1 Math 221, Fall 2013: Problem Set 02

Please hand in detailed solutions to the following 3 problems.

Exercise 1 Prove the following inequalities and for each give an example of a nonzero \(n \)-vector or \(m \times n \) matrix for which equality is achieved:

(a) \(\|x\|_\infty \leq \|x\|_2 \)
(b) \(\|x\|_2 \leq \sqrt{n} \|x\|_\infty \)
(c) \(\|A\|_\infty \leq \sqrt{n} \|A\|_2 \)
(d) \(\|A\|_2 \leq \sqrt{m} \|A\|_\infty \)

Exercise 2 Let \(A \) be an \(n \times n \) matrix and \(B \) be the \((n-p) \times (n-q) \) matrix obtained by deleting the last \(p \) rows and \(q \) columns of \(A \). (a) Find matrices \(P \) and \(Q \) that carry out the deletion via the matrix multiplications \(B = PAQ \). (b) Show that \(\|B\| \leq \|A\| \) for any matrix \(p \)-norm.

Exercise 3 Let \(A \) be an \(m \times n \) matrix with full rank \(r = n \leq m \). (a) Show that the linear system

\[
\begin{bmatrix}
I + AA^* & A \\
A^* & A^*A
\end{bmatrix}
\begin{bmatrix}
\mathbf{r} \\
\mathbf{x}
\end{bmatrix}
=
\begin{bmatrix}
\mathbf{b} \\
A^* \mathbf{b}
\end{bmatrix}
\]

has a solution \((\mathbf{r}, \mathbf{x})^T \) for any \(\mathbf{b} \). (b) Show that \(y = \mathbf{x} \) minimizes \(\|Ay - \mathbf{b}\|_2 \) over all vectors \(y \). (c) Find explicit formulas for the inverse of

\[
\begin{bmatrix}
I + AA^* & A \\
A^* & A^*A
\end{bmatrix}
\]