Problem 1 In class we proved the Euler-Maclaurin summation formula
\[
\int_0^1 f(x)dx = \frac{1}{2} (f(0) + f(1)) + \sum_{m=1}^{\infty} b_m \left(f^{(2m-1)}(1) - f^{(2m-1)}(0) \right)
\]
for some unknown constants \(b_m \) independent of \(f \).

(a) Find a recursive formula for \(b_m \) by evaluating both sides for \(f(x) = e^{\lambda x} \) where \(\lambda \) is a parameter.

(b) Compute \(b_1, b_2, b_3, \ldots, b_{10} \).

(c) Compound the formula to show
\[
\int_0^n f(x)dx = \frac{1}{2} f(0) + f(1) + f(2) + \cdots + f(n-1) + \frac{1}{2} f(n) + \sum_{m=1}^{\infty} b_m \left(f^{(2m-1)}(n) - f^{(2m-1)}(0) \right).
\]

(d) Use the Euler-Maclaurin formula to show that
\[
\sum_{j=1}^{n} j^k = P_{k+1}(n)
\]
is a degree-\((k + 1)\) polynomial in \(n \). Example:
\[
\sum_{j=1}^{n} j = \frac{n(n + 1)}{2}.
\]

(e) Show that the error in the trapezoidal rule satisfies
\[
\int_0^1 f(x)dx - h \left(\frac{1}{2} f(0) + f(h) + f(2h) + \cdots + f((n-1)h) + \frac{1}{2} f(nh) \right)
\]
\[
= \sum_{m=1}^{\infty} b_m h^{2m} \left(f^{(2m-1)}(1) - f^{(2m-1)}(0) \right).
\]
Problem 2 Write a matlab program `ectr.m` of the form

```matlab
function w = ectr(n, k)

% n : quadrature points are 0 ... n
% k: degree of precision

which produces the weight vector $(w_0, \ldots, w_n)$ containing endpoint-corrected trapezoidal weights of even order $k = 2, 4, \ldots, 10$: for given $n \geq 2k$. Your code should combine previous codes for the differentiation matrix, the Bernoulli numbers $b_1$ through $b_{10}$, and the Euler-Maclaurin summation formula. Use it to complete the following table of endpoint-corrected trapezoidal weights of even order $k = 2, 4, \ldots, 10$:

<table>
<thead>
<tr>
<th>$k$</th>
<th>$w_0$</th>
<th>$w_1$</th>
<th>$w_2$</th>
<th>$w_3$</th>
<th>$w_4$</th>
<th>$w_5$</th>
<th>$w_6$</th>
<th>$w_7$</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>1/2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>9/24</td>
<td>28/24</td>
<td>23/24</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

::

Check the order of accuracy of the weights on

$$\int_0^1 e^x \, dx$$

for $h = 1/32, \ldots, 1/1024$ and even $k = 2, \ldots, 10$. 

Problem 3 (a) Find an exact formula for the quintic polynomial $P_5(x) = x^5 + \cdots$ such that
\[ \int_{-1}^{1} P_5(x)q(x)dx = 0 \]
for any quartic polynomial $q$.

(b) Find exact formulas for the five roots $x_1, x_2, x_3, x_4, x_5$ of the equation $P_5(x) = 0$.

(c) Find exact formulas for the integration weights $w_1, w_2, w_3, w_4, w_5$ such that
\[ \int_{-1}^{1} q(x)dx = \sum_{j=1}^{5} w_j q(x_j) \]
exactly whenever $q$ is a polynomial of degree 5.

(d) Given any real numbers $a < b$, find exact formulas for points $y_j \in [a, b]$ and weights $u_j > 0$ such that
\[ \int_{a}^{b} q(x)dx = \sum_{j=1}^{5} u_j q(y_j) \]
whenever $q$ is a polynomial of degree 5.

(e) Explain why each of the three factors in the error estimate
\[ \int_{a}^{b} f(x)dx - \sum_{j=1}^{5} u_j f(y_j) = C_{10} f^{(10)}(\xi) \int_{a}^{b} (y-y_1)^2(y-y_2)^2(y-y_3)^2(y-y_4)^2(y-y_5)^2dy \]
is inevitable and determine the exact value of the constant $C_{10}$. 

Problem 4 Write, test and debug an adaptive 5-point Gaussian integration code gadap.m of the form

\begin{verbatim}
function [int, abt] = gadap(a, b, f, r, tol)
  % a, b: interval endpoints with a < b
  % f: function handle f(x, r) to integrate
  % r: parameters for f
  % tol: User-provided tolerance for integral accuracy
  % int: Approximation to the integral
  % abt: Endpoints and approximations

  Build a list \( abt = \{[a_1, b_1, t_1], \ldots, [a_n, b_n, t_n]\} \) of \( n \) intervals \([a_j, b_j]\) and approximate integrals \( t_j \approx \int_{a_j}^{b_j} f(x, r) \, dx \), computed with 5-point Gaussian integration. Initialize with \( n = 1 \) and \([a_1, b_1] = [a, b]\). At each step \( j = 1, 2, \ldots \), subdivide interval \( j \) into left and right half-intervals \( l \) and \( r \), and approximate the integrals \( t_l \) and \( t_r \) over each half-interval by 5-point Gaussian quadrature. If

\[ |t_j - (t_l + t_r)| > tol \max(|t_j|, |t_l| + |t_r|) \]

add the half-intervals \( l \) and \( r \) and approximations \( t_l \) and \( t_r \) to the list. Otherwise, increment \( int \) by \( t_j \). Guard against infinite loops and floating-point issues as you see fit and briefly justify your design decisions in comments.
\end{verbatim}
Problem 5 (a) Show that

\[ \int_0^1 x^{-x} \, dx = \sum_{n=1}^{\infty} n^{-n} \]

(b) Use the sum in (a) to evaluate the integral in (a) to 12-digit accuracy.

(c) Evaluate the integral in (a) by `ectr.m` to 1, 2, and 3-digit accuracy. Estimate how many function evaluations will be required to achieve \( p \)-digit accuracy for \( 1 \leq p \leq 12 \). Explain the agreement or disagreement of your results with theory.

(d) Approximate the integral \( \int_0^1 x^{-x} \, dx \) using your code `gadap.m`. Tabulate the total number of function evaluations required to obtain \( p \)-digit accuracy for \( 1 \leq p \leq 10 \). Compare your results with the results and estimates for endpoint-corrected trapezoidal integration obtained in (c).
Problem 6 Implement, debug and test a MATLAB function `pleg.m` of the form

```
function p = pleg(t, n)
% t: evaluation point
% n: degree of polynomial

This function evaluates a single value $P_n(t)$ of the monic Legendre polynomial P_n of degree n, at evaluation point t with $|t| \leq 1$. Here $P_0 = 1$, $P_1(t) = t$ and P_n is determined by the recurrence

$$P_n(t) = tP_{n-1}(t) - c_n P_{n-2}(t)$$

for $n \geq 2$, where $c_n = (n-1)^2/(4(n-1)^2 - 1)$. Be sure to iterate forward from $n = 0$ rather than recurse backward from n, and do not generate any new function handles. Test that your function gives the right values for small n where you know P_n.
Problem 7 Implement a MATLAB function `gaussint.m` of the form

```matlab
function [w, t] = gaussint( n )
% n: Number of Gauss weights and points

which computes weights \( w \) and points \( t \) for the \( n \)-point Gaussian integration rule

\[
\int_{-1}^{1} f(t) dt \approx \sum_{j=1}^{n} w_j f(t_j).
\]

(a) Find the points \( t_j \) to as high precision as possible, by applying your code `bisection.m` to `pleg.m`. Bracket each \( t_j \) initially by the observation that the zeroes of \( P_{n-1} \) separate the zeroes of \( P_n \) for every \( n \). Thus the single zero of \( P_1 = t \) separates the interval \([-1, 1]\) into two intervals, each containing exactly one zero of \( P_2 \). The two zeroes of \( P_2 \) separate the interval \([-1, 1]\) into three intervals, and so forth. Thus you will find all the zeroes of \( P_1, P_2, \ldots, P_{n-1} \) in the process of finding all the zeroes of \( P_n \).

(b) Find the weights \( w_j \) to as high precision as possible by applying your code `gadap.m` to

\[
w_j = \int_{-1}^{1} L_j(t)^2 dt
\]

where \( L_j \) is the \( j \)th Lagrange basis polynomial for interpolating at \( t_1, t_2, \ldots, t_n \).

(c) For \( 1 \leq n \leq 20 \), test that your weights and points integrate monomials \( f(t) = t^j \) exactly for \( 0 \leq j \leq 2n - 1 \).