Question 1 Let p be a positive integer and
\[f(x) = 2^x \]
for $0 \leq x \leq 2$.
 (a) Find a formula for the pth derivative $f^{(p)}(x)$.
 (b) For $p = 0, 1, 2$ find a formula for the polynomial H_p of degree $2p + 1$
 such that
\[H_p^{(k)}(x_j) = f^{(k)}(x_j) \]
for $0 \leq k \leq p$, $0 \leq j \leq 1$, $x_0 = 0$, $x_1 = 2$.
 (c) For general p prove that
\[|f(x) - H_p(x)| \leq \left(\frac{1}{p+1} \right)^{2p+2} \]
for $0 \leq x \leq 2$.
 (d) Show that one step of Newton’s method for solving
\[g(y) = x \ln 2 - \ln y = 0 \]
starting from $y_0 = H_4(x)$ gives $y_1 = f(x) = 2^x$ to full double precision
accuracy for $0 \leq x \leq 2$.

Question 2 (See BF p. 192.) For integer $k \geq 4$ let
\[p_k = k \sin \left(\frac{\pi}{k} \right) \quad P_k = k \tan \left(\frac{\pi}{k} \right) \]
 (a) Show that $p_4 = 2\sqrt{2}$ and $P_4 = 4$.
 (b) Show that
\[P_{2k} = \frac{2p_k P_k}{p_k + P_k} \quad p_{2k} = \sqrt{p_k P_{2k}} \]
for $k \geq 4$.
 (c) Approximate π within 10^{-4} by computing p_k and P_k until $P_k - p_k < 10^{-4}$.
 (d) Use Taylor series to show that
\[\pi = p_k + \sum_{j=1}^{\infty} q_j k^{-2j} \quad \pi = P_k + \sum_{j=1}^{\infty} Q_j k^{-2j} \]
for some constants q_j and Q_j.
 (e) Use extrapolation with $h = 1/k$ to approximate π within 10^{-12}.

1