Problem 1 Fix integer $n \geq 1$, n points x_i with $|x_i| \leq 1$, n points y_j with $|y_j| \leq 1$, n coefficients f_j, and n coefficients g_j.

(a) Fix integer $k \geq 0$. Design an algorithm for evaluating

$$f(x) = \sum_{j=1}^{n} f_j (xy_j)^k$$

at n points x_i, in $O(n)$ operations.

(b) Find a polynomial $P(x)$ with complex coefficients such that

$$|P(x) - e^{ix}| \leq \epsilon$$

on the interval $|x| \leq 1$.

(c) Design an algorithm for approximating

$$g(x) = \sum_{j=1}^{n} g_j e^{ixy_j}$$

at n points x_i in $O(n)$ operations, with absolute error bounded by

$$\epsilon \sum_{j=1}^{n} |g_j|.$$

(d) Define the $n \times n$ matrix F by

$$F_{jk} = e^{ix_j y_k}.$$

Find a rank r independent of n and an $n \times n$ matrix B with elements

$$B_{jk} = \sum_{i=1}^{r} c_{ji} d_{ik}$$

such that B has rank at most r and absolute error

$$|F_{jk} - B_{jk}| \leq \epsilon$$

for all n.

1
Solution 1 (5 pts x 4 parts = 20 pts)

(a) First store the powers x_i^k and y_j^k for $i, j = 1, \ldots, n$; this requires $2nk = O(n)$ multiplications. Next, store the sum

$$\sum_{j=1}^{n} f_j y_j^k.$$

This requires n multiplications and n additions, for a total of $2n = O(n)$ additional operations. Finally, calculate

$$(x_i^k) \cdot \left(\sum_{j=1}^{n} f_j y_j^k \right) = \sum_{j=1}^{n} f_j (x_i y_j)^k.$$

for $i = 1, \ldots, n$. This is another $n = O(n)$ multiplications. Altogether we performed $O(n)$ operations.

(b) Let $P(x)$ be the degree-m Taylor polynomial of e^{ix},

$$P(x) = \sum_{j=0}^{m} \frac{i^j}{j!} x^j$$

so that

$$|P(x) - e^{ix}| \leq \frac{1}{(m+1)!}$$

for $|x| \leq 1$. Since $1/18! = 1.6 \times 10^{-16} \leq \epsilon$, any choice $m \geq 17$ will suffice.

(c) Let $P(x) = a_0 + \ldots + a_m x^m$ denote the polynomial in part (b). Since $|x| \leq 1$ and $|y| \leq 1$,

$$\sum_{j=1}^{n} g_j e^{ix_j y_j} = \sum_{k=0}^{m} \sum_{j=1}^{n} (g_j a_k)(x_i y_j)^k$$

up to an error of size $\epsilon \sum_{j=0}^{n} |g_j|$. Applying the algorithm in part (a) for each k shows that $\sum_{k=0}^{m} \sum_{j=1}^{n} (g_j a_k)(x_i y_j)^k$ can be performed in $O(n)$ operations.

(d) Define

$$c_{jr} = \frac{(it_j)^{r-1}}{(r-1)!} \quad \text{and} \quad d_{rk} = t_k^{r-1},$$
and form the $n \times (m + 1)$ matrix $C = (c_{jr})$ and the $(m + 1) \times n$ matrix $D = (d_{rk})$. Let $B = CD$ and thus

$$\text{rank}(B) \leq \min\{\text{rank}(C), \text{rank}(D)\} \leq m + 1 = 18.$$

For all j and k, using part (b) gives

$$|F_{jk} - B_{jk}| = \left| e^{it_j t_k} - \sum_{r=0}^{m} \frac{(it_j t_k)^{r-1}}{(r-1)!} t_k^r \right|$$

$$= \left| e^{it_j t_k} - \sum_{r=0}^{m} \frac{(it_j t_k)^r}{r!} \right|$$

$$< \epsilon.$$
Problem 2 Show that floating point arithmetic sums

\[s_n = \sum_{k=1}^{n} \frac{1}{k^2} = 1 + \frac{1}{2^2} + \frac{1}{3^2} + \cdots + \frac{1}{n^2} \]

with absolute error \(\leq (2n + 1)\epsilon \) from left to right, while summing from right to left gives absolute error \(\leq (3 + \ln n)\epsilon \). Estimate the maximum accuracy achievable and the number of terms required in each case.

Solution 2 (10 pts x 2 parts = 20 pts)

Summing from left to right Define \(a_k = \frac{1}{k^2} \) and \(s_n = \sum_{k=1}^{n} a_k \), and let \(s^{*}_{n} \) be the result for \(s_n \) in floating point arithmetic when summing from left to right. Define \(e_n \) by \(s^{*}_{n} - s_n = e_n\epsilon \), where \(\epsilon \) is machine precision. We note that \(e_1 = 0 \).

Adding an additional term to the right gives

\[
\begin{align*}
 s^{*}_{n+1} &= \text{fl}(s^{*}_{n} + \text{fl}(a_{n+1})) \\
 &= (s^{*}_{n} + a_{n+1}(1 + \epsilon_1))(1 + \epsilon_2), \quad \text{where } |\epsilon_1| \leq \epsilon, |\epsilon_2| \leq \epsilon \\
 &= s^{*}_{n} + a_{n+1} + a_{n+1}\epsilon_1 + s^{*}_{n}\epsilon_2 + a_{n+1}\epsilon_2 + a_{n+1}\epsilon_1\epsilon_2 \\
 &= s_{n+1} + e_n\epsilon + a_{n+1}\epsilon_1 + s_{n}\epsilon_2 + a_{n+1}\epsilon_2 + a_{n+1}\epsilon_1\epsilon_2.
\end{align*}
\]

Thus

\[
 s^{*}_{n+1} = s_{n+1} + e_n\epsilon + a_{n+1}\epsilon_1 + s_{n}\epsilon_2 + a_{n+1}\epsilon_2 + O(\epsilon^2),
\]

which indicates

\[
|s^{*}_{n+1} - s_{n+1}| \leq |e_n\epsilon + a_{n+1}\epsilon_1 + s_{n}\epsilon_2 + a_{n+1}\epsilon_2|
\]

\[
\leq (|e_n| + a_{n+1} + s_{n+1})\epsilon,
\]

that is,

\[
|e_{n+1}| \leq |e_n| + a_{n+1} + s_{n+1}.
\]

Applying this inequality repeatedly and the estimate that

\[
 s_n = \sum_{k=1}^{n} a_k \leq \sum_{k=1}^{\infty} a_k = \frac{\pi^2}{6} < 2
\]
to get
\[|e_n| \leq |e_1| + \sum_{k=2}^{n} a_k + \sum_{k=2}^{n} s_k \]
\[\leq s_n + \sum_{k=2}^{n} s_k \]
\[\leq 2 + 2(n - 1) = 2n + 1. \]

Therefore the absolute error is bounded by \((2n + 1)\epsilon\).

Summing from right to left
Let
\[b_k = \frac{1}{(n+1-k)^2} \]
for \(1 \leq k \leq n\). Define
\[S_k = \sum_{j=1}^{k} b_j = \frac{1}{n^2} + \frac{1}{(n-1)^2} + \cdots + \frac{1}{(n-k+1)^2}, \]

let \(S_k^* \) be the result for \(S_k \) in floating point arithmetic summing from left to right in the above sum, and let \(E_k \) be defined by \(S_k^* - S_k = E_k\epsilon \), where \(\epsilon \) is machine precision.

Therefore \(|e_1| \leq b_1 \), and
\[S_{k+1}^* = \text{fl}(S_k^* + \text{fl}(b_{k+1})). \]

We use the bounds
\[S_n \leq 2 \text{ and } S_k \leq (n-k+1)b_k. \]

Working as in part a, we get
\[|e_n| \leq |e_1| + \sum_{k=2}^{n} b_k + \sum_{k=2}^{n} S_k \]
\[\leq S_n + \sum_{k=2}^{n} S_k \]
\[\leq S_n + \sum_{k=2}^{n} \sum_{j=1}^{k} b_j. \]
We change the order of summation to get

\[|e_n| \leq S_n + \sum_{k=2}^{n} b_1 + \sum_{j=2}^{n} \sum_{k=j}^{n} b_j \]

\[= S_n + (n - 1)b_1 + \sum_{j=2}^{n} (n - j + 1)b_j \]

\[\leq S_n + b_n + \sum_{j=1}^{n-1} (n - j + 1)b_j \]

\[\leq 3 + \sum_{j=1}^{n-1} \frac{1}{n - j + 1} \]

\[= 3 + \sum_{m=2}^{n} \frac{1}{m} \]

\[m = n - j + 1 \]

\[\leq 3 + \sum_{m=2}^{n} \int_{m-1}^{m} \frac{1}{x} \, dx \]

\[= 3 + \int_{1}^{n} \frac{1}{x} \, dx \]

\[= 3 + \ln n. \]

Therefore the absolute error is bounded by \((3 + \ln n)\epsilon\).
Problem 3 Suppose a and b are floating point numbers with $0 < a < b < \infty$. Show that

$$a \leq \text{fl}\left(\sqrt{ab}\right) \leq b,$$

in IEEE standard floating point arithmetic if no overflow occurs.

Solution 3 (10 pts)

Since $a^2 < ab < b^2$, $\sqrt{\cdot}$ delivers the exact result correctly rounded, and rounding is monotone, we need only show that $\text{fl}(\sqrt{a^2}) = a$. But $\text{fl}(a^2) = a^2(1 + \delta)$ for some $|\delta| \leq \epsilon$, so $\text{fl}(\sqrt{a^2}) = \text{fl}(a(1 + \delta/2 + O(\epsilon^2))) = a$ since rounding delivers the nearest floating-point number.
Problem 4 Design an algorithm to evaluate

\[f(x) = \frac{e^x - 1 - x}{x^2} \]

in IEEE double precision arithmetic, to 12-digit accuracy for all machine numbers \(|x| \leq 1 \).

Solution 4 (10 pts)

Our algorithm is to approximate \(f(x) \) by its \(n \)th order Taylor polynomial, i.e.

\[
f(x) \sim \sum_{k=0}^{n+2} \frac{x^k}{k!} - 1 - x
\]

\[
= \sum_{k=2}^{n+2} \frac{x^{k-2}}{k!} - 1 - x
\]

\[
= \sum_{k=0}^{n} \frac{x^k}{(k+2)!},
\]

evaluated with IEEE standard floating point arithmetic.

First we bound the error in the approximation assuming exact arithmetic. There exists \(\xi_1 \) and \(\xi_2 \) depending on \(x \) and satisfying \(|\xi_1|, |\xi_2| \leq |x| \leq 1 \) such that

\[
\left| \sum_{k=0}^{n+2} \frac{x^k}{k!} - 1 - x - \frac{e^x - 1 - x}{x^2} \right| \leq \left| \frac{\sum_{k=0}^{n+2} \frac{x^k}{k!} - e^x}{x^2} \right|
\]

\[
= \frac{|x^{n+3}|}{(n+3)!} e^{\xi_1} \frac{x^2}{2} \cdot e^{\xi_2}
\]

\[
= 2 \cdot \frac{|x^{n+1}|}{(n+3)!} e^{\xi_1-\xi_2}
\]

\[
\leq \frac{2}{(n+3)!} e^2.
\]

In order to achieve 12-digit (decimal) accuracy in exact arithmetic, we need

\[
\frac{2}{(n+3)!} e^2 \leq 10^{-12},
\]
that is, \(n \geq 13 \).

We also need to bound the relative error in floating-point evaluation of the approximating polynomial. Let \(s_n \) be the \(n \)th order Taylor polynomial and let \(s_n^* \) be the floating point approximation when evaluating the sum from left \((k = 0)\) to right \((k = n)\). We note that \(|s_n| \leq f(1) = e - 2 < 1 \). Letting \(e_n \) be defined by \(e_n \epsilon = s_n^* - s_n \), we find that

\[
|e_n| \leq |e_1| + \sum_{k=2}^{n} |s_k| + \sum_{k=2}^{n} \left| \frac{x^k}{(k+2)!} \right| \leq \frac{1}{2} + n - 1 + 1 = n + \frac{1}{2}.
\]

We find that for \(n \leq 450 \) the error \(|s_n^* - s_n| \) in the floating-point evaluation is bounded by \(10^{-13} \), so the contribution to the absolute error from the floating-point evaluations is negligible for small \(n \) compared to the truncation error from the Taylor approximation.
Problem 5 Figure out exactly what sequence of intervals is produced by bisection with the arithmetic mean for solving $x = 0$ with initial interval $[a_0, b_0] = [-1, 2]$. How many steps will it take to get maximum accuracy in IEEE standard floating point arithmetic?

Solution 5 (10 pts)

Consider the first few terms in the sequence of intervals:
\[
[a_0, b_0] = [-1, 2],
[a_1, b_1] = [-1, 2^{-1}],
[a_2, b_2] = [-2^{-2}, 2^{-1}],
[a_3, b_3] = [-2^{-2}, 2^{-3}],
\]
\[...
\]
This gives the pattern
\[
[a_{2n}, b_{2n}] = [-2^{-2n}, 2^{-2n+1}],
\]
and
\[
[a_{2n+1}, b_{2n+1}] = [-2^{-2n}, 2^{-2n-1}].
\]

We can prove the above pattern by induction on n.

Proof.

1. Base case. $[a_0, b_0] = [-1, 2]$ and $[a_1, b_1] = [-1, 2^{-1}]$ satisfy the pattern.

2. Inductive step. Assuming the pattern works for $n = k$, that is,
\[
[a_{2k}, b_{2k}] = [-2^{-2k}, 2^{-2k+1}],
\]
and
\[
[a_{2k+1}, b_{2k+1}] = [-2^{-2k}, 2^{-2k-1}],
\]
we have
\[
[a_{2k+2}, b_{2k+2}] = [2^{-1}(-2^{-2k} + 2^{-2k-1}), 2^{-2k-1}] = [-2^{-2k-2}, 2^{-2k-1}],
\]
and
\[
[a_{2k+3}, b_{2k+3}] = [-2^{-2k-2}, 2^{-1}(-2^{-2k-2} + 2^{-2k-1})] = [-2^{-2k-2}, 2^{-2k-3}],
\]
which satisfy the pattern for $n = k + 1$.

By the pattern above, we have

\[[a_{1074}, b_{1074}] = [-2^{-1074}, 2^{-1073}] \]

The midpoint of this interval is given by

\[p_{1074} = \frac{-2^{-1074} + 2^{-1073}}{2} = \frac{2^{-1074}}{2} \in (0, 2^{-1074}). \]

In floating point arithmetic, \(p_{1074} \) will give 0, as the smallest subnormal number is \((-1)^02^{1-1023}(0 + 2^{-52}) = 2^{-1074} \), and any positive number smaller than that will result in underflow to 0.

Hence 1075 steps are needed to get maximum accuracy.
Problem 6 Implement a MATLAB function bisection.m of the form

function [r, h] = bisection(a, b, f, p, t)
% a: Beginning of interval [a, b]
% b: End of interval [a, b]
% f: function handle y = f(x, p)
% p: parameters to pass through to f
% t: User-provided tolerance for interval width

At each step $j = 1$ to n, carefully choose m as in bisection with the geometric mean (watch out for zeroes!). Replace $[a, b]$ by the smallest interval with endpoints chosen from a, m, b which keeps the root bracketed. Repeat until a f value exactly vanishes, $b - a \leq t \min(|a|, |b|)$, or b and a are adjacent floating point numbers, whichever comes first. Return the final approximation to the root r and a $3 \times n$ history matrix $h[1:3,1:n]$ with column $h[1:3, j] = (a, b, f(m))$ recorded at step j. Try to make your implementation as foolproof as possible.

(a) (See BBF 2.1.7) Sketch the graphs of $y = x$ and $y = 2 \sin x$.

(b) Use bisection.m to find an approximation to within ϵ to the first positive value of x with $x = 2 \sin x$. Report the number of steps, the final result, and the absolute and relative errors.

(c) Use bisection.m as many times as needed to find approximations within ϵ to all solutions $x > 0$ of the equation

$$f(x) = \frac{1}{x} + \ln x - 2 = 0.$$

Report the number of steps, the final results, and the absolute and relative errors.

(d) Use bisection.m to solve the equation

$$f(x) = (x - \epsilon^3)^3 = 0$$
on the interval $[-1, 2]$. Report the number of steps, the final result, and the absolute and relative errors.

(e) Use bisection.m to solve the equation

$$f(x) = \arctan(x - \epsilon^2) = 0$$
on the interval $[-1, 2]$. Report the number of steps, the final result, and the absolute and relative errors.

Solution 6 (5 pts x 1 code + 5 parts = 30 pts)

Sample code follows (and is embedded in this PDF file):

```matlab
function [r, h] = bisection(a, b, f, p, t)
% a: Beginning of interval [a, b]
% b: End of interval [a, b]
% f: function handle y = f(x, p)
% p: parameters to pass through to f
% t: User–provided tolerance for interval width

h = [];

while 1
    m = middle(a, b);
    fa = f(a, p);
    fb = f(b, p);
    fm = f(m, p);

    % Record step, terminate if f vanishes
    if fa == 0
        r = a;
        h = [h, [a; b; fm]];
        break
    elseif fb == 0
        r = b;
        h = [h, [a; b; fm]];
        break
    else
        r = m;
        h = [h, [a; b; fm]];
    end

    % Terminate if b−a is small
    if (b − a <= t * min(abs(a), abs(b)) || a == m || b == m)
```
In this code the first recorded step is always \((a, b, f(m))\), where \(a\) and \(b\) are the input to \texttt{bisection.m}. There is always at least one step, and at most 65.

For the following problems we use the following sample code to display our results:

```matlab
function bisection_results(a, b, f, p, t)
    [r, h] = bisection(a, b, f, p, t);
    matlab_result = fzero(@(x) f(x, p), r);
```
abs_err = abs(matlab_result - r);
rel_err = abs_err/abs(matlab_result);

line = sprintf(' steps = %d, r = %20.16g, abs err =%9.5g, rel err =%9.5g ', size(h, 2), r, abs_err, rel_err);
disp(line)

(a) The plot follows:
(b) The output of bisection_results.m is as follows:

f =

@(x, p) x - 2 * sin(x)
octave:2> bisection_results(1, 3, f, 1, eps)
 steps = 53, r = 1.895494267033981, abs err =1.5543e-15, rel err = 8.2e-16

(c) There are two roots, so we run bisection_results.m twice with \([a, b] = [0.1, 1]\) and \([a, b] = [6, 7]\):

octave:2> bisection_results(0.1, 1, f, 1, eps)
 steps = 54, r = 0.3178444328993726, abs err = 0, rel err = 0
octave:3> bisection_results(6, 7, f, 1, eps)
 steps = 48, r = 6.305395279271691, abs err = 0, rel err = 0

(d) The output of bisection_results.m is as follows:

octave:1> f = @(x,p) (x - eps^3)^3
f =
 @(x, p) (x - eps^3)^3

octave:2> bisection_results(-1, 2, f, 1, eps)
 steps = 62, r = 1.094764425253763e-47, abs err = 0, rel err = 0

(e) The output of bisection_results.m is as follows:

octave:1> f = @(x,p) atan(x - eps^2)
f =
 @(x, p) atan(x - eps^2)

octave:2> bisection_results(-1, 2, f, 1, eps)
 steps = 64, r = 4.930380657631323e-32, abs err = 0, rel err = 0