1 Math 221, Fall 2013: Problem Set 07

Please hand in solutions for the following problems.

Exercise 1 Write a program which finds the eigenvalues of the rank-one update \(D + \rho uu^T \) of a diagonal matrix \(D \) with an arbitrary vector \(u \). Solve the secular equation by bisection, Newton’s method, or the Newton-like method described in Demmel. Test on matrices \(D \) of size \(n = 10 \) to \(100 \) with both well-separated diagonal entries \(d_j = j \) and clustered diagonal entries \(d_j = 1 + 2^{-j/2} \), using \(\rho = 1 \) and random vectors \(u \). Evaluate eigenvectors \(w_j \) by both the unstable formula \(w_j = (D - \lambda_j)^{-1}u/\|\lambda_j - D\lambda_j^{-1}u\|_2 \) and recomputing \(u \) before applying the unstable formula. Measure the the residual \(\|W^T \Lambda W - T\|_2 \) and loss of orthogonality \(\|W^T W - I\|_2 \) in all four cases and draw conclusions.

Exercise 2 Generate a \(n \times n \) symmetric tridiagonal matrix \(T \) with \(n = 2^k \), \(k = 2 \) through \(10 \), and well-separated eigenvalues \(\lambda_j = j \). Find the eigensystems of nonoverlapping \(1 \times 1 \) diagonal blocks, piece them together into \(2 \times 2 \) blocks, and repeat to find the eigensystem of \(T \). Measure the relative accuracy of the eigenvalues and the orthogonality of the eigenvectors.

Exercise 3 Derive and implement a fast butterfly algorithm for the nonuniform Laplace transform

\[
\hat{f}(t_k) = \sum_{j=1}^{N} f_j e^{t_k s_j} \quad 1 \leq k \leq N
\]

where \(f_j, t_k \) and \(s_j \) are \(3N \) given complex numbers with \(\max_{k,j} |t_k s_j| \leq O(N) \). Use Stirling’s formula to estimate the error in truncating the exponential series after \(m \) terms. Test your fast transform on uniform random data and estimate the breakeven point versus direct evaluation for three-digit, six-digit and twelve-digit absolute accuracy. In order to avoid exponential growth, distribute \(t_k \) over the rectangle \(|\Re z| \leq 1, |\Im z| \leq N \) and \(s_j \) over the rectangle \(|\Im z| \leq 1/N, |\Re z| \leq 1 \).