A butterfly algorithm

for the geometric nonuniform FFT

John Strain

Mathematics Department

UC Berkeley

February 2013

FAST FOURIER TRANSFORMS

Standard pointwise FFT evaluates

$$\widehat{f}(k) = \sum_{j=1}^{n} e^{2\pi i k j/n} f_j$$
 $|k| \le n/2$ $O(n^{d+1}) \to O(n^d \log n)$

with rigid algebraic recursion for equidistant points

Multidimensional pointwise nonuniform NUFFT evaluates

$$\widehat{f}(t_k) = \sum_{j=1}^{N} e^{it_k^T s_j} f_j \qquad 1 \le k \le N \qquad O(N^2) \to O(N \log N)$$

via low-rank expansion and butterfly recursion

Geometric GNUFFT adds dimensional recursion for

$$< g_k \chi_{T_k}, \widehat{f}> = \int_{T_k} g_k(t) \sum_{j=1}^N \int_{S_j} \mathrm{e}^{\mathrm{i} t^T s} f_j(s) \, \mathrm{d} s \, \mathrm{d} t$$

with N polynomials g_k , f_j on simplices T_k , S_j in \mathbb{R}^D

OUTLINE

Low-rank expansions separate variables

enable fast local interactions

Butterfly algorithm propagates information between scales

simultaneously merge sources and focus targets

New dimensional recursion simplifies matrix elements \widehat{f}_{kj}

- exactly evaluated by fast low-rank expansion
- gives direct algorithms as well as fast algorithms

LOW-RANK EXPANSION

Complex exponential Taylor series

$$e^z = \sum_{\alpha=0}^m \frac{z^{\alpha}}{\alpha!} + E_m, \qquad |E_m| \le \left(\frac{|z|e}{m}\right)^m$$

Approximates D-dimensional clustered nonuniform FFT

$$\widehat{f}(t_k) = \sum_{j=1}^{N} e^{it_k^T s_j} f_j = \sum_{|\alpha| \le m} t_k^{\alpha} \left(\frac{i^{\alpha}}{\alpha!} \sum_{j=1}^{N} f_j s_j^{\alpha} \right) + E_m = \sum_{|\alpha| \le m} C_{\alpha} t_k^{\alpha} + E_m$$

$$|E_m| \le FD \left(\frac{Re}{m} \right)^m \qquad F = \sum_j |f_j| \qquad |t_k^T s_j| \le R$$

Fast algorithm for clustered interactions:

- form $O(m^D)$ moments C_{α} of N sources s_j
- evaluate $O(m^D)$ -term series $\widehat{f}(t_k)$ at N targets t_k
- total cost $O(Nm^D) = O(N \log \epsilon)$ for accuracy ϵ
- assuming all sources and targets have $|t_k^T s_j| \le R = O(1)$

LOCALIZE

Usually $|t_k^T s_j| = O(N)$ is not bounded by a constant R

Instead $|s_i| = O(1)$ and $|t_k| = O(N)$ or vice versa so R = O(N)

Shift to centers τ and σ of intervals T and S

$$e^{it_k^T s_j} = e^{i\tau^T \sigma} e^{i(t_k - \tau)^T \sigma} e^{i(t_k - \tau)^T (s_j - \sigma)} e^{i\tau^T (s_j - \sigma)}$$

$$= e^{i\tau^T \sigma} e^{i(t_k - \tau)^T \sigma} \sum_{|\alpha| \le m} \frac{i^{\alpha}}{\alpha!} (t_k - \tau)^{\alpha} (s_j - \sigma)^{\alpha} e^{i\tau^T (s_j - \sigma)} + E_m$$

Accurate in Heisenberg pairs (T, S) where

$$(t_k \in T, s_j \in S) \rightarrow |(t_k - \tau)^T (s_j - \sigma)| \le R \rightarrow |E_m| \le \epsilon$$

BUTTERFLY ALGORITHM

Sort N sources into O(N) cells

Build N partial expansions, each converging at all N targets

Repeatedly split and merge shifted expansions

- split each target expansion into 2^D adjacent children
- merge 2^D adjacent source children into parent expansion
- until . . .

Evaluate 1 total expansion at targets in each target cell

SHIFT SOURCE MOMENTS

For targets in cell T near τ and sources in cell S near σ

$$\sum_{s_j \in S} e^{it_k^T s_j} f_j = e^{i(t_k - \tau)^T \sigma} \sum_{\alpha} (t_k - \tau)^{\alpha} C_{\alpha}(\sigma, \tau)$$

$$C_{\alpha}(\sigma, \tau) = e^{i\tau^{T}\sigma} \frac{i^{\alpha}}{\alpha!} \sum_{s_{j} \in S} (s_{j} - \sigma)^{\alpha} e^{i\tau^{T}(s_{j} - \sigma)} f_{j}$$

Exponential expansion shifts τ to target child cell centers $\{\xi\}$

$$C_{\alpha}(\sigma,\xi) = e^{i(\xi-\tau)^{T}\sigma} \sum_{\beta} {\beta+\alpha \choose \beta} (\xi-\tau)^{\beta} C_{\beta+\alpha}(\sigma,\tau)$$

Binomial theorem shifts $\{\sigma\}$ to source parent cell center ρ

$$C_{\alpha}(\rho,\xi) = \sum_{\sigma} \sum_{\beta < \alpha} \frac{\mathsf{i}^{\alpha-\beta}}{(\alpha-\beta)!} (\sigma-\rho)^{\alpha-\beta} C_{\beta}(\sigma,\xi)$$

Step $(S,T) \rightarrow$ (parent of S, children of T) preserves R

D-DIMENSIONAL POINTWISE NUFFT

- **0.** Organize source and target points
- into D-dimensional L-level quadtrees
- with $2^{-L}R_SR_T \leq R$ so $D(Re/m)^m \leq \epsilon$
- **1.** Build coefficients $C_{\alpha}(\sigma_L, \tau_0)$
- for leaf source cells σ_L and root target cells τ_0
- **2.** For l = 1 ... L

Recursively shift and merge coefficients to

- each child τ_l of target cell τ_{l-1} , yielding $C_{\alpha}(\sigma_{L-l+1}, \tau_l)$
- parent σ_{L-l} of each source cell σ_{L-l+1} , summing to $C_{\alpha}(\sigma_{L-l}, \tau_l)$
- 3. Evaluate expansion with coefficients $C_{\alpha}(\sigma_0, \tau_L)$
- for root source cells σ_0 and leaf target cells τ_L

POINTWISE COMPUTATIONAL KERNEL

One computational kernel

$$T_{\alpha} \leftarrow T_{\alpha} + \frac{\mathsf{i}^{\alpha}}{\alpha!} (s - \sigma)^{\alpha} \mathsf{e}^{\mathsf{i}(t - \tau)^{T}(s - \sigma)} \sum_{|\beta| \le n_{T}} (t - \tau)^{\beta} S_{\beta} \quad |\alpha| \le n_{S}$$

does all

- direct evaluation with $n_S = n_T = 0$
- coefficient building with $n_S > n_T = 0$
- expansion evaluation with $n_T > n_S = 0$

Key observation: either n_S or n_T is zero

Generalize sums over points s or t to integrals over s or t

GEOMETRIC SOURCES AND TARGETS

Points — sources, targets and densities with geometry

Points s_j , $t_k \longrightarrow d$ -dimensional simplices S_j , T_k in R^D – points, line segments, triangles, tetrahedra, . . .

Densities $f_i \longrightarrow \text{polynomials } f_i(s)$, $g_k(t)$ on simplices

Matrix elements $e^{\mathsf{i}t_k^Ts_j} \longrightarrow \mathsf{integrals}$

$$\widehat{f}_{kj} = \int_{T_k} g_k(t) \int_{S_j} e^{it^T s} f_j(s) \, ds \, dt$$

Fourier transform \longrightarrow sum of integrals

$$\widehat{f}(k) = \sum_{j=1}^{N} \widehat{f}_{kj} = \int_{T_k} g_k(t) \sum_{j=1}^{N} \int_{S_j} e^{it^T s} f_j(s) ds dt$$

GNUFFT INITIALIZATION

- Organize source and target simplices
- into D-dimensional L-level quadtrees
- where $2^{-L}R_SR_T \leq R$ and $D(Re/m)^m \leq \epsilon$

Approximate inclusion is enough

But some simplices are left behind in non-leaf cells

GNUFFT COEFFICIENTS

1. Build geometric integrated coefficients in expansion

$$\sum_{S_j \subset \sigma} \int_{S_j} e^{it^T s} f_j(s) \, ds = e^{i(t-\tau)^T \sigma} \sum_{\alpha} (t-\tau)^{\alpha} C_{\alpha}(\sigma,\tau)$$

$$C_{\alpha}(\sigma,\tau) = e^{i\tau^{T}\sigma} \frac{i^{\alpha}}{\alpha!} \sum_{S_{j} \subset S} \int_{S_{j}} (s-\sigma)^{\alpha} e^{i\tau^{T}(s-\sigma)} f_{j}(s) ds$$

Oscillatory integrands challenge quadrature schemes

Use dimensional recursion (later) to obtain exact coefficients

GNUFFT BUTTERFLY RECURSION

Almost identical to pointwise NUFFT!

- **2.** For l = 1 ... L
- a. Recursively shift and merge coefficients to
- each child τ_l of target cell τ_{l-1} , yielding $C_{\alpha}(\sigma_{L-l+1}, \tau_l)$
- parent σ_{L-l} of each source cell σ_{L-l+1} , yielding $C_{\alpha}(\sigma_{L-l}, \tau_l)$
- **b.** Add source simplices left behind on level L-l

GNUFFT EXPANSION INTEGRATION

- 3. Integrate expansion (σ_0, τ_L) over target simplices
- in each level-L target cell au_L

Dual to coefficient initialization

Use same dimensional recursion to obtain exact integrals

DIMENSIONAL RECURSION

On d-dimensional simplex S carrying polynomial p

$$F(t,d,S,p,\alpha,\sigma) = \int_{S} e^{it^{T}s} (s-\sigma)^{\alpha} p(s) ds$$

Gauss theorem integrates by parts parallel to S

$$\int_{S} q^{T} \nabla f(s) \, \mathrm{d}s = \int_{\partial S} q^{T} n f(\sigma) \, \mathrm{d}\sigma$$

Average over parallel target components $t_S \parallel S$ to get

$$F(t, d, S, p, \alpha, \sigma) = \frac{-i}{\|t_S\|^2} \left(F(t_S, d, S, t_S^T \nabla p, \alpha, \sigma) - \sum_{j=1}^D \alpha_j F(t_S, d, S, p, \alpha - e_j, \sigma) - \sum_{f=0}^d t_S^T n_f F(t_S, d - 1, \partial_f S, p, \alpha, \sigma) \right)$$

CONCLUSIONS

Geometric extension of butterfly algorithm

- exact Fourier transform of simplicial polynomials
- arbitrary dimension and codimension
- $O(N \log N \log \epsilon)$ work with accuracy ϵ

Simple speedups:

- Tabulate or approximate shift/merge operators
- Optimized compressed dimensional recursion
- Taylor expansion → Chebyshev approximation

Taylor expansion accurate on disk in complex plane

– GNUFFT evaluates geometric Laplace and Gauss transforms
 with single parametrized code