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FAST FOURIER TRANSFORMS

Standard pointwise FFT evaluates

f(k) = En: eQWikj/nfj k| <n/2 O(n%T1) = 0(n%logn)
=1

with rigid algebraic recursion for equidistant points

Multidimensional pointwise nonuniformm NUFFT evaluates
o~ N T
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Jj=1
via low-rank expansion and butterfly recursion

Geometric GNUFFT adds dimensional recursion for
< gkXTy» | >=/ g5 (1) Z/ e'" *fi(s)dsdt

with N polynomials g;, f; on simplices T, S; In RP



OUTLINE

Low-rank expansions separate variables
— enable fast local interactions

Butterfly algorithm propagates information between scales
— simultaneously merge sources and focus targets

New dimensional recursion simplifies matrix elements fkj
— exactly evaluated by fast low-rank expansion
— gives direct algorithms as well as fast algorithims



LOW-RANK EXPANSION

Complex exponential Taylor series

U zle\™
e = Z —|‘|‘Em7 |Em| < <i>
=y ! m

Approximates D-dimensional clustered nonuniform FFT
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Fast algorithm for clustered interactions:
— form O(m”) moments C, of N sources s,
— evaluate O(mP)-term series f(t;,) at N targets ¢,

— total cost O(NmP) = O(Nloge) for accuracy e
— assuming all sources and targets have |t£sj| <R=0Q)



LOCALIZE
Usually |tis;| = O(N) is not bounded by a constant R
Instead |s;| = O(1) and |t;| = O(NN) or vice versa so R = O(N)

Shift to centers - and o of intervals 7' and S
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Accurate in Heisenberg pairs (7,5) where
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BUT TERFLY ALGORITHM

Sort N sources into O(N) cells
Build N partial expansions, each converging at all N targets

Repeatedly split and merge shifted expansions
— split each target expansion into 2D adjacent children
— merge oD adjacent source children into parent expansion

—until ...

Evaluate 1 total expansion at targets in each target cell



SHIFT SOURCE MOMENTS

For targets in cell T' near = and sources in cell S near o
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Exponential expansion shifts  to target child cell centers {¢}

Ca(o,8) = ei(g_T)TJ 25: (5 —; a) (& — T)B Cﬁ‘l-oz(o'a )

Binomial theorem shifts {o} to source parent cell center p
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Step (S,T) — (parent of S, children of T') preserves R



D-DIMENSIONAL POINTWISE NUFFT

0. Organize source and target points
— into D-dimensional L-level quadtrees
— with 27 LYR¢Rr < R so D(Re/m)™ < ¢

1. Build coefficients Cy(o, )
— for leaf source cells o;, and root target cells g

2. Forl=1...L

Recursively shift and merge coefficients to

— each child 7; of target cell 7;_1, yielding Co(op_;41,7)

— parent o;_; of each source cell o7, _;4 1, summing to Cy(or_;,77)

3. Evaluate expansion with coefficients Cy(oq, 77)
— for root source cells o9 and leaf target cells 7



POINTWISE COMPUTATIONAL KERNEL

One computational kernel

To ¢ To+ (s — )%= =) ™ (4 _7)055  |a] <ng
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does all

— direct evaluation with ng =np =20

— coefficient building with ng > np =20
— expansion evaluation with np > ng =20

Key observation: either ng or nt IS zero

Generalize sums over points s or ¢t to integrals over s or t



GEOMETRIC SOURCES AND TARGETS
Points — sources, targets and densities with geometry

Points s;, {;, — d-dimensional simplices S;, T} In RP

— points, line segments, triangles, tetrahedra, ...

Densities f; — polynomials f;(s), g;(t) on simplices

- T _
Matrix elements e'’x% — integrals

frj = /Tk 91(®) |, j it f.(s) ds dt

Fourier transform — sum of integrals

r A al it!'s
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GNUFFT INITIALIZATION

0. Organize source and target simplices
— into D-dimensional L-level quadtrees
— where 27YRgR7 < R and D(Re/m)™ < ¢

Approximate inclusion is enough

But some simplices are left behind in non-leaf cells
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GNUFFT COEFFICIENTS

1. Build geometric integrated coefficients in expansion

3 / sfi(s)ds = el (- T)TUZ(t — )%Cu(a, T)
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Oscillatory integrands challenge quadrature schemes

Use dimensional recursion (later) to obtain exact coefficients

12



GNUFFT BUTTERFLY RECURSION
Almost identical to pointwise NUFFT!
2. For ([ =1...L
a. Recursively shift and merge coefficients to
— each child 7; of target cell 7;,_1, yielding Cuo(op_j4+1,7)

— parent o;_; of each source cell o;_; 1, yielding Cy(op_;, 1)

b. Add source simplices left behind on level L —
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GNUFFT EXPANSION INTEGRATION

3. Integrate expansion (og,7;) over target simplices
— In each level-L target cell 7

Dual to coefficient initialization

Use same dimensional recursion to obtain exact integrals
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DIMENSIONAL RECURSION

On d-dimensional simplex S carrying polynomial p

F(t,d,S,p,a,0) = /S et's(s — 0)p(s) ds

Gauss theorem integrates by parts parallel to S

/SqTVf(s)dSZ/aqunf(a)da

Average over parallel target components tg || S to get
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CONCLUSIONS

Geometric extension of butterfly algorithm

— exact Fourier transform of simplicial polynomials
— arbitrary dimension and codimension

— O(Nlog N loge) work with accuracy e

Simple speedups:

— Tabulate or approximate shift/merge operators
— Optimized compressed dimensional recursion

— Taylor expansion — Chebyshev approximation

Taylor expansion accurate on disk in complex plane
— GNUFFT evaluates geometric Laplace and Gauss transforms
with single parametrized code
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