Question 1

Part a Error bound when summing from left to right

Define $a_k = \frac{1}{k^2}, s_n = \sum_{k=1}^n a_k, s_n^*$ be the result for s_n in floating point arithmetic (summing from left to right in s_n), and $s_n^* - s_n = e_n \varepsilon$, where ε is the machine precision.

Under these notations, we have $e_1 = 0$, and that

$$s_{n+1}^* = fl(s_n^* + fl(a_{n+1})) \quad (*)$$

$$= (s_n^* + a_{n+1}(1 + \varepsilon_1))(1 + \varepsilon_2), \text{ where } |\varepsilon_1| \leq \varepsilon, |\varepsilon_2| \leq \varepsilon$$

$$= s_n^* + a_{n+1} + a_{n+1}\varepsilon_1 + s_n^*\varepsilon_2 + a_{n+1}\varepsilon_2 + a_{n+1}\varepsilon_1\varepsilon_2$$

$$= s_{n+1} + e_n \varepsilon + a_{n+1}\varepsilon_1 + s_n \varepsilon_2 + e_n \varepsilon\varepsilon_2 + a_{n+1}\varepsilon_2 + a_{n+1}\varepsilon_1\varepsilon_2.$$

Disregarding terms of order higher than 1 in ε's gives

$$s^*_{n+1} = s_{n+1} + e_n \varepsilon + a_{n+1}\varepsilon_1 + s_n \varepsilon_2 + a_{n+1}\varepsilon_2,$$

which indicates

$$|s^*_{n+1} - s_{n+1}| \leq |e_n \varepsilon + a_{n+1}\varepsilon_1 + s_n \varepsilon_2 + a_{n+1}\varepsilon_2|$$

$$\leq (|e_n| + a_{n+1} + s_{n+1})\varepsilon;$$

that is,

$$|e_{n+1}| \leq |e_n| + a_{n+1} + s_{n+1}.$$

Applying this inequality repeatedly and the estimate that $\sum_{k=1}^{n+1} a_k \leq \sum_{k=1}^{\infty} a_k = \frac{\pi^2}{6} < 2$ to get

$$|e_{n+1}| \leq |e_1| + \sum_{k=2}^{n+1} a_k + \sum_{k=2}^{n+1} s_k$$

$$\leq 2 + 2n$$

$$= 2(n + 1).$$

Therefore we have

$$s^*_n = s_n + O(n)\varepsilon.$$

□
Part b Error bound when summing from right to left

For 1 \leq k \leq n, define \(S_k = \sum_{i=k}^{n} \frac{1}{i^2} \), \(S^*_k \) be the result for \(S_k \) in floating point arithmetic (summing from left to right in \(S_k \)), and \(S_k^* - S_k = e_k \varepsilon \), where \(\varepsilon \) is the machine precision.

Additionally, let \(b_k = \frac{1}{(n+1-k)^2} \) for 1 \leq k \leq n.

Under these notations, we have \(S_1 = \frac{1}{n^2}, |e_1| \leq b_1 \), and
\[
S_{k+1}^* = fl(S_k^* + fl(b_{k+1})) \quad (**)
\]

Notice that (**) is similar to (**), so by the same argument in part a, we get
\[
|e_n| \leq |e_1| + \sum_{k=1}^{n-1} b_{k+1} + \sum_{k=1}^{n-1} S_{k+1} = (b_1 + \sum_{k=1}^{n-1} b_{k+1}) + \sum_{k=1}^{n-1} S_{k+1} = S_n + (n-1)b_1 + \sum_{k=2}^{n} (n-k+1)b_k
\]
\[
\leq S_n + ((n-1+1)b_1 + \sum_{k=2}^{n-1} (n-k+1)b_k) + b_n
\]
\[
\leq S_n + \sum_{k=1}^{n-1} (n-k+1)b_k + b_n
\]
\[
\leq 3 + \sum_{k=1}^{n-1} \frac{1}{n-k+1} \quad \text{(since } S_n \leq 2, b_n = 1)
\]
\[
= 3 + \sum_{k=2}^{n} \frac{1}{k}
\]
\[
\leq 3 + \sum_{k=2}^{n} \int_{k-1}^{k} \frac{1}{x} \, dx
\]
\[
= 3 + \int_{1}^{n} \frac{1}{x} \, dx
\]
\[
= 3 + \ln n
\]
\[
\leq 2 \ln n, \text{ if } n \geq 10.
\]

Hence we have
\[
S_n^* = S_n + O(\ln n) \varepsilon.
\]
Question 2
We first prove the following lemma.

Lemma If real numbers a, and b satisfy $a < b$, then we have $fl(a) \leq fl(b)$.

Proof
According to the construction of IEEE floating point numbers, we have the following facts.

Fact 1 If x is already a floating point number, then $x = fl(x)$, otherwise there exists floating point number y and its next floating point number z with $y < x < z$ such that $fl(x) = y$ whenever $y < x < \frac{y + z}{2}$, and $fl(x) = z$ whenever $\frac{y + z}{2} \leq x < z$.

Fact 2 There is no floating point number between x and $fl(x)$ for any real number x.

We next discuss two cases.

Case 1: There is a floating point number c such that $a \leq c \leq b$.

Since $a \leq c$, by Fact 2, we have $fl(a) \leq c$.

Also, since $c \leq b$, by Fact 2, we have $c \leq fl(b)$.

Combining these inequalities gives $fl(a) \leq fl(b)$.

Case 2: There is no floating point number $\in [a,b]$. Then none of a and b is floating point number.

Let d be the largest floating point number with $d < a$, and e be the smallest floating point number with $b < e$.

Then We have the following results according to Fact 1.

If $a \geq \frac{d + e}{2}$, then $fl(a) = fl(b) = e$.

If $b < \frac{d + e}{2}$, then $fl(a) = fl(b) = d$.

If $a < \frac{d + e}{2} \leq b$, then $fl(a) = d < e = fl(b)$.

Hence no matter which case happens, we have $fl(a) \leq fl(b)$ whenever $a < b$.

Since $a < b$, we have $a < \frac{a + b}{2}$, by Lemma, we get $fl(a) \leq fl(\frac{a + b}{2})$. Since a is a floating point number, $a = fl(a)$.

These two relations tells us $a \leq fl(\frac{a + b}{2})$. Similar argument gives $fl(\frac{a + b}{2}) \leq b$.

Therefore we have

$$a \leq fl(\frac{a + b}{2}) \leq b.$$
Question 3

One can list the first few terms of the sequence of intervals to write down the pattern

\[[a_{2n}, b_{2n}] = [-2^{-2n}, 2^{-2n+1}], \]

and

\[[a_{2n+1}, b_{2n+1}] = [-2^{-2n}, 2^{-2n-1}]. \]

Next we prove the pattern above by induction on \(n \).

Step 1 (base case)
\([a_0, b_0] = [-1, 2] \) and \([a_1, b_1] = [-1, 2^{-1}] \) satisfy the pattern.

Step 2 (inductive step)
Assuming the pattern works for \(n = k \), that is,

\[[a_{2k}, b_{2k}] = [-2^{-2k}, 2^{-2k+1}], \]

and

\[[a_{2k+1}, b_{2k+1}] = [-2^{-2k}, 2^{-2k-1}], \]

we have

\[[a_{2k+2}, b_{2k+2}] = [2^{-1}(-2^{-2k} + 2^{-2k-1}), 2^{-2k-1}] = [-2^{-2k-2}, 2^{-2k-1}], \]

and

\[[a_{2k+3}, b_{2k+3}] = [-2^{-2k-2}, 2^{-1}(-2^{-2k-2} + 2^{-2k-1})] = [-2^{-2k-2}, 2^{-2k-3}], \]

which satisfy the pattern for \(n = k + 1 \).

By the pattern above, we have

\[[a_{1074}, b_{1074}] = [-2^{-1074}, 2^{-1073}]. \]

When computing the midpoint of such interval, we have

\[p_{1074} = \frac{-2^{-1074} + 2^{-1073}}{2} = \frac{2^{-1074}}{2} \in (0, 2^{-1074}) \]

will give 0 exactly, since the smallest subnormal number is \((-1)21-1023(0 + 2^{-52}) = 2^{-1074}\), and any positive number smaller than that will result in underflow to 0.

Hence 1075 steps are needed to get maximum accuracy.
Question 4

Part a

Taking limits on both sides of the given equation

\[x_{n+1} = -\frac{x_n^2 - c}{2b} \]

gives

\[x = -\frac{x^2 + c}{2b} , \]

that is,

\[x^2 + 2bx + c = 0 . \]

Part b

Define

\[g(x) = -\frac{x^2 + c}{2b} . \]

Then

\[|g'(x)| = \frac{|x|}{|b|} \leq \frac{1}{2} \]

whenever \(|x| \leq \frac{|b|}{2} \).

Next, we are looking for conditions on \(b \) and \(c \) such that \([-\frac{|b|}{2}, \frac{|b|}{2}] \) is an invariant interval under the function \(g \).

Case 1: \(b > 0 \)

Then function \(g(x) = -\frac{x^2 + c}{2b} \) takes maximum \(-\frac{c}{2b} \) at \(x = 0 \), and takes minimum \(-\frac{b^2 - c}{2b} \) at \(\pm \frac{b}{2} \).

In order to have the invariant property, we need

\[-\frac{c}{2b} \leq \frac{b}{2} , \]

and

\[-\frac{b^2 - c}{2b} \geq -\frac{b}{2} . \]

Straightforward computations give

\[-b^2 \leq c \leq \frac{3}{4} b^2 . \]

Case 2: \(b < 0 \)

Then function \(g(x) = -\frac{x^2 + c}{2b} \) takes maximum \(-\frac{b^2 - c}{2b} \) at \(\pm \frac{b}{2} \), and takes minimum \(-\frac{c}{2b} \) at \(x = 0 \).
In order to have the invariant property, we need

\[-\frac{b^2}{4} - c \leq \frac{-b}{2},\]

and

\[-\frac{c}{2b} \geq \frac{b}{2}.

Straightforward computations give

\[-b^2 \leq c \leq \frac{3}{4}b^2.

Hence the conditions \(-b^2 \leq c \leq \frac{3}{4}b^2\), and \(b \neq 0\) guarantee the following

1. \([-\frac{|b|}{2}, \frac{|b|}{2}]\) is an invariant interval under the function \(g\).

2. \(|g'(x)| \leq \frac{1}{2}\) whenever \(x \in [-\frac{|b|}{2}, \frac{|b|}{2}]\).

By Theorem 2.3 (page 57 in Burden and Faires), we have exactly one fixed point \(x \in [-\frac{|b|}{2}, \frac{|b|}{2}]\). (Two roots to \(g(x) = x\) can not be \(\in [-\frac{|b|}{2}, \frac{|b|}{2}]\) at the same time as the sum of these two roots is \(-2b\).

Next, we apply Theorem 2.4 (page 62 in Burden and Faires) to conclude that our algorithm converges at a rate of \(O(2^{-n})\) or better if \(x_0 \in [-\frac{|b|}{2}, \frac{|b|}{2}]\).

The desired region \(-b^2 \leq c \leq \frac{3}{4}b^2\), and \(b \neq 0\) are sketched in the Cartesian system with axes \(b\) and \(c\) in the last page.

\(\square\)
Question 5

Part a

If $c = 0$, then

$$g = -b,$$

and the conclusion clearly holds.

If $c \neq 0$, then

$$g(x) = -b - \frac{c}{x},$$

and we have

$$|g'(x)| = \frac{|c|}{x^2} \leq \frac{|c|}{2|c|} = \frac{1}{2},$$

whenever $x^2 \geq 2|c|$.

\qed

Part b

Whenever $x^2 \geq 2|c|$ and $b^2 \geq \frac{9}{2}|c|$, we have that

$$|g(x)| = |b + \frac{c}{x}| \geq |b| - \frac{|c|}{|x|} \geq \frac{3}{\sqrt{2}} \sqrt{|c|} - \frac{|c|}{\sqrt{2}|c|} = \sqrt{2}|c|,$$

which implies that

$$g(x)^2 \geq 2|c|.$$

\qed

Part c

Case 1: $c = 0$.

Clearly this gives the desired property.

Case 2: $c \neq 0$, and $b^2 \geq \frac{9}{2}|c|$.

We provide two different approaches here.

Approach 1

The interval $A = \{ x \mid x^2 \geq 2|c| \} = (-\infty, -\sqrt{2}|c|] \cup [\sqrt{2}|c|, \infty)$ from part a and b is the union of two disjoint intervals $(-\infty, -\sqrt{2}|c|]$ and $(\sqrt{2}|c|, \infty)$. So we seek conditions on b on c to make either $(-\infty, -\sqrt{2}|c|)$ or $(\sqrt{2}|c|, \infty)$ invariant under the function g.

The condition $b^2 \geq \frac{9}{2}|c|$ from part b can be splitted into two regions $b \geq \frac{3}{\sqrt{2}} \sqrt{|c|}$ and $b \leq -\frac{3}{\sqrt{2}} \sqrt{|c|}$. We actually can prove the stronger statements.
1) $b \geq \frac{3}{\sqrt{2}} |c|$ makes that g maps A to $(-\infty, -\sqrt{2}|c|]$.

2) $b \leq -\frac{3}{\sqrt{2}} |c|$ makes that g maps A to $(\sqrt{2}|c|, \infty)$.

Proof for 1)

Notice that

$$g(x) = -b - \frac{c}{x} \leq -\frac{3}{\sqrt{2}} \sqrt{|c|} + \frac{|c|}{x} \leq -\frac{3}{\sqrt{2}} \sqrt{|c|} + \frac{|c|}{\sqrt{2}|c|} = -\sqrt{2}|c|.$$

Proof for 2)

Notice that

$$g(x) = -b - \frac{c}{x} \geq \frac{3}{\sqrt{2}} \sqrt{|c|} - \frac{|c|}{|x|} \geq \frac{3}{\sqrt{2}} \sqrt{|c|} - \frac{|c|}{\sqrt{2}|c|} = \sqrt{2}|c|.$$

Hence if $b \geq \frac{3}{\sqrt{2}} |c|$ holds, no matter whether x_0 is in $(-\infty, -\sqrt{2}|c|]$ or $(\sqrt{2}|c|, \infty)$, x_1 will be in $(-\infty, -\sqrt{2}|c|]$, and therefore the whole sequence $\{x_n\}_{n=1}^\infty$ will stay in $(-\infty, -\sqrt{2}|c|]$. Thus we can apply Theorem 2.3 from the textbook to get the existence and uniqueness of the fixed point in $(-\infty, -\sqrt{2}|c|]$, and further use Theorem 2.4 to deduce the convergence of $\{x_n\}_{n=1}^\infty$ to such fixed point at a rate at least $O(2^{-n})$. Same argument can give the convergence of $\{x_n\}_{n=1}^\infty$ with a rate at least $O(2^{-n})$ when $b \leq -\frac{3}{\sqrt{2}} |c|$ holds.

Altogether, if we have that the starting point x_0 satisfies $x_0^2 \geq 2|c|$ and the condition $b^2 \geq \frac{9}{2} |c|$, the sequence converges at the desired rate.

Approach 2

The condition $b^2 \geq \frac{9}{2} |c|$ implies the discriminant for the equation $g(x) = x$ is

$$b^2 - 4c \geq \frac{9}{2} |c| - 4|c| = \frac{1}{2} |c| > 0.$$

Hence we have two real roots

$$x_\alpha = \frac{-b + \sqrt{b^2 - 4c}}{2}$$

and

$$x_\beta = \frac{-b - \sqrt{b^2 - 4c}}{2}.$$

Next we prove that there is exactly one root in the set $A = (-\infty, -\sqrt{2}|c|] \cup [\sqrt{2}|c|, \infty)$.

If they were both in A, we would have $|x_\alpha||x_\beta| \geq (\sqrt{2}|c|)^2 = 2|c|$, which contradicts with the fact that $x_\alpha x_\beta = c$. On the other hand, if $b \geq \frac{3}{\sqrt{2}} |c|$, we have that

$$x_\beta = \frac{-b - \sqrt{b^2 - 4c}}{2} \leq \frac{-\frac{3}{\sqrt{2}} \sqrt{|c|} - \sqrt{(\frac{3}{\sqrt{2}} \sqrt{|c|})^2 - 4|c|}}{2} = -\sqrt{2}|c|.$$
and if \(b \leq -\frac{3}{\sqrt{2}} \sqrt{|c|} \), we have that
\[
x_\alpha = \frac{-b + \sqrt{b^2 - 4c}}{2} \geq \frac{3}{\sqrt{2}} \sqrt{|c|} + \sqrt{\left(-\frac{3}{\sqrt{2}} \sqrt{|c|}\right)^2 - 4|c|} = \sqrt{2}|c|.
\]

Let \(y \) be the number from \(\{x_\alpha, x_\beta\} \) which is in \(A \). Then \(y = -b - \frac{c}{y} \) implies
\[
|x_{n+1} - y| = \left|(-b - \frac{c}{x_n}) - (-b - \frac{c}{y})\right| = |c|\left|\frac{1}{x_n} - \frac{1}{y}\right| = \frac{|c|}{|y||x_n|}|x_n - y| \quad (*)
\]

Since \(y \in A \), we get \(y \geq \sqrt{2|c|} \), and by part b, if the starting point \(x_0 \) satisfies \(x_0^2 \geq 2|c| \), we have \(|x_n| \geq \sqrt{2|c|} \).

Plugging these estimates to (*) yields
\[
|x_{n+1} - y| \leq \frac{|c|}{|y||x_n|}|x_n - y| \leq \frac{1}{2}|x_n - y|.
\]

We can apply it repeatedly to obtain
\[
|x_n - y| \leq 2^{-n}|x_0 - y|,
\]
that is,
\[
x_n = y + O(2^{-n}).
\]

The sketch for \(\{(b, c) | b^2 \geq \frac{9}{2}|c|\} \) in a Cartesian system with axes \(b \) and \(c \) is in the last page.
Question 6

Part a

Taking limit on both sides of the given recursive relation

\[x_{n+1} = x_n(2 - ax_n) \]

gives

\[x = x(2 - ax), \]

which is

\[x(1 - ax) = 0. \]

As \(a > 0 \), we get

\[x = \frac{1}{a} \text{ or } x = 0. \]

Part b

The given recursive relation

\[x_{n+1} = x_n(2 - ax_n) \]

can be written as

\[ax_{n+1} - 1 = -(ax_n - 1)^2. \]

Applying this repeatedly to get

\[|ax_n - 1| = |ax_0 - 1|^{2^n}. \]

In order to have the convergence of the sequence \(\{x_n\}_{n=0}^{\infty} \), we need that

\[|ax_0 - 1| < 1, \]

which is

\[|x_0 - \frac{1}{a}| < \frac{1}{a}. \]

Hence for \(x_0 \in (0, \frac{2}{a}) \), we have that

\[\lim_{n \to \infty} x_n = \frac{1}{a}. \]

Note that \(x_0 = 0 \) or \(x_0 = \frac{2}{a} \) implies that \(x_n = 0 \) for any \(n \geq 1 \), and further that

\[\lim_{n \to \infty} x_n = 0. \]

Hence whenever \(x_0 \in [\alpha, \beta] \) (with \(\alpha = 0, \beta = \frac{2}{a} \)), we have the convergence of \(\{x_n\}_{n=0}^{\infty} \).
Part c

Notice that

\[|ax_n - 1| = |ax_0 - 1|^{2^n} \]

from part b tells

\[|x_n - \frac{1}{a}| = \frac{1}{a}|ax_0 - 1|^{2^n}, \]

which indicates that

\[x_n = \frac{1}{a} + O(|ax_0 - 1|^{2^n}). \]

Part d

Let \(I \) be the \(2 \times 2 \) identity matrix.

We first generalize part a to \(2 \times 2 \) matrices.

Taking limit on both sides of the given recursive relation

\[X_{n+1} = X_n(2I - AX_n) \]

gives

\[X = X(2I - AX), \]

which is,

\[X(I - AX) = 0. \]

Hence the limit \(X \) for \(X_n \) satisfies the equation

\[X(I - AX) = 0. \]

For the generalization to part b, we first establish the following lemma.

Lemma Let \(\rho(M) \) be the maximum of the absolute value of the eigenvalues of the matrix \(M \). If \(\rho(M) < 1 \), then

\[\lim_{n \to \infty} M^n = 0, \]

which means that each entry of the matrix powers converges to 0.

Proof

Let \(J \) be the Jordan canonical (normal) form of \(M \).

Then \(J \) has the form
\[
\begin{pmatrix}
J_1 & 0 & 0 & \cdots & 0 \\
0 & J_2 & 0 & \cdots & 0 \\
\vdots & 0 & \ddots & \cdots & \vdots \\
0 & \cdots & 0 & J_{s-1} & 0 \\
0 & \cdots & \cdots & 0 & J_s
\end{pmatrix},
\]

where \(J_i \) is a \(m_i \times m_i \) matrix with eigenvalue \(\lambda_i \) on the diagonal and 1 on the superdiagonal, that is,

\[
J_i = \begin{pmatrix}
\lambda_i & 1 & 0 & \cdots & 0 \\
0 & \lambda_i & 1 & \cdots & 0 \\
\vdots & 0 & \ddots & \cdots & \vdots \\
0 & \cdots & 0 & \lambda_i & 1 \\
0 & \cdots & \cdots & 0 & \lambda_i
\end{pmatrix},
\]

Then there exists invertible matrix \(P \) such that

\[
M = PJP^{-1}.
\]

It is easy to see that

\[
M^n = PJ^nP^{-1},
\]

and since \(J \) is block-diagonal, we have

\[
J^n = \begin{pmatrix}
J_1^n & 0 & 0 & \cdots & 0 \\
0 & J_2^n & 0 & \cdots & 0 \\
\vdots & 0 & \ddots & \cdots & \vdots \\
0 & \cdots & 0 & J_{s-1}^n & 0 \\
0 & \cdots & \cdots & 0 & J_s^n
\end{pmatrix},
\]
and for \(n \geq m_i - 1 \),

\[
\begin{pmatrix}
\lambda_i^n & \binom{n}{1} \lambda_i^{n-1} & \binom{n}{2} \lambda_i^{n-2} & \cdots & \binom{n}{m_i-1} \lambda_i^{n-m_i+1} \\
0 & \lambda_i^n & \binom{n}{1} \lambda_i^{n-1} & \cdots & \binom{n}{m_i-2} \lambda_i^{n-m_i+2} \\
\vdots & 0 & \vdots & \cdots & \vdots \\
0 & \cdots & 0 & \lambda_i^n & \binom{n}{1} \lambda_i^{n-1} \\
0 & \cdots & \cdots & 0 & \lambda_i^n
\end{pmatrix}
\]

If \(\rho(M) < 1 \), then \(|\lambda_i| < 1 \) for all \(i \), and each entry of \(J_i^n \) therefore converges to 0, which indicates

\[
\lim_{n \to \infty} J_i^n = 0,
\]

and therefore

\[
\lim_{n \to \infty} M^n = \lim_{n \to \infty} PJ^n P^{-1} = 0.
\]

Assume \(A \) is invertible.

Notice that

\[
X_{n+1} = X_n(2I - AX_n)
\]

can be written as

\[
AX_{n+1} - I = -(AX_n - I)^2.
\]

Applying this repeatedly to get

\[
AX_n - I = -(AX_0 - I)^{2^n}. \quad (*)
\]

If \(\rho(AX_0 - I) < 1 \), by Lemma, we have

\[
\lim_{n \to \infty} (AX_0 - I)^n = 0.
\]

Notice that \(\{(AX_0 - I)^{2^n}\} \) is a subsequence of the convergent sequence \(\{(AX_0 - I)^n\} \), we get

\[
\lim_{n \to \infty} (AX_0 - I)^{2^n} = 0.
\]

Therefore we obtain that

\[
\lim_{n \to \infty} (AX_n - I) = 0.
\]

Since \(A \) is assumed to be invertible, multiplying through the equation above by \(A^{-1} \) gives

\[
\lim_{n \to \infty} (X_n - A^{-1}) = 0.
\]
That is to say, the assumptions that $\rho(AX_0 - I) < 1$ and that A is invertible indicate

$$\lim_{n \to \infty} X_n = A^{-1}.$$

Finally, let’s generalize part c to the 2×2 matrix under the assumption that $\rho(AX_0 - I) < 1$.

Assume AX_0 is diagonalizable, then $AX_0 - I$ is also diagonalizable. Hence there’s invertible matrix V and diagonal matrix D such that

$$AX_0 - I = VDV^{-1}.$$

Here

$$D = \begin{pmatrix} \beta_1 & 0 \\ 0 & \beta_2 \end{pmatrix},$$

where β_1 and β_2 are eigenvalues of $AX_0 - I$, and hence $|\beta_1| \leq \rho(AX_0 - I) < 1$, and $|\beta_2| \leq \rho(AX_0 - I) < 1$.

According to (*), we have

$$AX_n - I = -(AX_0 - I)^{2^n} = -VD^{2^n}V^{-1},$$

which indicates

$$X_n - A^{-1} = -A^{-1}VD^{2^n}V^{-1}.$$

Define $\phi(B) = \max\{|B_{11}|, |B_{12}|, |B_{21}|, |B_{22}|\}$ for any 2×2 matrix.

Then we have

$$\phi(A^{-1}VD^{2^n}) \leq \phi(A^{-1}V) \cdot \max\{\beta_1^{2^n}, \beta_2^{2^n}\} = \phi(A^{-1}V)(\rho(AX_0 - I))^{2n},$$

and further

$$\phi(X_n - A^{-1}) = \phi(A^{-1}VD^{2^n}V^{-1}) \leq 2\phi(A^{-1}VD^{2^n})\phi(V^{-1}) \leq 2\phi(A^{-1}V)(\rho(AX_0 - I))^{2n}\phi(V^{-1}),$$

which implies

$$(X_n - A^{-1})_{ij} \leq 2\phi(A^{-1}V)(\rho(AX_0 - I))^{2n}\phi(V^{-1})$$

for all $1 \leq i, j \leq 2$.

Since $\phi(A^{-1}V)$ and $\phi(V^{-1})$ depends only on A and X, we have

$$(X_n - A^{-1})_{ij} = O((\rho(AX_0 - I))^{2n})$$

for all $1 \leq i, j \leq 2$, which is the convergence rate of the element of X_n to A^{-1}.

\square