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ABSTRACT

We present three fast adaptive vortex methods for the 2D Eu-
ler equations. All obtain long-time accuracy at almost optimal
cost by using four tools: adaptive quadrature, free-Lagrangian
formulation, the fast multipole method and a nonstandard error
analysis. Our error analysis halves the differentiability required
of the flow, suggests an efficient new balance of smoothing pa-
rameters, and combines naturally with fast summation schemes.
Numerical experiments with our methods confirm our theoretical
predictions and display excellent long-time accuracy.

INTRODUCTION

Vortex methods solve the 2D incompressible Euler equations
in the vorticity formulation by discretizing the Biot-Savart law
with the aid of the flow map. They have been extensively stud-
ied, widely generalized and applied to complex high-Reynolds-
number flows: See (Gustafson and Sethian, 1991) for a survey.

Vortex methods involve several components; velocity eval-
uation, vortex motion, diffusion, boundary conditions and re-
gridding. In this paper, we improve the speed, accuracy and
robustness of the velocity evaluation. We eliminate the flow
map, improve the quadrature used for the Biot-Savart law, and
analyze the error in velocity evaluation in a nonstandard way,
requiring less differentiability of the flow and obtaining efficient
new parameter balances. We employ standard techniques for
the vortex motion and consider inviscid free-space flow to elimi-
nate diffusion and boundary conditions. Our approach combines
naturally with regridding and fast multipole methods.

Lagrangian vortex methods move the nodes of a fixed quadra-
ture rule with the computed fluid velocity, preserving the weights
of the rule by incompressibility. This procedure loses accuracy
when the flow becomes disorganized, motivating many regrid-
ding techniques. Even before the flow becomes disorganized,
however, obtaining high-order accuracy with fixed quadrature
weights requires smoothing of the singular Biot-Savart kernel.
Smoothing gives high-order accuracy for short times but slows

down the fast multipole method and halves the order of accuracy
relative to the differentiability of the flow.

In this paper, we discuss three fast adaptive vortex meth-
ods. We briefly review the triangulated vortex method of (Russo
and Strain, 1994) and the quadrature-based method of (Strain,
1996a), then present the smoothed method of (Strain, 1996b).
Triangulated vortex methods are robust, accurate and efficient
but limited to second-order accuracy. Quadrature-based meth-
ods compute adaptive quadratures tailored to the Biot-Savart
kernel at each time step, yielding free-Lagrangian methods which
maintain long-time high-order accuracy at asymptotically opti-
mal cost. The smoothed method couples kernel smoothing with
adaptive quadrature rules not tailored to the Biot-Savart kernel,
producing long-time high-order accuracy. The asymptotic slow-
down produced by kernel smoothing is almost eliminated by a
careful choice of smoothing functions and parameters, based on
a new error analysis of the velocity evaluation.

The structure of these methods is standard: At each time
step, the smoothed velocity is evaluated once and the vortices
are moved with an explicit multistep method. The velocity eval-
uation is nonstandard, and different for each method. We have
implemented and tested all of these new methods; the error is
small on standard test problems and the theoretical predictions
are fully verified. More complex flows are also computed.

EQUATIONS OF MOTION

The 2D incompressible Euler equations

%4 uug +vuy +pz/p = 0
v+ uvy vy +pyfp = 0
Uy +vy = 0,

involve the fluid velocity u(z,t) = (u,v), where z = (z,y), the
pressure p(z,t) and the constant density p. Taking the 2D curl
eliminates the pressure, giving the vorticity equation

W+ uwy + vwy =0



for the vorticity w = vy — uy. Let z — ®(z,¢) be the flow map,

defined by )

D(z,t) = u(P(z,1),1). (1)

Then vorticity is conserved along particle paths:
w(®(z,1),t) = w(z,0); (2)

When w has compact support, the velocity is given by the Biot-
Savart law

u(z,t) = /K(z — 2"w(z")dz'dy' (3)

where K is the Biot-Savart kernel
K(z)= R (—y,z), r*=2" 44 (4)
27T1‘2 b y’ b y -

Thus we have a closed system for ® and w, the “free-Lagrangian”
equations of motion consisting of Eq. (2) coupled with

O(z,t) = /K((I)(z,t) — 2w(Z, t)da'dy’. (5)

The Lagrangian equation of motion is derived by changing
variables z' «— ®(z',¢). The Jacobian is unity because the flow
is incompressible, so this gives a closed system for & alone:

O(z,t) = /K((I)(z,t) — (2, H))w(z', 0)ds'dy’. (6)

This requires values of w only at time ¢ = 0, and is the usual
starting point for vortex methods.

VORTEX METHODS

Lagrangian vortex methods now discretize Eq. (6), tracking
N points z;(t) = ®(z;,t) moving with the fluid velocity, starting
at t = 0 from the nodes z; of a quadrature formula with weights
w;. Suppose we use a quadrature formula

/Q(Z)dfd?/ = Zw]g(z]) + En(g)

=1
with a gth-order error bound
|En(g)] < Chlgllq (M)

for g € C9. Here h is the mesh size of the rule and the C? norm
is defined by

lglla = llgllo + > 119205 gllo-
atp=q

llgllo = max |g(=)],

Applying this quadrature to the Lagrangian equation of mo-
tion (6) gives a system of N ordinary differential equations:

A(t) =Y K (=) = z(t)w(z5,0).
J#e

The quadrature error bound Eq. (7) is infinite since K is un-
bounded, so we replace K by the smoothed kernel

Ks(z) = o5+ K(2) = f(r/6)K(z)

where * denotes convolution,

ps(z) = 6 2p(r/b)

@ is an appropriate radial “core function,” and the “shape fac-
tor” f is given by

F(r) =2z /0 so(s)ds.

CONVERGENCE THEORY

Almost all modern vortex methods use smoothing, often with
@ and the “core radius” § chosen to give high-order convergence
as the mesh size h vanishes (Chorin, 1989; Hald, 1991). This
can be guaranteed by the following conditions on ¢ and w:

/99 = 1,
/xay’@ga = 0, 1<a+pf<m-—1, (8)
< o0

[l
o € C' and p(z)=0 for |z|[>1, (9)

w € M has compact support. (10)

High-order accuracy requires smooth solutions, so condition (10)
on w is natural. Compact support in condition (9) can be weak-
ened, but it is important for efficiency. Given these conditions,
a typical convergence theorem follows.

Theorem 1 (Anderson and Greengard, 1985) Assume con-
ditions (8) through (10) are satisfied with L > 3, M > max(L +
1,m+2) and m > 4. Let § = ch® where 0 < a < 1. Suppose L
18 large enough to satisfy

L>(m—1)a
1—a

Then the computed flow map @, s satisfies
[® = Prslln < O(A™)
as h and & go to zero.

Here the discrete 2-norm is given by

1/2
lglln = (h2Z|g(Zi)|2)

where z; are the initial vortex positions, and similar bounds hold
for the computed velocity and vorticity.

This theorem allows a close to 1 and § close to O(h) only for
very smooth flows, where I, and M are large. For general flows,
Hald (1987) shows that § = O(\/ﬁ) is a good choice. Then
2m derivatives of w guarantee only O(h™) accuracy. Later, we
reduce this to m 4 1 derivatives at the cost of redefining conver-
gence.



COST AND ACCURACY
Convergence theory must be augmented by practical consid-
erations of cost and accuracy. Since each velocity value is a sum

N
wh,s(z) = ZK‘S(Zi — zj)wyw(z;,0),
=1

direct evaluation costs O(N2) work. This is prohibitively expen-
sive if the flow is complex, since many vortices are required. The
expense has been reduced by fast summation schemes (Ander-
son, 1986; Carrier, Greengard and Rokhlin, 1988; Strain, 1992)
which evaluate unsmoothed sums like

u(zi) = Z[((zi — zj)w;

to accuracy € in about O(N log €) work, by separating local from
global interactions and separating the variables. These schemes
are much faster than direct evaluation for large N.

However, this does not completely resolve the difficulty. Fast
methods cannot evaluate the smoothed interaction K(s(zi — z])
between vortices z; and z; closer than 6, because Ks # K.
Asymptotically, there are O(N52) vortices in a circle of radius
6, s0if 6 = O(\/ﬁ) there are a total of O(N252) = O(N2h) =
O(N3/2) local interactions to be evaluated directly. Thus fast
summation schemes slow down from O(N) to O(N3/2) when K
is smoothed inside a radius § = O(\/ﬁ)

Hence there is a conflict between smoothing and fast sum-
mation. If we try to make § close to O(h) to speed up fast
summation, we need many derivatives of the flow for a mod-
est order of convergence. Larger 6 is more accurate for rougher
flows, but hampers fast summation schemes. Our error analysis
resolves this conflict by allowing another O(¢) in the error.

THE PERLMAN EFFECT

A completely different obstacle to accurate calculations with
vortex methods is the “Perlman effect.” The error bound for
numerical quadrature in Eq. (7) depends on order-¢ derivatives
of the integrand

g(z/) = Ks(P(z,t) — @(Zl, t))w(z/, 0),

so the derivatives of the flow map will affect the error bound.
The flow map moves fluid particles far apart, developing large
derivatives when the flow becomes disorganized. Thus vortex
methods lose high-order accuracy in long-time calculations (Perl-
man 1985; Beale and Majda 1985). For example, Figure 1 plots
the number of correct bits in the computed velocity of a stan-
dard test case for a fourth-order vortex method. Fourth-order
accuracy—evidenced by the gain of one tick mark per line in the
figure—is attained only during a very short initial time period.
The Perlman effect has motivated much research on regrid-
ding, the idea being to avoid large derivatives of the flow map
by restarting before the flow becomes disorganized (Nordmark,
1991). Similarly, Beale (1988) has developed an iterative reweight-
ing scheme. The Perlamn effect also motivated the free-Lagrangian
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Figure 1: Correct bits in u for the Lagrangian vortex method.

vortex methods reviewed here, which eliminate the flow map
from the Biot-Savart integral. Thus

b = /K((I) — 2w(Z, t)da'dy’,
replaces the Lagrangian equation of motion Eq. (6). Since w
values are known only at the moving points z;(t), each veloc-
ity evaluation requires adaptive quadratures with new weights

adapted to the current vortex positions. We now present three
such methods.

TRIANGULATED METHODS

Triangulated vortex methods evolve points z;(¢) by

2i(t)y= | K(z(t)— z/)wh(z/, t)dx/dyl, (11)

—

where wp, 1s a piecewise linear interpolant to the vorticity values
wh(ZJ (t)a t) = wh(ZJa 0) = w(ZJa 0)

and the nodes z;(t) form the vertices of a triangulation of R?.

Given any piecewise linear function wp on a triangulation of
R?, one can evaluate the corresponding velocity uy, exactly, with
results depending very strongly on the triangulation. In (Chacon
Rebollo and Hou, 1990), this observation was combined with a
fixed triangulation carried by the flow. While convergent, the
resulting scheme costs O(N?) work per time step with a large
constant, and loses accuracy very quickly because the triangula-
tion degenerates.

We developed practical triangulated vortex methods in (Russo
and Strain, 1994); a fast summation scheme brought the cost
down to O(N4/3) and a fast Delaunay triangulation scheme gave
excellent long-time accuracy. An adaptive initial triangulation
technique made the method robust enough to compute even dis-
continuous patches of vorticity. Figure 2 plots errors for the
test case used in Fig. 1. The error displays no Perlman effect;
second-order accuracy (one tick per line) is maintained uniformly



in time. The triangulated approach is now being applied to flows
in three dimensions with viscosity and boundaries (Huyer and
Grant, 1994). Difficulties obtaining higher-order accuracy moti-
vated the next approach.
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Figure 2: Correct bits in « in 1-norm, computed by the trian-
gulated vortex method.

QUADRATURE-BASED METHODS

Higher-order free-Lagrangian methods were developed in (Strain,

1996a). They use time-dependent quadrature weights w;;(t) giv-
ing high-order accuracy in the Biot-Savart law:

/K(zi — w(2, 1) da'dy’

u(zi,t) =

2 Y wi (DK (5 — 2)w(z, ).

For example, high-order product integration weights make smooth-
ing unnecessary, but the i-dependence of w;;(t) precludes fast
summation methods. Thus we construct weights with the “locally-
corrected property” that w;; = w; for almost all y, where w; are
the weights of some “smooth” quadrature rule with points z;.
Such rules can be built and the velocity evaluated in O(N log® N)
work. The price for efficiency is a redefinition of convergence.
The error bound for these quadratures is O(e + A7), where € is
an arbitrary user-specified error tolerance and the constant in
the O(N) cost depends weakly on e. Thus one gets order-¢ con-
vergence only down to O(e). This is sufficient for three reasons:
computer arithmetic has finite precision, practical computations
can afford only rather low accuracy, and fast summation meth-
ods introduce an O(e) error as well. High-order accuracy can
be maintained for long times, though these rules are somewhat
expensive to implement.

A FAST ADAPTIVE METHOD

We now describe a high-order fast adaptive vortex method
which aims to avoid obstacles both to speed and to accuracy.
The key ingredients are

o A free-Lagrangian formulation to avoid the Perlman effect.

o Adaptive quadrature rules not tailored to the Biot-Savart
kernel.

o New error bounds requiring fewer derivatives of the vor-
ticity and leading to an efficient new smoothing strategy.

These ingredients combine to give a method with almost optimal
efficiency and long-time high-order accuracy, without excessive
differentiability requirements on the flow.

OVERVIEW

We begin with quadrature. Given N nodes z; € R?, we
compute the weights of a quadrature rule with order-¢ accuracy
on C? functions if the nodes are well distributed. We partition
the nodes into rectangular cells and build order-¢ rules on each
cell. The union of these rules is globally accurate of order ¢
(Strain, 1995). After quadrature, we discuss smoothing. We
state a standard smoothing error bound and construct a family of
arbitrary-order accurate core functions. Next we present a new
error analysis which leads to an efficient new balance between
quadrature and smoothing. We conclude with some numerical
results.

A TREE STRUCTURE

Let B = [a, b] X [¢,d] be a rectangle containing the nodes z;.
Our quadratures partition B into rectangular cells B;, each con-
taining enough nodes to construct an order-¢ quadrature. There
are (g 4 1)/2 monomials z*y” of degree o + 8 < ¢ — 1, so we
will need at least p > ¢(q + 1)/2 nodes per cell. Thus we build
a tree structure to partition B into cells containing p or p + 1
nodes each.

Let B = By be the level-0 root of the tree. Divide B; in half
along its longest edge, with the dividing plane located so that
each half of By contains either |N/2] or |[N/2| 4+ 1 nodes. This
gives the level-1 cells By and Bs. Recursively, split B2 and Bs
along their longest edges to get B4 through Bz, each containing
|N/4] or [N/4] + 1 nodes z;. Repeat this procedure L times
to get M = 2% cells B; on the finest level L, numbered from
i =M toi1 = 2M — 1, each containing p = [N/M| or p+ 1
nodes z;. The union of all the cells on any given level is B.
The tree structure is stored by listing the boundaries of each
cell B; = [as,bi] X [ci,d;] from ¢ = 1 to 1 = 2M — 1, a total
of 4 - 2M numbers, and indexing the nodes into a list so that
the nodes z; € B; are given by j = j(s) for s = b(3), ..., e(s)
and three integer functions j, b and e. This can be done in
O(N log N), but the simplest method requires sorting each cell
before each subdivision, giving a total cost O(N log® N) for the
tree construction with an O(Nlog N) sorting method such as
Heapsort.

QUADRATURE RULES

We now construct gth-order quadrature rules on B with N
quadrature nodes z; given. Assume N > m := ¢(¢ + 1)/2, and
choose I, > 0 with p := | N/2%| > m. The tree structure divides
Binto M = 2% rectangular cells B;, each containing either p or
p+ 1 nodes z;. On each B;, we construct local weights W]’ for



z; € B; by solving the following system of m linear equations in
at least p unknowns:

> Puled Pl = [ PPtz

z;EB;

for 0 < a+ f < g — 1. Here Po(z)Ps(y) are the two-variable
Legendre polynomials on B;. Since p > m, this system of m
equations in at least p unknowns generically has solutions. We
compute the solution W]’ of least 2-norm, using a complete or-
thogonal factorization from LAPACK (Anderson et al.,1992).
The weights of the rule W are then defined to be W; = W]’
where z; € B;. This rule integrates all polynomials of degree
less than ¢ exactly over all level-L cells B;. This property im-
plies order-¢ accuracy:

Theorem 2 (Strain, 1995) Suppose B = UM | B; and W in-
tegrates ©®y” exactly over each cell B; for 0 < a + 3 < ¢ — 1.
Then for any C? function g on B, the quadrature error

N

E :/ g(z)dzdy — ZWJ!](ZJ)

j=1

satisfies the bound
X
|E| < Q|B] T llglla

where h is the longest cell edge, 2 = 1 + |;T|Zjv=1 |W;| and
|B| = (b —a)(d — c) is the area of B.

The condition number € cannot be bounded a priori for arbitrary

points; but we can easily compute it a posteriori, yielding an
excellent diagnostic for the quality of the rule.

SMOOTHING

The following theorem is a standard error bound for smooth-
ing with a core function satisfying moment conditions of order
m:

Theorem 3 (Raviart, 1985) Assume the compactly supported
core function ¢ satisfies the moment conditions

/99:1’ /xayﬁ@zo’ I1<a+pg<m—1,

1 m
M= [ lllel <o
m.

Suppose u belongs to the Sobolev space W™P of functions with
m derivatives in LF, where 1 < p < oo. Then

s +u—ullzr < M&™ > 1050 ullzr.
a4+ pB=m

Suppose ¢ is a continuous radial function and write ¢(z)
©(r) where r? = |2|* = 2 4+ y*. Then fxayﬁga(z)dxdy =0if o
or 3 is odd, so the moment conditions simplify to

1 1
/ o(r)rdr =1/2m, / o(r)rtdr =0, j=1,...,n
0 0

where m = 2n 4 2 is even. A standard calculation gives

T

Ko(z) = o % K(2) = f (5) K(2)

where the “shape factor” f is given by

F(r) =2z /Orgo(s)sds.

Since ¢(r) = 0 for r > 1, we have f(r) =1 for r > 1 s0o Ks(z)
is identical to K(z) for r > 6. This facilitates the application of
fast summation methods.

A convenient ansatz for the shape factor is

f(r) = o¥ [aae® + - 4 ao] +1 (12)

where g = (1 —?); = max(0,1 —+?) and ¢(r) = 271rrf'(r). The
d + 1 coefficients a; must be chosen so that ¢ satisfies n + 1 mo-
ment conditions, so we cannot expect a solution unless d > n.
If d > n, the linear system of moment conditions is underdeter-
mined, and we use a complete orthogonal factorization routine
to find the solution with smallest 2-norm. Given the coefficients

a;, we have

L
. z
Ko(z) = 5 — [(1=r?/8")5 (aa(1 = r*/6")% + -+ a0) + 1],
where z- = (—y, ). Since f(0) = 0, we can reduce roundoff

problems for small r by finding a polynomial ¢ such that
f(T) = T29(Q) =’ [bp+d—1 Qp+d_1 4+ 4 bo] .

In terms of g, we have a convenient formula

L
Ko(z) = :

T 27 max(r2, 62)

g((1=r2/8%)4).

Figure 3 shows several of the shape factors f; the increasing
oscillation as n increases follows naturally from the vanishing of
more moments.
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Figure 3: Piecewise polynomial shape factors f.



TIME STEPPING

Since the Euler equations are not stiff and we are construct-
ing high-order vortex methods, we discretize time with explicit
s-step Adams methods. These methods require an accurate pro-
cedure for computing the s starting values. Suppose we use an
explicit s-step Adams method with a fixed time step A;. We
begin with a tiny time step A; << Ay and 1-step Adams, giv-
ing error O(A?). Since our final method is order-s accurate, we
should choose A; = O(A;/2). We now increase the order of the
Adams method by 1 at each step until order s is reached, simul-
taneously increasing A; by a factor R < 2 until Ay is reached.
The final non-equidistant step is adjusted to land precisely at
t=Ay.

BALANCE OF ERROR

We now balance the errors due to smoothing and quadrature.
The error in velocity evaluation splits naturally into two parts

Eo= fu(z) = ) wiKs(z = 2)e(z)

IA

| K * w(z) — Ks *w(z)]

N
HEsxw(z) = 3w Ks(z — z))w(z)]
=1
= FEs+ Engs.
The first term is the smoothing error, which satisfies
Es < M8™Jullm

if ¢ satisfies moment conditions of order m and u € C™. The
second term is the quadrature error, which satisfies

hq
Enes <Q|B] o llgllq

for each fixed z. Here g(z') = Ks(z — 2" )w(z'), so by a standard
inequality for the C'? norm of a product

llglle < CUIEs][allwllo + 1 Kellollwll)-

Scaling gives

Ks(z) = 67" /99 (% -

so there is some constant C' depending only on ¢, such that

1L

/) 2
oA
2|22

dz'dy’,

020 Ks|lo < C6*FF1
if o e CP. Thusif ¢ € C9, we have
1 _
lglla < S lwllo + llwlla)
so the error in velocity evaluation satisfies
m —1 h 4 —134q
E<C@ fullm+67 (3) llo + 57 27ell,).

where ¢ is the order of quadrature and ¢ € C? satisfies moment
conditions of order m.

We choose é as a function of h to make

q
SORs

where ¢ is a user-specified error tolerance, fixed as h vanishes.
This implies

§ = O(HHDRHDYy — O(p%), a=1- —,
and our error bound becomes
m 2
E < C(ellwllo + A ullm + A7 w]o)-
The choice m = ¢ balances the two remaining terms, so
E<C [ellwllo + k" (lwlly + llulle)] = O(c+ k")

where k= ¢* /(¢ +1) =¢— 1+ qi_l > ¢ — 1. For quadrature of
orders ¢ = 2,4, 6,8,10, the exponent a in § = O(h%) is 0.66, 0.80,
0.86, 0.89, 0.91 respectively, with order of accuracy k equal to
1.33, 3.20, 5.14, 7.11, 9.09 rapidly approaching ¢ — 1 from above
as ¢ increases. Thus § is very close to O(h) for methods of high
order k, with only ¢ derivatives of w required. This allows us to
use fast summation methods with excellent efficiency: the fast
multipole method with this é costs O(Nb) with 6 =1 4+ q-l-% =
1.33,1.20,1.14,1.11, 1.09, very close to 1.

We combine this order-k velocity evaluation with an Adams
method of order s = ¢ > k, because the first-order Euler equa-
tions imply that the velocity should have the same order of differ-
entiability in time as in space, with particle positions one order
smoother by the flow map equation Eq. (1). An O(e 4+ k) error
in the velocity u at each time step does not accumulate in the
multistep solution of

O(z,t) = u(P(z,t),t)
so we expect to obtain an error
O(e+ A7 + h¥)||wllq

in ® as h and Ay vanish. This would imply similar estimates for
the velocity and vorticity by standard arguments.

RESULTS AND DISCUSSION

We implemented the algorithms described above and studied
the performance of the fast adaptive method. First, we measured
the accuracy and efficiency of the velocity evaluation scheme in
isolation. Then we measured the error in long-time calculations
with the full method. Finally, we studied the interaction of sev-
eral smooth patches of vorticity.

We studied the accuracy of the velocity evaluation of orders
k = 1.33, 3.20, 5.14 and 7.11 corresponding to m = ¢ = 2, 4, 6,
and 8, using the Perlman vorticity (Perlman, 1985)

wp(z) = (max(O, 1-— r2))P
where P = 10. The vorticity wp is a CT ™! function on R?, while
the corresponding velocity fields are CF:

ZJ_

u(z) = (1 —wpy1(2)) Pt 22



This is a stationary radial solution of the Euler equations with
shear and a popular test case for vortex methods.

We tested our method with a random initial grid. Given
N and » with n? < N, the grid has n? vortices uniformly dis-
tributed over a rectangle. and the remaining N —n? vortices dis-
tributed in regions where the vorticity is large, providing some
degree of random adaptivity.

We generated N = 500, 1000, 2000, ..., 64000 vortices in such
a grid with n? & N/10 and evaluated the velocity at each of the
vortices, using core functions and quadratures of orders m = ¢ =
2,4,6,8. The number of correct bits

B; = max (0, —log, [W])

in the computed velocity wp s in L' and L°° norms, the CPU
times 7" (in seconds on a Sparc-2 workstation) and other statis-
tics are reported in Table 1. The velocity evaluation produces
error O(e + N7%/%) with k/2 = 0.67, 1.60, 2.57 and 3.55 in
O(N®loge) CPU time with b = 1.33, 1.20, 1.14 and 1.11 and a
constant of proportionality depending very weakly on the order
g. Note that when N doubles, the average cell size h decreases
by a factor /2, so we expect to gain k/2 bits per line in each
table until O(e) is reached.

For first-order methods, the O(N_2/3) errors dominate so the
O(€) limit on accuracy never appears. For higher-order meth-
ods, we get higher-order convergence in the region where the
smoothed kernel is resolved. After the O(e) limit is reached,
convergence continues slowly.

We also tested the long-time accuracy of the method on sev-
eral Perlman-type test cases for 0 < ¢ < 20, a final time at which
the fastest fluid particles have completed 1.6 revolutions while
the slowest have completed only 0.2. This strong shear is usually
considered a severe test for a vortex method. We started with
an adaptive random grid with n? = 0.8, and used core func-
tions, quadratures and Adams methods of orders m = ¢ = s = 2,
4 and 6, yielding adaptive vortex methods of orders k = 1.33,
3.20 and 5.14. We tested each method on a Perlman patch of
minimal smoothness, with P = ¢+ 1 = 3, 5 and 7. In partic-
ular, the errors at different orders are unrelated. The correct
bits in L' in the velocity are plotted in Fig. 4. The plots are
individually scaled and ticked in such a way that the number
of correct bits should increase by half a tick mark at each line.
These results clearly confirm the long-time high-order accuracy
of the method; they do not show the loss of accuracy observed in
Lagrangian vortex methods (for example in Fig. 1). The errors
are highly oscillatory on a small scale, because a new quadrature
rule is built from scratch at each step.

As a more complex example, we used the order-3.20 method
to compute 20 interacting smooth patches of vorticity. Thus the
initial vorticity is given by

Q
w(z,0) =Y (1 =z = z)"
=1

where = 20, P =5 and z; and 2; are random. Some sample
vorticity contours are shown in Fig. 5.

m=q=2,p=4,d=1,k=1.33

N h 1 B B T
500 0.497 0.631 1.95 1.42 4.83
1000 0.328 0.479 2.48 2.03 13.8
2000 0.205 0.351 3.28 2.79 43.6
4000 0.142 0.275 3.91 3.41 142.7
8000 0.089 0.203 4.74 4.26 336.2
16000 0.064 0.163 5.38 4.88 1155
32000 0.039 0.118 6.29 5.79 2051
64000 0.028 0.095 6.93 6.41 6493

500 1.300 1.481 1.02 0.52 6.87
1000  0.807 1.011 2.26 1.79 22.2
2000 0.443 0.625 4.49 3.71 75
4000  0.300 0.457 6.00 5.21 209
8000  0.180 0.305 8.16 7.22 632
16000 0.128 0.232 9.71 9.00 1485
32000 0.078 0.156 11.9 10.3 4498
64000 0.057 0.121 133 12.0 8111

m=q=6p=28d=3, k=514
N h 5 Bi B T
500 1760 1.948 0.0 0.0  8.66
1000 1170 1.374 0.31 0.0  26.9
2000 0.721  0.905 4.49 2.67  90.6
4000 0.386 0.529 821 551 281
8000  0.263 0.381 102 7.8 774
16000  0.158 0.245 12.0 6.74 1574
32000 0.114 0.185 140 9.30 4988
64000  0.068 0.118 15.0 10.1 7634

m=¢gq=8,p=10,d=4, k=7.11
N kR ) B B T
500 1.810 2.033 1.34 0.48 9.22
1000 1.690 1.912 0.0 0.0 34.9
2000 1.100 1.304 3.34 2.23 111
4000 0.677 0.848 7.79 6.29 358
8000 0.362 0.486 10.4 6.89 960
16000 0.247 0.346 11.9 8.00 2923
32000 0.146 0.217 12.9 8.15 5828
64000 0.106 0.162 15.1 9.99 14650

Table 1: Velocity evaluation results for a Perlman-type vorticity
field wio with N adaptive random points: Correct bits B; and
Boo in u, CPU times T, cell size h and core radius 6. Here ¢ is
the quadrature order, m is the moment order, p — 2 the order
of smoothness and d the degree of the core function. The final
results have order k.
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