show that there is a unique solution \(y \) for any set of data \(f \) and \(g \) if and only if there is a fundamental matrix \(Y \) such that \(D = AY(a) - BY(b) \) is invertible.

Exercise 2 Let \(Q_{ij} = \delta_{n+1-i,j} \) be the matrix elements of the matrix \(Q \) which reverses a vector: \(y = Qx \) has elements \((y_1, y_2, \ldots, y_n) = (x_n, x_{n-1}, \ldots, x_1) \).

(a) Find a fundamental matrix \(Y_0(t) \) for the system \(y' + Q_0 y = 0 \) where \(\lambda \) is a positive constant and \(Q_0 = \lambda Q \).

(b) Given \(a \) and \(b \) with \(a < b \), determine \(\lambda \) so that the system \(y' + Q_0 y = f \) with periodic boundary conditions \(y(a) - y(b) = g \) is solvable for all data \(f \) and \(g \).

(c) Find the Green function \(G_0 \) for (b).

(d) Use \(Q_0 \) as a background problem to derive an integral equation

\[\sigma(t) + A(t) \int_a^t \sigma(s)ds + B(t) \int_t^b \sigma(s)ds = r(t) \]

that makes \(Y_0(t)^{-1}(y'(t) + Q_0 y(t)) = \sigma(t) \) solve a given periodic boundary value problem

\[y' + Q(t)y = f(t) \]

with

\[y(a) - y(b) = g. \]

(e) Test the integral equation with \(p \)-point Gaussian quadrature using \(p = 2^3 \) points on the BVP \(y' + Q(t)y = f(t) \) on \(0 \leq t \leq \pi \), \(y(0) - y(\pi) = g \), where

\[Q(t) = \begin{bmatrix} 1 - 9 \cos 2t & 1 + 9 \sin 2t \\ -1 + 9 \sin 2t & 1 + 9 \cos 2t \end{bmatrix} \]

and \(f \) and \(g \) are chosen to make \(y(t) = (\cos(5t^2), 2 + e^{-10t})^T \) the exact solution. For each precision \(\epsilon = 10^{-6} \) estimate which grid size \(p \) delivers a solution with max-norm error less than \(\epsilon \) at roughly the least cost in CPU time.

Exercise 3 Write a program to solve

\[K_1 \sigma(t) = \sigma(t) + A(t) \int_a^t \sigma(s)ds + B(t) \int_t^b \sigma(s)ds = r(t) \]

where \(A(t) \) and \(B(t) \) are given \(n \times n \) matrix functions of \(t \in [a,b] \) and \(r(t) \) is a given \(n \)-vector function. Divide the interval \([a,b] = C_0 \) into \(2^L \) subintervals \(C_j = [a_j, b_j] \), solve the integral equations \(K_j \beta = r \), \(K_j \alpha = A \) and \(K_j \beta = B \) on each \(C_j \) directly by \(p \)-point Gaussian quadrature and Gaussian elimination or
QR factorization of the resulting $np \times np$ linear systems, and piece the resulting solutions together recursively on levels $L - 1$ through 0 to give σ on the union of 2^L level-L intervals. Test on $\sigma = Y_0^{-1}(y' + Q_0 y)$ where y is the exact solution of problem 2(e).