1 Math 128b, Spring 2020: Problem Set 7

Exercise 1 A q-stage Runge-Kutta method

\[k_i = f \left(u_n + h \sum_{j=1}^{q} S_{ij} k_j \right), \quad 1 \leq i \leq q \]

\[u_{n+1} = u_n + h \sum_{i=1}^{q} w_i k_i \]

is algebraically stable if

\[B_{ij} = w_i S_{ij} + w_j S_{ji} - w_i w_j \]

defines a positive semidefinite matrix \(B \), i.e. iff

\[x^T B x \geq 0 \]

for all \(x \in \mathbb{R}^q \).

(a) Show that algebraic stability implies linear error growth: any solution \(v \) of the perturbed method

\[\kappa_i = f \left(v_n + h \sum_{j=1}^{q} S_{ij} \kappa_j \right), \quad 1 \leq i \leq q \]

\[v_{n+1} = v_n + h \sum_{i=1}^{q} w_i \kappa_i + h \tau_n \]

with local truncation error \(\tau_n \) bounded by

\[\| \tau_n \| \leq \tau \]

for all \(n \) must satisfy

\[\| u_n - v_n \| \leq T \tau \]

for \(0 \leq t_n \leq T \).

(b) Show that q-stage Gauss-Runge-Kutta methods are algebraically stable for all \(q \geq 1 \).

(c) Verify linear error growth experimentally for 3-stage Gauss-Runge-Kutta by measuring error after \(N = 1, 2, \ldots, 10 \) orbits of the figure-8 problem

\[x'' = -x \]

\[y'' = -4y \]

with initial conditions \(x(0) = 1 \)
\[x'(0) = 0 \]
\[y(0) = 0 \]
\[y'(0) = 2 \]

which should yield a periodic orbit \((\cos(t), \sin(2t))\) with period \(T = 2\pi\). (Convert to a 4 \times 4 first-order autonomous system and solve linear equations for the stages.)