Let \(H_{ij} = 1/(i + j - 1) \) for \(1 \leq i, j \leq n \) be the elements of the \(n \times n \) Hilbert matrix \(H \). and \(QR = H \) be its QR factorization. Compute \(Q \) and \(R \) for \(n = 1 : 20 \) by four methods:

(a) Cholesky factorization \(R^T R = H^T H \) and \(Q = HR^{-1} \),

(b) Classical Gram-Schmidt,

(c) Modified Gram-Schmidt,

(d) Matlab’s built-in (Householder).

Plot \(\|Q^T Q - I\|_2 \) and \(\|QR - H\|_2 / \|H\|_2 \) vs. \(n \) and discuss.
2. (cf. GGK 6.6) Construct a matrix P which projects onto the plane $x_1 + x_2 + x_3 = 0$ in \mathbb{R}^3.
3 (cf. GGK 6.8) Construct an orthogonal matrix which reflects across the plane \(x_1 = x_3 \) in \(\mathbb{R}^3 \).
4 (cf. GGK 3.7) Let

\[A = \begin{bmatrix} 1 & 2 & 6 \\ 1 & 3 & 7 \\ 1 & 4 & 7 \\ 1 & 5 & 9 \end{bmatrix}. \]

Find a Householder vector \(u \) so that \(H = I - 2uu^T \) reduces the first column of \(A \) to zero below the diagonal:

\[HA = \begin{bmatrix} \sigma & x & x \\ 0 & x & x \\ 0 & x & x \\ 0 & x & x \end{bmatrix}. \]
Suppose Q is orthogonal and R is upper triangular but $QR \neq A$. Find explicit formulas for updated factors $Q+\delta Q$ and $R+\delta R$ that reduce the residual $\rho = \sqrt{\|Q^TQ - I\|_2^2 + \|QR - A\|_2^2}$ quadratically. You may use the matrix-matrix function $U = \text{uth}(A)$ defined to have elements $U_{ij} = A_{ij}$ for $i < j$, $U_{ij} = A_{ij}/2$ for $i = j$, and $U_{ij} = 0$ for $i > j$.