Problem 1 Write, test and debug a matlab function

function [p, q] = pcoeff(t, n, k)
% t: solution times t(1) < t(2) < ... < t(n) < t(n+1)
% n+1: new time step
% k: number of previous steps t(n-k+1)..t(n)

which computes coefficients p and q for the k-step predictor-corrector method

\[v_{n+1} = u_n + \int_{t_n}^{t_{n+1}} p(t)dt = u_n + p_1f_n + p_2f_{n-1} + \cdots + p_kf_{n-k+1}, \]

\[u_{n+1} = u_n + \int_{t_n}^{t_{n+1}} q(t)dt = u_n + q_1f(t_{n+1}, v_{n+1}) + q_2f_n + \cdots + q_kf_{n-k+2}. \]

Here \(p(t) \) is the degree \(k - 1 \) polynomial which interpolates the values \(f_j = f(t_j, u_j) \) for \(n - k + 1 \leq j \leq n \) and \(q(t) \) is the degree \(k - 1 \) polynomial which interpolates the values \(f_j \) for \(n - k + 2 \leq j \leq n \) and also the predicted slope \(f(t_{n+1}, v_{n+1}) \) at \(t_{n+1} \). Thus

\[p_j = \int_{t_n}^{t_{n+1}} \prod_{i \neq j} \frac{t - t_{n-i+1}}{t_{n-j+1} - t_{n-i+1}} \]

and

\[q_j = \int_{t_n}^{t_{n+1}} \prod_{i \neq j} \frac{t - t_{n-i+2}}{t_{n-j+2} - t_{n-i+2}} \]

for \(1 \leq j \leq k \). Tabulate the coefficients \(p \) and \(q \) with constant step size \(h = 1 \) and \(k \leq 5 \) and verify against Adams-Bashforth and Adams-Moulton methods.

(Hint: the integrands are polynomials of degree \(k - 1 \) for which \(\lceil k/2 \rceil \) Gaussian integration points and weights will give an exact result.)
Problem 2 Write, test and debug a matlab function

function [t, u] = pcode(a, b, ua, f, r, k, N)
% a,b: interval endpoints with a < b
% ua: vector u_1 = y(a) of initial conditions
% f: function handle f(t, u, r) to integrate
% r: parameters to f
% k: number of previous steps to use at each regular time step
% N: total number of time steps,
% t: output times for numerical solution u_n ~ y(t_n), t(1) = a, t(N) = b
% u: numerical solution at times t
which uses pcoeff to approximate the solution vector y(t) of the vector initial value problem

\[y' = f(t, y, r) \]
\[y(a) = y_a \]

by the family of methods you derived in problem 1, with \(u_1 = y_a \). Start with \(k_1 = 1 \) and a tiny step size

\[h_1 = (b - a) \left(\frac{h}{b-a} \right)^{k/2} \]

which brings the one-step error in line with the \(O(h^k) \) error. Increase the step size smoothly (e.g. by \(h_1 \leftarrow (1 + 1/k)h_1 \)) and increase \(k_1 \) (e.g. by steps of 1 up to \(k \)) until \(h_1 \geq h = (b-a)/(N-1) \) and then continue with uniform step sizes. (To save CPU time, (a) when the most recent \(k \) step sizes are uniform, the predictor-corrector coefficients \(p \) and \(q \) can be frozen and (b) many values of \(f \) can be saved rather than re-evaluated.)

(a) Use pcode.m with odd \(k = 1 \) through 11 and \(N = 10000, 20000, 40000, 80000 \) and 160000 to approximate the final solution vector \(u(T) \) of the initial value problem derived in problem 4 of problem set 8. Tabulate the errors

\[E_{kN} = \max_{1\leq j\leq 4} |u_j(T) - u_j(0)|. \]

Estimate the constant \(C_k \) such that the error behaves like \(C_k h^k \).

(b) Measure the CPU time for each run and estimate the total CPU time necessary to obtain an orbit which is periodic to three-digit, six-digit and twelve-digit accuracy.

(c) Plot some inaccurate solutions and some accurate solutions and draw conclusions about values of \(k \) which give three, six or twelve digits of accuracy for minimal CPU time.

(d) Compare to the results of euler.m and idec.m.
Problem 3 Consider a differential equation
\[y'(t) = f(t, y(t)), \]
where \(f \) satisfies the condition
\[(u - v)(f(t, u) - f(t, v)) \leq 0 \]
for all \(u \) and \(v \).

(a) Suppose \(U(t) \) and \(V(t) \) are exact solutions. Show that
\[|U(t) - V(t)| \leq |U(0) - V(0)| \]
for all \(t \geq 0 \).

(b) Suppose \(W \) satisfies a perturbed differential equation
\[W'(t) = f(t, W(t)) + r(t) \]
for \(t \geq 0 \). Show that
\[|U(t) - W(t)| \leq |U(0) - W(0)| + \int_0^t |r(s)|ds \]
for \(t \geq 0 \).

(c) Show that two numerical solutions \(u_n \) and \(v_n \) generated by implicit Euler (e.g. with different initial values) satisfy
\[|u_n - v_n| \leq |u_0 - v_0| \]
for all \(n \geq 0 \).

(d) Show that the local truncation error \(\tau_{n+1} \) of the implicit Euler method
\[u_{n+1} = u_n + hf(t_{n+1}, u_{n+1}) \]
is given by
\[\tau_{n+1} = \frac{y_{n+1} - y_n}{h} - f(t_{n+1}, y_{n+1}) = -\frac{h}{2}y''(\zeta) \]
where \(y_n = y(t_n) \) is the exact solution and \(\zeta \) is an unknown point.

(e) Show that the numerical solution \(u_n \) generated by implicit Euler with \(u_0 = y_0 \) satisfies
\[|u_n - y_n| \leq nh\tau \]
for \(0 \leq nh < \infty \), where \(\tau = Mh/2 \) and \(|y''| \leq M \).
Problem 4 Consider the linear initial value problem

\[y' = -L(y(t) - \varphi(t)) + \varphi'(t) \]

\[y(0) = y_0 \]

where \(\varphi(t) = \cos(30t) \).

(a) Solve the initial value problem exactly.

(b) Use euler.m to solve the initial value problem with \(y(0) = 2 \) for \(0 \leq t \leq 1 \) with \(L = 10^k \) for \(k = 1 \) to 5. For each \(L \) use \(h = 10^{-j} \) with \(j = 1 \) to 6. Tabulate the errors.

(c) Write a matlab script ieuler.m which uses the implicit Euler method to solve the initial value problem with \(y(0) = 2 \) for \(0 \leq t \leq 1 \) with \(L = 10^k \) for \(k = 1 \) to 5. For each \(L \) use \(h = 10^{-j} \) with \(j = 1 \) to 6. Tabulate the errors. Plot an accurate solution for each \(L \).
Problem 5 (cf. BFB 6.1.12) Write, test and debug a matlab code

function [t, u] = solveinteq(a, b, kernel, rhs, p, n)
% a, b: endpoints of interval
% kernel: function handle for kernel K = kernel(t, s) of integral equation
% rhs: function handle for right-hand side f = rhs(t, p) of integral equation
% p: parameters for rhs
% n: number of quadrature points and weights
% t: evaluation points in [a,b]
% u: solution values at evaluation points

which uses \(n \)-point Gaussian quadrature points \(t_i \) and weights \(w_i \) on \([a,b]\) (generated by gaussint.m) to approximate the solution \(y(t) \) of the integral equation

\[
y(t) + \int_a^b K(t, s)y(s) \, ds = f(t, p)
\]

on the interval \(a \leq t \leq b \). Your code should set up the \(n \times n \) linear system

\[
u_i + \sum_{j=1}^{n} K(t_i, t_j)w_ju_j = f(t_i, p)
\]

for approximate values \(u_i \approx y(t_i) \) and solve it by Gaussian elimination with partial pivoting.

(a) Suppose \([a, b] = [0, 1] \) and the kernel \(K \) is given by \(K(t, s) = \cos(t) \sin(s) \). For any positive real number \(m \), find a right-hand side \(f(t, m) \) such that the exact solution \(y(t) \) of the integral equation (1) is given by \(y_m(t) = \cos(mt) \).

(b) Solve the problem in (a) numerically by solveinteq, using even \(n = 2 \) through 16 and odd integers \(m = 1 \) through 9. Tabulate the errors at integration points

\[
E_n = \max_{1 \leq i \leq n} |u_i - y_m(t_i)|
\]

vs. \(m \) and \(n \).

(c) For an arbitrary right-hand side \(f \) and the specific kernel \(K(t, s) = \cos(t) \sin(s) \) in (a), find a formula for the exact solution \(u \) of the linear system of equations (2).

(d) Use the error formula for Hermite interpolation to show that the local truncation error in (a)

\[
\tau_i = y(t_i) + \sum_{j=1}^{n} w_jK(t_i, t_j)y(t_j) - f(t_i)
\]

is bounded by

\[
|\cos(t_i)| \left(\int_0^1 \prod_{i=1}^{n} (t - t_i)^2 \, dt \right) \frac{|\phi^{(2n)}(\xi)|}{(2n)!}
\]
as $n \to \infty$, where $v(s) = \sin(s)y(s)$.

(e) Assume that all the derivatives of the exact solution y in (a) are bounded by

$$|y^{(n)}(t)| \leq m^n$$

for some fixed $m > 0$. Use (d) and (c) to prove that

$$E_n \leq 2 \max_i |\tau_i| \to 0$$

as $n \to \infty$.