A butterfly algorithm

for the geometric nonuniform FFT

John Strain
Mathematics Department
UC Berkeley
February 2013
FAST FOURIER TRANSFORMS

Standard pointwise FFT evaluates

\[\hat{f}(k) = \sum_{j=1}^{n} e^{2\pi i k j / n} f_j \quad |k| \leq n/2 \quad O(n^{d+1}) \rightarrow O(n^d \log n) \]

with rigid algebraic recursion for equidistant points

Multidimensional pointwise nonuniform NUFFT evaluates

\[\hat{f}(t_k) = \sum_{j=1}^{N} e^{i T_k s_j} f_j \quad 1 \leq k \leq N \quad O(N^2) \rightarrow O(N \log N) \]

via low-rank expansion and butterfly recursion

Geometric GNUFFT adds dimensional recursion for

\[\langle g_k \chi_{T_k}, \hat{f} \rangle = \int_{T_k} g_k(t) \sum_{j=1}^{N} \int_{S_j} e^{i T s} f_j(s) \, ds \, dt \]

with \(N \) polynomials \(g_k, f_j \) on simplices \(T_k, S_j \) in \(R^D \)
OUTLINE

Low-rank expansions separate variables
– enable fast local interactions

Butterfly algorithm propagates information between scales
– simultaneously merge sources and focus targets

New dimensional recursion simplifies matrix elements \hat{f}_{kj}
– exactly evaluated by fast low-rank expansion
– gives direct algorithms as well as fast algorithms
LOW-RANK EXPANSION

Complex exponential Taylor series

\[e^z = \sum_{\alpha=0}^{m} \frac{z^\alpha}{\alpha!} + E_m, \quad |E_m| \leq \left(\frac{|z|e}{m} \right)^m \]

Approximates \(D \)-dimensional clustered nonuniform FFT

\[\hat{f}(t_k) = \sum_{j=1}^{N} e^{it_k^T s_j} f_j = \sum_{|\alpha| \leq m} t_k^\alpha \left(\frac{i^\alpha}{\alpha!} \sum_{j=1}^{N} f_j s_j^\alpha \right) + E_m = \sum_{|\alpha| \leq m} C_\alpha t_k^\alpha + E_m \]

\[|E_m| \leq FD \left(\frac{Re}{m} \right)^m \quad F = \sum_j |f_j| \quad |t_k^T s_j| \leq R \]

Fast algorithm for clustered interactions:
- form \(O(m^D) \) moments \(C_\alpha \) of \(N \) sources \(s_j \)
- evaluate \(O(m^D) \)-term series \(\hat{f}(t_k) \) at \(N \) targets \(t_k \)
- total cost \(O(N m^D) = O(N \log \epsilon) \) for accuracy \(\epsilon \)
- assuming all sources and targets have \(|t_k^T s_j| \leq R = O(1) \)
LOCALIZE

Usually $|t_k^T s_j| = O(N)$ is not bounded by a constant R

Instead $|s_j| = O(1)$ and $|t_k| = O(N)$ or vice versa so $R = O(N)$

Shift to centers τ and σ of intervals T and S

$$e^{i t_k^T s_j} = e^{i \tau T \sigma} e^{i (t_k - \tau)^T \sigma} e^{i (t_k - \tau)^T (s_j - \sigma)} e^{i \tau T (s_j - \sigma)}$$

$$= e^{i \tau T \sigma} e^{i (t_k - \tau)^T \sigma} \sum_{|\alpha| \leq m} \frac{i^\alpha}{\alpha!} (t_k - \tau)^\alpha (s_j - \sigma)^\alpha e^{i \tau T (s_j - \sigma)} + E_m$$

Accurate in Heisenberg pairs (T, S) where

$$(t_k \in T, s_j \in S) \quad \rightarrow \quad |(t_k - \tau)^T (s_j - \sigma)| \leq R \quad \rightarrow \quad |E_m| \leq \epsilon$$
BUTTERFLY ALGORITHM

Sort N sources into $O(N)$ cells

Build N partial expansions, each converging at all N targets

Repeatedly split and merge shifted expansions
 – split each target expansion into 2^D adjacent children
 – merge 2^D adjacent source children into parent expansion
 – until . . .

Evaluate 1 total expansion at targets in each target cell
SHIFT SOURCE MOMENTS

For targets in cell \(T \) near \(\tau \) and sources in cell \(S \) near \(\sigma \)

\[
\sum_{s_j \in S} e^{it_k^T s_j f_j} = e^{i(t_k - \tau)^T \sigma} \sum_{\alpha} (t_k - \tau)^\alpha C_\alpha(\sigma, \tau)
\]

\[
C_\alpha(\sigma, \tau) = e^{i\tau^T \sigma} \frac{i^\alpha}{\alpha!} \sum_{s_j \in S} (s_j - \sigma)^\alpha e^{i\tau^T (s_j - \sigma)} f_j
\]

Exponential expansion shifts \(\tau \) to target child cell centers \(\{\xi\} \)

\[
C_\alpha(\sigma, \xi) = e^{i(\xi - \tau)^T \sigma} \sum_\beta \binom{\beta + \alpha}{\beta} (\xi - \tau)^\beta C_{\beta + \alpha}(\sigma, \tau)
\]

Binomial theorem shifts \(\{\sigma\} \) to source parent cell center \(\rho \)

\[
C_\alpha(\rho, \xi) = \sum_\sigma \sum_{\beta \leq \alpha} \frac{i^{\alpha - \beta}}{(\alpha - \beta)!} (\sigma - \rho)^{\alpha - \beta} C_\beta(\sigma, \xi)
\]

Step \((S, T) \rightarrow \) (parent of \(S \), children of \(T \)) preserves \(R \)
D-DIMENSIONAL POINTWISE NUFFT

0. Organize source and target points
 – into D-dimensional L-level quadtrees
 – with $2^{-L}R_SR_T \leq R$ so $D(Re/m)^m \leq \epsilon$

1. Build coefficients $C_\alpha(\sigma_L, \tau_0)$
 – for leaf source cells σ_L and root target cells τ_0

2. For $l = 1 \ldots L$
 Recursively shift and merge coefficients to
 – each child τ_l of target cell τ_{l-1}, yielding $C_\alpha(\sigma_{L-l+1}, \tau_l)$
 – parent σ_{L-l} of each source cell σ_{L-l+1}, summing to $C_\alpha(\sigma_{L-l}, \tau_l)$

3. Evaluate expansion with coefficients $C_\alpha(\sigma_0, \tau_L)$
 – for root source cells σ_0 and leaf target cells τ_L
POINTWISE COMPUTATIONAL KERNEL

One computational kernel

\[T_\alpha \leftarrow T_\alpha + \frac{i^\alpha}{\alpha!} (s - \sigma)^\alpha e^{i(t-\tau)T(s-\sigma)} \sum_{|\beta| \leq n_T} (t - \tau)^\beta S_\beta \quad |\alpha| \leq n_S \]

does all

– direct evaluation with \(n_S = n_T = 0 \)
– coefficient building with \(n_S > n_T = 0 \)
– expansion evaluation with \(n_T > n_S = 0 \)

Key observation: either \(n_S \) or \(n_T \) is zero

Generalize sums over points \(s \) or \(t \) to integrals over \(s \) or \(t \)
GEOMETRIC SOURCES AND TARGETS

Points \rightarrow sources, targets and densities with geometry

Points $s_j, t_k \rightarrow d$-dimensional simplices S_j, T_k in R^D — points, line segments, triangles, tetrahedra, . . .

Densities $f_j \rightarrow$ polynomials $f_j(s), g_k(t)$ on simplices

Matrix elements $e^{it^T s_j} \rightarrow$ integrals

$$\hat{f}_{kj} = \int_{T_k} g_k(t) \int_{S_j} e^{it^T s} f_j(s) \, ds \, dt$$

Fourier transform \rightarrow sum of integrals

$$\hat{f}(k) = \sum_{j=1}^{N} \hat{f}_{kj} = \int_{T_k} g_k(t) \sum_{j=1}^{N} \int_{S_j} e^{it^T s} f_j(s) \, ds \, dt$$
GNUFFT INITIALIZATION

0. Organize source and target simplices
 – into D-dimensional L-level quadtrees
 – where $2^{-L}R_SR_T \leq R$ and $D(Re/m)^m \leq \epsilon$

Approximate inclusion is enough

But some simplices are left behind in non-leaf cells
GNUFFT COEFFICIENTS

1. Build geometric integrated coefficients in expansion

\[
\sum_{S_j \subset \sigma} \int_{S_j} e^{i t^T s} f_j(s) \, ds = e^{i (t-\tau)^T \sigma} \sum_{\alpha} (t - \tau)^\alpha C_\alpha(\sigma, \tau)
\]

\[
C_\alpha(\sigma, \tau) = e^{i \tau^T \sigma} \frac{i^\alpha}{\alpha!} \sum_{S_j \subset S} \int_{S_j} (s - \sigma)^\alpha e^{i \tau^T (s-\sigma)} f_j(s) \, ds
\]

Oscillatory integrands challenge quadrature schemes

Use dimensional recursion (later) to obtain exact coefficients
GNUFFT BUTTERFLY RECURSION

Almost identical to pointwise NUFFT!

2. For $l = 1 \ldots L$

 a. Recursively shift and merge coefficients to
 – each child τ_l of target cell τ_{l-1}, yielding $C_\alpha(\sigma_{L-l+1}, \tau_l)$
 – parent σ_{L-l} of each source cell σ_{L-l+1}, yielding $C_\alpha(\sigma_{L-l}, \tau_l)$

 b. Add source simplices left behind on level $L - l$
3. Integrate expansion \((\sigma_0, \tau_L)\) over target simplices – in each level-\(L\) target cell \(\tau_L\)

Dual to coefficient initialization

Use same dimensional recursion to obtain exact integrals
DIMENSIONAL RECURSION

On d-dimensional simplex S carrying polynomial p

$$F(t, d, S, p, \alpha, \sigma) = \int_S e^{it^T s} (s - \sigma)^\alpha p(s) \, ds$$

Gauss theorem integrates by parts parallel to S

$$\int_S q^T \nabla f(s) \, ds = \int_{\partial S} q^T n_f(\sigma) \, d\sigma$$

Average over parallel target components $t_S \parallel S$ to get

$$F(t, d, S, p, \alpha, \sigma) = -\frac{i}{\|t_S\|^2} \left(F(t_S, d, S, t_S^T \nabla p, \alpha, \sigma) \right. \right.$$

$$\left. - \sum_{j=1}^{D} \alpha_j F(t_S, d, S, p, \alpha - e_j, \sigma) \right.$$

$$\left. - \sum_{f=0}^{d} t_S^T n_f F(t_S, d - 1, \partial_f S, p, \alpha, \sigma) \right)$$
CONCLUSIONS

Geometric extension of butterfly algorithm
– exact Fourier transform of simplicial polynomials
– arbitrary dimension and codimension
– $O(N \log N \log \epsilon)$ work with accuracy ϵ

Simple speedups:
– Tabulate or approximate shift/merge operators
– Optimized compressed dimensional recursion
– Taylor expansion \rightarrow Chebyshev approximation

Taylor expansion accurate on disk in complex plane
– GNUFFT evaluates geometric Laplace and Gauss transforms with single parametrized code