1 Math 221, Fall 2013: Problem Set 01

Please hand in detailed solutions to the following 6 problems.

Exercise 1 A square matrix \(R \) is lower triangular if its entries \(r_{ij} \) vanish for \(i < j \). (a) Show that if \(R \) is lower triangular and nonsingular then its inverse \(R^{-1} \) is also lower triangular. (Hint: look at the space spanned by the first \(k \) columns of \(R \) for each \(k \).) (b) Solve the equation \(R + R^T = A \) for a lower triangular matrix \(R \), where \(A \) is a given square symmetric matrix and \(R^T \) is the transpose of \(R \).

Exercise 2 Prove the Pythagorean theorem: if \(x_i \) are \(n \) orthogonal vectors in \(C^n \) then
\[
\left\| \sum_{i=1}^{n} x_i \right\|_2^2 = \sum_{i=1}^{n} \left\| x_i \right\|_2^2.
\]

Exercise 3 Suppose an \(m \times m \) complex matrix \(S \) is skew-Hermitian: \(S^* = -S \). (a) Show that its eigenvalues are pure imaginary. (b) Show that \(I - S \) is nonsingular. (c) Show that \(Q = (I - S)^{-1}(I + S) \) is unitary. (d) Does every unitary matrix come from some \(S \) this way? Is \(S \) unique?

Exercise 4 Let \(u \) and \(v \) be \(m \)-vectors and \(A = I + uv^* \). (a) For what \(u \) and \(v \) is \(A \) invertible? (b) When \(A \) is invertible find a formula for its inverse. (c) Find all the eigenvalues and eigenvectors of \(A \). (d) Generalize these results to the case where \(u \) and \(v \) are \(m \) by \(r \) matrices of rank \(r \) and \(r \) is (much) smaller than \(m \).

Exercise 5 (a) Produce an orthonormal basis for the range of
\[
A = \begin{bmatrix} 1 & 2 \\ 0 & 1 \\ 0 & 1 \end{bmatrix}.
\]
(b) Find a matrix \(Q \) such that \(Q^*Q = I \) and \(A = QR \), where \(R \) is upper triangular with positive diagonal elements. (c) Discuss the relationship between (a) and (b).

Exercise 6 Prove the inequality
\[
\|A\|_2^2 \leq \|A\|_1 \|A\|_\infty
\]
for an arbitrary \(n \times n \) matrix \(A \) and the matrix norms induced by the standard 1, 2 and \(\infty \) norms.