For the following two problems, write and debug MATLAB codes and make sure they run with the test autograders from the course web page. Test them thoroughly on test cases of your own design. When you are convinced they work, submit your codes together with

- brief discussion of any design decisions
- brief comparison of test results with theory

Part 1 Implement two MATLAB functions `cleg.m` and `pleg.m` of the form

```matlab
function c = cleg(n)
    % n: number of recurrence parameters

function [ p, pp, ppp ] = pleg(x, c)
    % x: vector of evaluation points
    % c: n-vector of recurrence parameters
```

These functions work together to evaluate all Legendre polynomials P_n of degree up to and including n, at an array of evaluation points x_j with $|x_j| \leq 1$. Here $P_0 = 1$, $P_1(x) = x$ and P_n is determined by the recurrence

$$P_n(x) = xP_{n-1}(x) - c_nP_{n-2}(x)$$

for $n \geq 2$. (As a consequence, $P'_n(x) = P_{n-1}(x) + xP'_{n-1}(x) - c_nP'_{n-2}(x)$ and similarly for $P''_n(x)$.) Each parameter c_n is determined by

$$c_n = \frac{\int_{-1}^{1} xP_{n-1}(x)P_{n-2}(x)dx}{\int_{-1}^{1} P_{n-2}(x)^2dx}$$

for $n \geq 2$, so for example $c_2 = 1/3$. Your code `cleg` should evaluate the integrals to 12-digit accuracy with your code `gadap.m` from Problem Set 07. After `cleg(n)` generates the constants c_1, c_2, \ldots, c_n, your code `pleg` should evaluate $P_n(x_j), P'_n(x_j), P''_n(x_j)$ by recurrence. `pleg` determines n by checking the length of the parameter vector c.

Part 2 Implement a MATLAB function `gaussint.m` of the form

```matlab
function [w, x] = gaussint( n )
    % n: Number of Gauss weights and points
```

which computes weights w and points x for the n-point Gaussian integration rule

$$\int_{-1}^{1} f(x)dx \approx \sum_{j=1}^{n} w_jf(x_j).$$

(a) Find the points x_j by your code `schroderbisection` from Programming Project 1, modified as necessary. Bracket each x_j initially by the observation that the zeroes of P_{n-1} separate the zeroes of P_n for every n. Thus the single zero of $P_1 = x$ separates the interval $[-1,1]$ into two intervals, each containing exactly one zero of P_2. The two zeroes of P_2 separate the interval $[-1,1]$ into three intervals, and so forth. Thus you will find all the zeroes of P_1, P_2, ..., P_{n-1} in the process of finding all the zeroes of P_n.

(b) Find the weights w_j by applying `gadap.m` to

$$w_j = \int_{-1}^{1} L_j(x)^2 \, dx$$

where L_j is the jth Lagrange basis polynomial for interpolating at x_1, x_2, \ldots, x_n.

Code Submission: Upload the MATLAB files `cleg.m`, `pleg.m`, and `gaussint.m` and any supporting files to bCourses for your GSI to grade.