s = s00
T = TLK

t = tLK

for τk ∈ T

f̂(τk) = exp(i(τk − t)T s)
∑

|α|≤m Cα(S, T )
(

τk−t
R(T )

)α
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3.5. Error analysis

We validate our algorithm, showing that each coefficient truncation error grows by
a factor µ ≤ 10 as it propagates through L ≤ 10 butterfly steps. Previous butterfly
algorithms [1, 2, 3, 4, 5, 6, 7, 8, 9] have usually relied on the spectral accuracy of recur-
sive Chebyshev interpolation or interpolative decomposition to bound error propagation.
For Taylor expansion of the Fourier kernel, explicit formulas for merging and shifting
operators simplify the analysis considerably.

Error propagates from one leaf cell SL at a time. Exact computation would transform
the infinite source-local coefficient vector C(SL, T0) to an infinite target-local coefficient
vector C(S0, TL) for each target leaf cell TL:

C(SL, T0) → C(SL−1, T1) → · · · → C(S1, TL−1) → C(S0, TL). (20)

Each arrow C(S1, T0) → C(S0, T1) = EC(S1, T0) is implemented by an infinite matrix
E with elements

Eαβ =
∑

γ≤min(α,β)

Aαγ(s1 − s0)Bγβ(s1, t1 − t0)

= exp(i(t1 − t0)
T s1)

∑

γ≤min(α,β)

(iR/2)|α|−|γ|

(α− γ)!
2−|β|

(
β

γ

)(
s1 − s0
R(S1)

)α−γ (
t1 − t0
R(T1)

)β−γ

.

Since s0 is a corner point of S1 and t0 is a corner point of T1,

s0 − s1
R(S1)

= (±1, . . . ,±1) and
t1 − t0
R(T1)

= (±1, . . . ,±1).

Thus there is a set F of 22D different matrices F with elements

Fαβ =
∑

γ≤min(α,β)

(iR/2)|α|−|γ|

(α− γ)!
2−|β|

(
β

γ

)
(±1, . . . ,±1)α−γ(±1, . . . ,±1)β−γ,

which is independent of all numerical parameters except R. Each arrow in Eq. (20)
is implemented by a scalar unitary prefactor exp(i(t1 − t0)

T s1) and a matrix F ∈ F
determined by the positions of the child cells S1 and T1 relative to their parents.

Accordingly, exact computation produces

C(S0, TL) = ωFLFL−1 · · ·F1C(SL, T0),

while the truncated computation produces the approximate value

Ĉ(S0, TL) = ωPmFLPmFL−1Pm · · ·F1PmC(SL, T0) =




L−1∏

j=0

PmFL−jPm


C(SL, T0).

Here |ω| = 1, each Fj ∈ F , and Pm projects onto the first M coefficients. Since

FLFL−1 · · ·F1 − PmFLPmFL−1 · · ·F1Pm =

L∑

j=0

(
j−1∏

k=0

PmFL−kPm

)
(I − Pm)

L−1∏

k=j

FL−k
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telescopes, the error analysis is completed by estimating the projection I − Pm on exact
coefficients C(SL−j , Tj) = Fj · · ·F1C(S0, TL), and bounding the truncated product.

Since scaled monomials satisfy

∥∥∥∥
σ − s

R(S)

∥∥∥∥
∞

≤ 1 ⇒
∣∣∣∣
(
σ − s

R(S)

)α∣∣∣∣ ≤ 1,

the projection I − Pm applied to any coefficient vector C(S, T ) gives

‖(I − Pm)C‖2 =


 ∑

|α|>m

|Cα|2



1/2

≤
(
Re

m

)m ∑

σi∈S

|fi|. (21)

Numerical computations for 1 ≤ D ≤ 3, 2/π ≤ R ≤ π/2, m = 2 to 30 and 1 ≤ L ≤ 10
show that (a) the stability bound2

µ(R,m) = max
1≤L≤10

max
Fj∈F

∥∥∥∥∥

L∏

k=1

PmFjPm

∥∥∥∥∥
2

(22)

grows very slowly as L and m ≥ Re increase (Fig. 7), and (b) the lower bound

µ(R,m) ≥ max
1≤L≤10

max
Fj∈F

‖(PmFjPm)L‖2 (23)

is sharp for m > Re. For m ≤ Re the error bound (Re/m)m is large so stability is
irrelevant.

Combining Eqs. (21) and (22) bounds the error in a single source leaf cell due to
truncating at each butterfly step by (Fig. 7)

‖C(S0, TL)− Ĉ(S0, TL)‖2 ≤ (L + 1)µ(R,m)

(
Re

m

)m ∑

σi∈S

|fi|. (24)

Since applying unitary prefactors and summing over source leaf cells enlarges the
sum of source strengths fi, the total error is bounded by (L+1)µ(R,m)ǫ

∑N
i=1 |fi|. The

numerical results of Section 5 support this analytical conclusion.

2Each F ∈ F has complex eigenvalues satisfying λj(F ) = 21−jλ1(F ) with |λ1(F )| = 1, suggesting
that products of these matrices should be bounded i.e. the joint spectral radius [25, 26] of F is 1.
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Figure 7: (a) Nonzero singular values of Fj , (b) stability constant, (c) and propagated error bound for
L ≤ 10.
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4. A piecewise-polynomial butterfly algorithm

We enhance the pointwise butterfly algorithm (Algorithm 2) to evaluate the piecewise-
polynomial Fourier transform

f̂(τk) =

N∑

i=1

∫

∆i

exp(iτTk σ)fi(σ) dσ

with N points τk ∈ RD and N polynomial source densities fi on d-dimensional source
simplices ∆i ⊂ RD. The additional components are

• new dimensional recurrences for computing exponential-polynomial moments (Sec-
tion 4.1), and

• a hierarchical tree structure for approximately localizing simplices with remainder
(Section 4.2).

Suppose a source simplex ∆i is contained in a cubical cell S = s + ρSQ and target
point τk ∈ T = t+ ρTQ, where R =

√
DρS

√
DρT = R(S)R(T ) satisfies

(
Re

m

)m

≤ ǫ. (25)

Then for σ ∈ ∆i,

exp(iτTk σ) =
∑

|α|≤m

(iR)|α|

α!

(
σ − s

R(S)

)α

exp(itTσ)

(
τk − t

R(T )

)α

exp(i(τk − t)T s) + Em

where |Em| ≤ ǫ. Hence integrating over ∆i gives

∫

∆i

exp(iτTk σ)fi(σ) dσ =
∑

|α|≤m

(iR)|α|

α!
Gα(d,∆i, fi, t)

(
τk − t

R(T )

)α

exp(i(τk − t)T s) + Fm

(26)
where |Fm| ≤ ǫ

∫
|fi|. We define the M -vector G of exponential-polynomial moments of

polynomial f on d-dimensional simplex ∆ by

Gα(d,∆, f, t) =

∫

∆

(
σ − s

R(S)

)α

exp(itTσ)f(σ) dσ. (27)

The source center s and ambient dimension D are omitted from G for simplicity.

4.1. Exponential-polynomial moments Gα

The following recursive procedure computes exponential-polynomial moments Gα for
all multiindices α with |α| ≤ m:

1. If d = 0, compute the pointwise moments directly (Section 3.2).
2. If 0 < d < D, extract the perpendicular variation (Section 4.1.1).
3. If the parallel variation is small, compute the moments by numerical quadrature

(Section 4.1.2).
4. Otherwise, reduce the simplex dimension d to d − 1 by a dimensional recurrence

(Section 4.1.3).
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4.1.1. Extracting the perpendicular variation

If the simplex ∆ has positive dimension and codimension (0 < d < D), then moments
(27) are simplified by extracting the part of the target vector t which is perpendicular
to ∆. Let the D × d full-rank matrix V have columns vi − v0 ∈ RD. Parametrize the
simplex ∆ by σ = v0 + V θ, where θ varies over the standard d-dimensional simplex

∆0 =

{
(θ1, . . . , θd) | θi ≥ 0,

d∑

i=1

θi ≤ 1

}
.

Then the volume of ∆ is |∆| =
√
det(V TV ) [27] and the affine hyperplane H containing

∆ is
H =

{
v0 + V θ | θ ∈ Rd

}
.

Exponential-polynomial moments (27) become

Gα(d,∆, f, t) = |∆|
∫

∆0

exp(itT (v0 + V θ))

(
v0 + V θ − s

R(S)

)α

f(v0 + V θ) dθ

= |∆| exp(itT⊥v0)
∫

∆0

exp(itT‖ (v0 + V θ)

(
v0 + V θ − s

R(S)

)α

f(v0 + V θ) dθ

= exp(itT⊥v0)Gα(d,∆, f, t‖). (28)

Here t‖ = V (V TV )−1V T t is parallel to H and t = t⊥+ t‖. The perpendicular component
t⊥ = t − t‖ is in the nullspace of V T and hence factors through the integral over ∆0.
We compute the parallel moments G(d,∆, f, t‖) by numerical quadrature if the parallel
variation is small and recurrence otherwise.

4.1.2. Quadratures for small parallel variation

When ‖V T t‖‖ = ‖V T t‖ is small, the exponential factor exp(itT‖ σ) is accurately ap-

proximated on ∆ by a low-degree polynomial. If ‖V T t‖ ≤ ǫ and σ = v0 + V θ ∈ ∆ then
Taylor expansion gives

exp(itT‖ σ) = exp(itT‖ v0) exp(it
T
‖ (σ − v0)) = exp(itT‖ v0)(1 + i(V T t)T θ) +O(ǫ2).

Suppose a quadrature rule

∫

∆

g(σ) dσ =

Q∑

j=1

wjg(σj) + EQ(g)

is exact (EQ(g) = 0) for the Q =
(
p+m+q+d

d

)
monomials g of degree p+m+ q. Then it

yields G with O(‖V T t‖q+1) accuracy in O(QM) work. Such rules have been extensively
developed [28]. We employ equidistant Grundmann-Moeller rules [29], which can easily
be generated in arbitrary simplex dimension and degree of exactness. Many other simplex
rules, with desirable properties such as positive weights and higher order, are available
for special cases [30, 31, 32].

Specification of equidistant rules also suggests equidistant Lagrange representation,
which parametrizes degree-p polynomials f on a d-dimensional simplex ∆ by P =

(
p+d
d

)

values f(σα) at equidistant points σα ∈ ∆ (Fig. 8). Equidistant Lagrange representation
simplifies common linear operations such as
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• evaluation at the Q equidistant points of Grundmann-Moeller rules,

• transformation to the standard simplex ∆0,

• differentiation,

• restriction to simplex boundaries,

• multiplication by shifted monomials (σ − s)α.

Representation by values also permits the approximate evaluation of Fourier transform
(1) when the densities fi are arbitrary continuous functions, rather than polynomials.3

p = 3p = 1 p = 2 p = 4

Figure 8: P =
(

p+d
d

)

= 2, 3, 4, 5, 3, 6, 10, 15 equispaced points for the representation of polynomials of
degree p = 1 through 4 on simplices of dimension d = 1 and 2.

3The degree p of our polynomials is typically less than 6, reducing inaccuracy due to the Runge
phenomenon [33]. It would be straightforward to employ better-conditioned evaluation points if desired.
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4.1.3. Dimensional recurrences for large parallel variation

If ‖V T t‖ > ǫ, then we compute the parallel moments

Gα(d,∆, f, t‖) =

∫

∆

exp(itT‖ σ)

(
σ − s

R(S)

)α

f(σ) dσ (29)

via dimensional recurrences, derived from the Gauss formula for multidimensional inte-
gration by parts. Given a vector h parallel to the d-dimensional affine hyperplane H
containing ∆, and a smooth function ϕ on RD, the Gauss formula reads

∫

∆

hT∇ϕ(σ) dσ =

∫

∂∆

hTnϕ(σ) dσ.

The boundary ∂∆ = ∪d
j=0∂j∆ and outward unit normal n of ∆ are defined relative to

H (Fig. 9). The Gauss formula leads to efficient recurrences (f and g), which reduce
moments in dimension d to dimension d− 1 and terminate at d = 0.
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Figure 9: Vertices vj and outward unit normals nj relative to the affine hyperplane H, for a simplex ∆
with d = 2 in ambient dimension D = 3.
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The f recurrence. For the triple product e(σ)f(σ)g(σ) = exp(itTσ)f(σ)(σ − s)α, where
∇e(σ) = ite(σ) and g(σ) = ((σ − s)/R(S))α, the Gauss formula gives

∫

∆

hT∇(efg) =

∫

∂∆

hTnefg

=

∫

∆

ihT tefg + ehT∇fg + efhT∇g. (30)

Solving Eq. (30) for
∫
∆
efg gives

∫

∆

efg =
1

ihT t

[∫

∂∆

hTnefg −
∫

∆

ehT∇fg −
∫

∆

efhT∇g

]
,

and setting z = −ih/hT t gives

∫

∆

e((I + zT∇)f)g =

∫

∂∆

zTn efg −
∫

∆

efzT∇g. (31)

Since Eq. (31) holds for all polynomials f and g, it also holds with f replaced by the
degree-p polynomial4

f1 =
(
I + zT∇

)−1
f =

(
I − zT∇+ (zT∇)2 − · · ·+ (−1)p(zT∇)p

)
f,

which satisfies (I + zT∇)f1 = f . Thus Eq. (31) yields

∫

∆

efg =

∫

∂∆

zTn ef1g −
∫

∆

ef1z
T∇g =

∫

∂∆

zTn ef1g0 +

∫

∆

ef1g1 (32)

where g0 = g and gr = (−zT∇)rg is a polynomial of degree ≤ m − r for r ≥ 1. Since
gm+1 = 0, iterating Eq. (32) eliminates the integrals over ∆ and yields

∫

∆

efg =

∫

∂∆

zTn e (f1g0 + f2g1 + · · ·+ fm+1gm) (33)

where fr = (I+zT∇)−rf for r ≥ 1. Each gr moment is a linear combination of moments
of fr+1 with order m − r. Thus Eq. (33) expresses order-m moments of a degree-p
polynomial f over a d-dimensional simplex ∆, as linear combinations of order-(m− r)
moments of m+1 degree-p polynomials fr+1 over d+1 lower-dimensional simplices ∂k∆.
Here the boundary ∂∆ = ∪d

k=0∂k∆ of ∆ in H consists of d + 1 oriented simplices of
dimension d− 1 given by (Fig. 9)

∂k∆ =




∑

j 6=k

θjvj | θj ≥ 0,
∑

j 6=k

θj = 1



 . (34)

4On the P -dimensional space of polynomials of degree ≤ p, the operator zT∇ satisfies (zT∇)p+1 = 0.
Hence all eigenvalues of zT∇ are 0, I + zT∇ is invertible, and the geometric series terminates.
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To make Eq. (33) more explicit, define the D-vector of moment shift operators E =
(E1, . . . , ED) on CM satisfying

zT∇
(
σ − s

R(S)

)α

= zTE

(
σ − s

R(S)

)α

=
1

R(S)

D∑

j=1

zjαj

(
σ − s

R(S)

)α−ej

and

zTEGα(d,∆, f, t) =
1

R(S)

D∑

j=1

zjαjGα−ej (d,∆, f, t).

Then Eq. (33) becomes the f recurrence

G(d,∆, f, t) =

d∑

k=0

zTnk(G(d− 1, ∂k∆, f1, t)− zTEG(d− 1, ∂k∆, f2, t)

+ (−zTE)2G(d− 1, ∂k∆, f3, t) + · · ·
+ (−zTE)mG(d− 1, ∂k∆, fm+1, t))

=

d∑

k=0

zTnk

m∑

r=0

(−zTE)rG(d− 1, ∂k∆, fr+1, t). (35)

The g recurrence. Interchanging the roles of f and g in Eq. (31) leads to a shorter but
more complicated recurrence

∫

∆

efg =

∫

∂∆

zTn e
(
g1f0 + g2f1 + · · ·+ gp+1fp

)
(36)

if p < m. Here
gr = (I + zT∇)−rg, f r = (−zT∇)rf.

Each gr+1 moment is a linear combination of moments of f r with orderm. Thus Eq. (36)
expresses order-m moments of a degree-p polynomial f over a d-dimensional simplex ∆,
as linear combinations of order-m moments of p+ 1 degree-(p− r) polynomials f r over
the d+1 lower-dimensional simplices ∂k∆ of Eq. (34). Eq. (36) becomes the g recurrence

G(d,∆, f, t) =

d∑

k=0

zTnk((I + zTE)−1G(d− 1, ∂k∆, f0, t)

+ (I + zTE)−2G(d− 1, ∂k∆, f1, t) + · · ·
+ (I + zTE)−p−1G(d− 1, ∂k∆, fp, t))

=

d∑

k=0

zTnk

p∑

r=0

(I + zTE)−r−1G(d− 1, ∂k∆, f r, t). (37)

Here I + zTE is invertible since all eigenvalues of E are 0. Algorithm 3 computes G by
quadrature and recurrence.
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Algorithm 3 Computation of G(d,∆, f, t) by quadrature and recurrence.

if d = 0

G(d,∆, f, t) =
(

σ−s
R(S)

)α
exp(itTσ)f

else if ‖V T t‖ ≤ ǫ
Generate quadrature rule of order p+m+ q
Approximate G(d,∆, f, t) to order O(ǫq+1) by quadrature

t⊥ = 0
if 0 < d < D

Extract parallel variation t‖ = V (V TV )−1V T t
t = t‖

if p < m
z = −it/‖t‖2
f0 = f
G = 0
for r = 0 . . . p

for k = 0 . . . d
G = G+ zTnk(I + zTE)−r−1G(d− 1, ∂k∆, f r, t)

f r+1 = (−zT∇)f r

else
z = −it/‖t‖2
f0 = f
G = 0
for r = 0 . . .m

fr+1 = (I + zT∇)fr
for k = 0 . . . d

G = G+ zTnk(−zTE)rG(d− 1, ∂k∆, fr+1, t)
G(d,∆, f, t) = exp(itT⊥v0)G
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Direct evaluation. Our dimensional recurrences provide an O(N2) direct algorithm for
evaluating the piecewise-polynomial Fourier transform (1):

f̂(τk) =
N∑

i=1

∫

∆i

exp(iτTk σ)fi(σ) dσ =
N∑

i=1

G0(d,∆i, fi, τk).

The f recurrence (35) expresses eachG0(d,∆, f, t) in terms of lower-dimensional moments

of another polynomial f1 =
(
I + zT∇

)−1
f :

G0(d,∆, f, t) =

d∑

k=0

zTnk G0(d− 1, ∂k∆, f1, t). (38)

The recurrence (38) terminates when d = 0, as ∆ becomes a point. Consequently, direct
evaluation of the piecewise-polynomial Fourier transform (1) costs (d + 1)! pointwise
Fourier transforms (3).

4.1.4. Cost and stability of Algorithm 3

Let W (m, p, d,D) be the cost of computing M moments G(d,∆, f, t) of a degree-p
polynomial f on a d-dimensional simplex ∆ ⊂ RD. If p < m, the g recurrence (37)
reduces d to d − 1 in p P × P and M × M matrix-vector products. If p ≥ m, the f
recurrence (35) reduces d to d − 1 in m P × P and M × M matrix-vector products.
Accordingly, the total cost W (m, p, d,D) is bounded by

W (m, p, d,D) ≤ (d+ 1)min(m, p)(P 2 +M2 +W (m, p, d− 1, D))

≤ O((d + 1)!min(m, p)d(P 2 +M2))

≤ O(min(m, p)d(p2d +m2D)).

This bound overestimates the cost of computing G by Algorithm 3, since many branches
terminate with quadrature.5

When z = −ih/hT t‖ is small, the terms in the formally infinite sum defining (I +
zT∇)−1 rapidly decrease to zero, stabilizing both f and g recurrences. The choice h = t‖
makes z = −it‖/‖t‖‖2 small when t‖ is large. When t‖ is small, the recurrences can be
unstable but numerical quadrature takes up the slack (Section 4.1.2).

4.2. Hierarchical tree structures

Geometric objects such as simplices can be localized into hierarchical tree structures
(Section 2.6) by approximation and remaindering (Fig. 10).

Approximation sorts simplices which overlap the boundaries of a cubical cell SlI .
We define a simplex ∆ to fit within ǫ of a cell s + ρQ if each vertex v of ∆ satisfies
|vj − sj | ≤ (1 + ǫ)ρ for j = 1 to D. All simplices are initially assigned to the root cell
S00. Then as the tree is constructed, simplices are sorted to fit within ǫ of child cells
whenever possible.

5Since E and zT∇ are essentially tensor products, M2 can be replaced by mM logM =
O(mD+1 logm) = O(logD+1 ǫ).
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Remaindering treats simplices which do not fit within ǫ of any leaf cell. The piecewise-
polynomial algorithm assigns such simplices to the smallest possible nonleaf source child
cell, and folds them into the coefficients at each level. After each split-merge step, source
simplices ∆i remaining in each source parent cell Sl−1,I contribute to the coefficient
vector for each target child cell TL−l+1,K via

Cα(Sl−1,I , TL−l+1,K) = Cα(Sl−1,I , TL−l+1,K) +
(iR)|α|

α!

∑

∆i⊂Sl−1,I

Gα(d,∆i, fi, tL−l+1,K).

The cost of the algorithm is unaffected by remaindering if the number of remaindered
simplices is O(1). (Remaindered simplices can also be subdivided by the algorithm of
[21]).
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(a) Simplices

(1 + ǫ)ρ

ρ

R =
√
2ρ

(b) Level 0 approximation

S12 S13

S11S10

∆0 ∆1

∆2

(c) Level 1 remaindering (d) Level 2

(e) Level 3 (f) Level 4

Figure 10: Hierarchical tree structure with d = D = 2, L = 4 levels, approximation and remaindering.
On level 0, a simplex fits within ǫ = 0.05 of the source root cell. On level 1, simplex ∆i is remaindered
into source cell S1i and ∆1 fits within ǫ into S11.
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4.3. The piecewise-polynomial butterfly algorithm

Algorithm 4 evaluates the Fourier transform of NS polynomials of degree p on NS

simplices in radius R(S), at NT targets τk in radius R(T )). The number of tree levels L
satisfies 2−LR(S)R(T ) ≤ R where (Re/m)m ≤ ǫ. The algorithm proceeds in four steps
with a total cost of O(L2DLM2 +NSM

2 +NTM):

1. L-level hierarchical tree structures containing source simplices (within ǫ) and target
points are constructed. Cost O(2DL + LNS + LNT ) by Algorithm 1.

2. Dimensional recurrence and quadrature compute M2DL source-local coefficients,
which represent the source simplices in 2DL source leaf cells to the target root cell.
Cost O(NSM

2) by Algorithm 3.

3. A butterfly scheme with L2DL split-merge steps transforms source-local to target-
local coefficients, which represent all the source simplices to 2DL target leaf cells.
Remaindered simplices contribute at each step. Cost O(L2DLM2).

4. An M -term expansion is evaluated at each of NT targets. Cost O(NTM).
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Algorithm 4 A piecewise-polynomial butterfly algorithm

Step 1 - Localization

Fit source simplices ∆i and targets τk within ǫ into leaf cells of L-level trees SL and TL

Step 2 - Compute source-local coefficients by Algorithm 3

for I = 0 . . . 2DL − 1
S = SLI

s = sLI

T = T00

t = t00
for |α| ≤ m

Cα(S, T ) =
i|α|

α!

∑
∆i⊂S

∫
∆i

(
σ−s
R(S)

)α
exp(itTσ)fi(σ) dσ

Step 3 - Butterfly scheme with remainder

for l = L . . . 1

for I = 0 . . . 2D(l−1) − 1
S = Sl−1,I

s = sl−1,I

J = 2DI

for K = 0 . . . 2D(L−l) − 1
T = TL−l,K

t = tL−l,K

for k = 0 . . . 2D − 1
T1 = TL−l+1,2DK+k

t1 = tL−l+1,2DK+k

C(S, T1) =
∑2D−1

i=0 A(sl,J+i − s)B(sl,J+i, t1 − t)C(Sl,J+i, T )
for ∆i ⊂ S

for |α| ≤ m

Cα(S, T1) = Cα(S, T1) +
(iR)|α|

α!

∫
∆i

(
σ−s
R(S)

)α
exp(itT1 σ)fi(σ) dσ

Step 4 - Evaluate target-local expansions

for K = 0 . . . 2DL − 1
S = S00

s = s00
T = TLK

t = tLK

for τk ∈ T

f̂(τk) = exp(i(τk − t)T s))
∑

|α|≤mCα(S, T )
(

τk−t
R(T )

)α
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5. Numerical results

The piecewise-polynomial butterfly algorithm (Algorithm 4) has been implemented
in Fortran 77, for simplices of arbitrary dimension d in arbitrary ambient dimension D.
Multidimensional arrays are mapped to one-dimensional arrays. Linear operators such as
differentiation, integration and interpolation of polynomials are applied by matrix-vector
multiplication with precomputed matrices. All numerical results were obtained with the
gfortran compiler on a single Intel Xeon E5-2670 v2 processor with 4 GB of memory.
The accuracy and efficiency of the implementation have been verified on a gallery of
test cases including simplices of dimensions d = 0 (points) through d = 2 (triangles) in
ambient dimensions D = 1 through D = 3. We report CPU times

• Ts for Algorithm 4 with s = 3, 6, 9 and 12-digit accuracy,

• Td for direct evaluation (Section 4.1.3),

• TF for a standard NF -point complex D-dimensional FFT [34]. (The FFT timings
TF are monotonized by choosing NF to be the smallest product of powers of 2, 3
and 5 which is larger than N .)

5.1. Discrete points in RD

Algorithm 4 evaluates the pointwise Fourier transform (3) when the source simplex
dimension d = 0. We tested it onN random source and target points in radiiR(S) = O(1)
and R(T ) = O(N1/D). The expected N logN scaling is clearly demonstrated by CPU
times plotted in Fig. 11. In dimensions D = 1 (Table 3) and D = 2 (Table 4), Algorithm
4 is much faster than direct evaluation, for all problem sizes N and maximum twelve-digit
accuracy. In dimension D = 3 (Table 5), it is faster for all problem sizes N at six-digit
accuracy, while nine-digit accuracy breaks even at N = 1728.

Compared to the classical FFT for NF equidistant points, the cost of Algorithm 4
is asymptotically within two orders of magnitude for six-digit accuracy. Doubling the
accuracy multiplies the cost by roughly 2D in D dimensions.
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Figure 11: Direct and butterfly CPU time required to obtain 3, 6, 9 and 12-digit accuracy, vs. NT = NS

targets and 729 ≤ NS ≤ 46656 source points with d = 0 in ambient dimension (left to right) 1 ≤ D ≤ 3.
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Table 3: CPU times with d = 0 and D = 1.

N TF Td T3 T6 T9 T12

729 0.00006 0.094 0.003 0.003 0.005 0.007
5832 0.00050 6.001 0.026 0.036 0.045 0.074
10935 0.00105 20.933 0.053 0.070 0.091 0.110
16038 0.00148 44.571 0.074 0.101 0.159 0.196
21141 0.00195 77.911 0.109 0.149 0.194 0.234
26244 0.00252 120.007 0.122 0.170 0.232 0.352
31347 0.00299 171.008 0.159 0.203 0.320 0.391
36450 0.00350 231.127 0.206 0.289 0.356 0.460
41553 0.00386 299.677 0.230 0.297 0.390 0.503
46656 0.00452 380.333 0.237 0.329 0.428 0.691

Table 4: CPU times with d = 0 and D = 2.

N TF Td T3 T6 T9 T12

729 0.00011 0.096 0.006 0.017 0.031 0.064
2304 0.00038 0.951 0.022 0.049 0.108 0.244
4761 0.00078 4.107 0.039 0.096 0.249 0.392
8100 0.00152 11.773 0.073 0.198 0.379 0.827
12321 0.00234 27.512 0.103 0.308 0.546 1.260
17424 0.00322 54.663 0.140 0.447 0.843 1.577
23409 0.00437 99.085 0.179 0.520 1.079 1.921
30276 0.00596 165.424 0.241 0.669 1.316 2.300
38025 0.00728 260.633 0.318 0.843 1.603 3.505
46656 0.00898 394.457 0.343 1.051 1.920 4.339

Table 5: CPU times with d = 0 and D = 3.

N TF Td T3 T6 T9 T12

729 0.00017 0.119 0.024 0.107 0.271 0.480
1728 0.00044 0.600 0.059 0.232 0.604 1.455
3375 0.00087 2.228 0.077 0.541 1.421 3.165
5832 0.00156 6.742 0.199 0.869 2.414 6.492
9261 0.00271 16.878 0.258 1.668 3.903 9.729
13824 0.00388 37.682 0.305 1.977 5.956 13.989
19683 0.00586 77.079 0.356 3.094 8.576 26.750
27000 0.00806 143.503 0.616 4.295 11.370 31.995
35937 0.00996 254.963 0.941 4.897 16.429 37.301
46656 0.01377 429.199 1.073 6.510 17.947 44.838
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5.2. Line segments in RD

We tested the piecewise-polynomial butterfly algorithm (Algorithm 4) on NS ran-
domly placed line segments in RD, setting each fi to a random cubic polynomial and
evaluating the piecewise-polynomial Fourier transform f̂(τk) given by Eq. (4) at N ran-
dom targets τk ∈ RD. Here N = 4NS is the total number of degrees of freedom in the
input. Fig. 12 clearly demonstrates N logN scaling.

The algorithm runs much faster than direct evaluation (Tables 6–8). For twelve-digit
accuracy, it outpaces direct evaluation for every problem size N , by several orders of
magnitude for large N . Since the number of degrees of freedom is larger, the algorithm
compares favorably with the standard uniform FFT: For twelve-digit accuracy in D ≤ 2,
or six-digit accuracy in D = 3, it runs as fast as 100 FFTs. As in the pointwise case,
doubling the accuracy multiplies the cost by roughly 2D in D dimensions.
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Figure 12: Direct and butterfly CPU time required to obtain 3, 6, 9 and 12-digit accuracy, vs. NT = 4NS

targets and 729 ≤ NS ≤ 46656 source segments with d = 1 in ambient dimension (left to right)
1 ≤ D ≤ 3.
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Table 6: CPU times with d = 1 and D = 1.

N TF Td T3 T6 T9 T12

2916 0.00026 1.027 0.004 0.005 0.007 0.011
23328 0.00221 65.436 0.038 0.049 0.063 0.094
43740 0.00428 231.695 0.073 0.101 0.130 0.156
64152 0.00645 496.861 0.110 0.150 0.208 0.265
84564 0.00850 859.472 0.152 0.198 0.255 0.323
104976 0.01064 1324.053 0.177 0.243 0.309 0.471
125388 0.01260 1888.779 0.230 0.276 0.369 0.525
145800 0.01416 2546.873 0.263 0.373 0.481 0.582
166212 0.01738 3326.878 0.298 0.418 0.539 0.646
186624 0.01777 4176.714 0.334 0.463 0.586 0.704

Table 7: CPU times with d = 1 and D = 2.

N TF Td T3 T6 T9 T12

2916 0.00047 1.025 0.008 0.021 0.038 0.071
9216 0.00156 10.328 0.026 0.068 0.125 0.238
19044 0.00352 44.402 0.040 0.124 0.256 0.466
32400 0.00664 128.382 0.083 0.226 0.490 0.721
49284 0.01016 296.955 0.138 0.351 0.659 1.243
69696 0.01328 592.824 0.191 0.490 0.974 1.618
93636 0.01836 1072.379 0.232 0.669 1.324 2.315
121104 0.02344 1797.046 0.262 0.892 1.686 2.870
152100 0.03125 2834.051 0.372 0.988 2.123 3.979
186624 0.03516 4268.295 0.416 1.273 2.607 4.947

Table 8: CPU times with d = 1 and D = 3.

N TF Td T3 T6 T9 T12

2916 0.00071 1.068 0.018 0.098 0.289 0.580
6912 0.00180 6.008 0.045 0.281 0.781 1.631
13500 0.00352 23.203 0.096 0.529 1.445 3.262
23328 0.00703 69.483 0.148 0.932 2.595 5.633
37044 0.01055 175.814 0.191 1.381 4.410 8.756
55296 0.01641 393.930 0.365 2.260 6.171 13.045
78732 0.02461 799.237 0.436 2.729 9.301 24.827
108000 0.03398 1508.203 0.520 4.270 11.570 29.903
143748 0.04336 2679.131 0.912 5.241 18.248 41.703
186624 0.05273 4530.735 1.047 6.006 21.025 49.415
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5.3. Triangles in RD

We tested the piecewise-polynomial butterfly algorithm (Algorithm 4) on NS ran-
domly placed triangles in RD, setting each fi to a random cubic polynomial and eval-
uating the piecewise-polynomial Fourier transform f̂(τk) given by Eq. (5) at N random
targets τk ∈ RD. Here N = 10NS is the total number of degrees of freedom in the input.

The algorithm runs much faster than direct evaluation (Tables 9 and 10). For six-
digit accuracy, it outpaces direct evaluation by three orders of magnitude when N ≥
47610. It requires less CPU time than 10 FFTs to obtain three-digit accuracy in ambient
dimensions D = 2 and D = 3. The CPU time clearly scales as O(N logN) (Fig. 13).
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Table 9: CPU times with d = 2 and D = 2.

N TF Td T3 T6 T9 T12

7290 0.00131 5.946 0.012 0.029 0.060 0.103
23040 0.00449 59.958 0.031 0.093 0.180 0.292
47610 0.00933 256.398 0.075 0.177 0.349 0.603
81000 0.01758 741.004 0.120 0.302 0.613 0.941
123210 0.02578 1712.487 0.145 0.457 0.958 1.530
174240 0.03398 3430.010 0.228 0.673 1.330 2.064
234090 0.04961 6202.242 0.270 0.794 1.604 2.696
302760 0.06641 10374.852 0.408 1.113 2.186 3.469
380250 0.08438 16010.604 0.512 1.312 2.896 4.312
466560 0.10000 24149.947 0.562 1.766 3.125 5.090

Table 10: CPU times with d = 2 and D = 3.

N TF Td T3 T6 T9 T12

7290 0.00180 5.923 0.023 0.117 0.391 0.652
17280 0.00469 34.358 0.059 0.312 0.812 1.930
33750 0.00937 132.627 0.090 0.672 1.719 3.762
58320 0.01641 400.494 0.180 0.922 3.059 6.414
92610 0.02813 994.472 0.230 1.297 5.059 9.566
138240 0.04219 2231.280 0.297 2.098 6.824 15.309
196830 0.06094 4623.198 0.598 3.051 8.539 23.145
270000 0.08965 8701.831 1.044 3.691 13.785 44.735
359370 0.11660 15547.841 1.237 4.405 15.828 55.374
466560 0.15469 26300.953 1.489 9.431 27.575 66.321
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Figure 13: Direct and butterfly CPU time required to obtain 3, 6, 9 and 12-digit accuracy, vs. NT = 10NS

targets and 729 ≤ NS ≤ 46656 source triangles with d = 2 in ambient dimension (left to right) 2 ≤ D ≤ 3.
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6. Extensions and applications

The piecewise-polynomial butterfly algorithm (Algorithm 4) could be accelerated by
changing expansion basis functions, extended to the application of Galerkin matrices,
and generalized to evaluate Laplace and Gauss transforms.

6.1. Changing basis functions

Butterfly algorithms are often accelerated by changing basis functions. For example,
replacing Taylor by Chebyshev expansions gives equal accuracy with fewer terms, leading
to a factor of 2 speedup in the one-dimensional pointwise butterfly algorithm of [4].

Implicit change of basis functions can be implemented via a linear-algebraic viewpoint
[35]: factorize the matrix Uki = exp iτTk σi into U = EWLWL−1 · · ·W1F. Here F sums
basis functions over sources to compute coefficients and E evaluates expansions at targets.
Sparse block matrices Wp split and merge the coefficients. Rank-revealing factorizations
ofWp, such as the singular value or interpolative decompositions, can save computational
effort. Interpolative decompositions factorizeWp = XpYpZp, withXp and Zp submatrices
of Wp, and Yp small and well-conditioned. They implement a change of basis

U = (EXLYL)ZLXL−1YL−1 · · ·Z2X1(Y1Z1F ),

which implicitly computes coefficients with Y1Z1F , splits and merges with small matrices
ZpXp−1 and Yp−1, and evaluates expansions with EXLYL.

6.2. Galerkin matrices

Algorithm 4 extends to the fast application of Galerkin matrices [36]

f̂k =

∫

Λk

gk(τ)

N∑

i=1

∫

∆i

exp(iτT σ)fi(σ) dσ dτ, (39)

where Λk ⊂ RD are d-dimensional target simplices and gk are degree-p polynomials. The
low-rank kernel approximation (13) separates the variables τ and σ with controllable error
Fm:

f̂k =
∑

|α|≤m

∫

Λk

(
τ − t

R(T )

)α

exp(i(τ − t)T s)gk(τ) dτ

N∑

i=1

(iR)|α|

α!
exp(itT s)

∫

∆i

(
σ − s

R(S)

)α

exp(itT (σ − s))fi(σ) dσ + Fm.

Summing over i produces source-local coefficients (Algorithm 4, Step 2). The butterfly
scheme (Step 3) converts to target-local expansions. Evaluation (Step 4) is replaced by
moment evaluation (Algorithm 3), with sources replaced by targets.

The algorithm just described requires source and target simplices to satisfy a slightly
more restrictive version of inequality (12):

|(τ − t)T (σ − s)| ≤ R where

(
Re

m

)m

≤ ǫ
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whenever S is a source cell with center s, T is a target cell with center t, τ ∈ Λk ⊂ T ,
and σ ∈ ∆j ⊂ S. Large remaindered simplices above the middle level L/2 in both source
and target space could violate this condition. Simplex subdivision as in [21] removes this
restriction by making simplices smaller.

6.3. Laplace and Gauss transforms

Algorithm 4 extends to evaluate the Laplace transform

f̃(τk) =

N∑

i=1

fi exp(−τTk σi).

The exponential kernel is approximated by multidimensional Taylor expansion

exp(−tT s) =

∞∑

n=0

(−1)n
(∑D

j=1 tjsj

)n

n!
=
∑

α≥0

(−1)|α|

α!
tαsα.

The error bound (8) is invariant under rotation in the complex plane, so the error is
bounded by (Re/m)m as long as |tT s| ≤ R. Accordingly, our butterfly algorithm also
approximates the piecewise-polynomial Laplace transform

f̂k =

∫

Λk

gk(τ)
N∑

i=1

∫

∆i

exp(−τTσ)fi(σ) dσ dτ (40)

and generalizes the one-dimensional pointwise algorithms of [37, 38, 39].
The pointwise Gauss transform is given by

f̂(τk) =

N∑

i=1

exp(−‖τk − σi‖2)fi, 1 ≤ k ≤ N,

where ‖‖ is the Euclidean norm. Since

exp(−‖τk − σi‖2) = exp(−‖τk‖2) exp(2τTk σi) exp(−‖σi‖2),

the Gauss transform is a pre- and post-processed Laplace transform. Thus our butterfly
algorithm can approximate the piecewise-polynomial Gauss transform

f̂k =

∫

Λk

gk(τ)

N∑

i=1

∫

∆i

exp(−‖τ − σ‖2)fi(σ) dσ dτ (41)

and generalize the pointwise algorithms of [40, 41, 42, 43, 44] to the multidimensional
piecewise-polynomial setting. 6

6The only previous piecewise-polynomial Gauss transform we are aware of is the 2D piecewise-cubic
algorithm of [45].
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