Problem 1 Fix integer $n \geq 1$, n points x_i with $|x_i| \leq 1$, n points y_j with $|y_j| \leq 1$, n coefficients f_j, and n coefficients g_j.

(a) Fix integer $k \geq 0$. Design an algorithm for evaluating

$$f(x) = \sum_{j=1}^{n} f_j (xy_j)^k$$

at n points x_i, in $O(n)$ operations.

(b) Find a polynomial $P(x)$ with complex coefficients such that

$$|P(x) - e^{ix}| \leq \epsilon$$

on the interval $|x| \leq 1$.

(c) Design an algorithm for approximating

$$g(x) = \sum_{j=1}^{n} g_j e^{ixy_j}$$

at n points x_i in $O(n)$ operations, with absolute error bounded by

$$\epsilon \sum_{j=1}^{n} |g_j|.$$

(d) Define the $n \times n$ matrix F by

$$F_{jk} = e^{ix_j y_k}.$$

Find a rank r independent of n and an $n \times n$ matrix B with elements

$$B_{jk} = \sum_{i=1}^{r} c_{ji} d_{ik}$$

such that B has rank at most r and absolute error

$$|F_{jk} - B_{jk}| \leq \epsilon$$

for all n.

Problem 2 Show that floating point arithmetic sums

\[s_n = \sum_{k=1}^{n} \frac{1}{k^2} = 1 + \frac{1}{2^2} + \frac{1}{3^2} + \cdots + \frac{1}{n^2} \]

with absolute error \(\leq (2n + 1)\epsilon \) from left to right, while summing from right to left gives absolute error \(\leq (3 + \ln n)\epsilon \). Estimate the maximum accuracy achievable and the number of terms required in each case.
Problem 3 Suppose a and b are floating point numbers with $0 < a < b < \infty$. Show that

$$a \leq \text{fl} \left(\sqrt{ab} \right) \leq b,$$

in IEEE standard floating point arithmetic if no overflow occurs.
Problem 4 Design an algorithm to evaluate

\[f(x) = \frac{e^x - 1 - x}{x^2} \]

in IEEE double precision arithmetic, to 12-digit accuracy for all machine numbers \(|x| \leq 1|.

\[\text{Problem 4} \]
Problem 5 Figure out exactly what sequence of intervals is produced by bisection with the *arithmetic* mean for solving $x = 0$ with initial interval $[a_0, b_0] = [-1, 2]$. How many steps will it take to get maximum accuracy in IEEE standard floating point arithmetic?
Problem 6 Implement a MATLAB function `bisection.m` of the form

```matlab
function [r, h] = bisection(a, b, f, p, t)
% a: Beginning of interval [a, b]
% b: End of interval [a, b]
% f: function handle y = f(x, p)
% p: parameters to pass through to f
% t: User-provided tolerance for interval width
```

At each step \(j = 1 \) to \(n \), carefully choose \(m \) as in bisection with the geometric mean (watch out for zeroes!). Replace \([a, b]\) by the smallest interval with endpoints chosen from \(a, m, b \) which keeps the root bracketed. Repeat until a \(f \) value exactly vanishes, \(b - a \leq t \min(|a|, |b|) \), or \(b \) and \(a \) are adjacent floating point numbers, whichever comes first. Return the final approximation to the root \(r \) and a \(3 \times n \) history matrix \(h[1:3,1:n] \) with column \(h[1:3,j] = (a, b, f(m)) \) recorded at step \(j \). Try to make your implementation as foolproof as possible.

(a) (See BBF 2.1.7) Sketch the graphs of \(y = x \) and \(y = 2 \sin x \).

(b) Use `bisection.m` to find an approximation to within \(\epsilon \) to the first positive value of \(x \) with \(x = 2 \sin x \). Report the number of steps, the final result, and the absolute and relative errors.

(c) Use `bisection.m` as many times as needed to find approximations within \(\epsilon \) to all solutions \(x > 0 \) of the equation

\[
f(x) = \frac{1}{x} + \ln x - 2 = 0.
\]

Report the number of steps, the final results, and the absolute and relative errors.

(d) Use `bisection.m` to solve the equation

\[
f(x) = (x - \epsilon^3)^3 = 0
\]
on the interval \([-1, 2]\). Report the number of steps, the final result, and the absolute and relative errors.

(e) Use `bisection.m` to solve the equation

\[
f(x) = \arctan(x - \epsilon^2) = 0
\]
on the interval $[-1, 2]$. Report the number of steps, the final result, and the absolute and relative errors.