(1a) Find an orthonormal basis e_1, e_2 for the range of the matrix

$$A = \begin{bmatrix} 1 & 2 & 1 \\ 1 & 2 & -1 \\ 1 & 2 & 1 \end{bmatrix} = [a_1|a_2|a_3]$$

Solution: The range of A is spanned by a_1 and a_3 since a_2 is proportional to a_1. The Gram matrix of a_1 and a_3 is given by

$$G = \begin{bmatrix} \langle a_1, a_1 \rangle & \langle a_1, a_3 \rangle \\ \langle a_3, a_1 \rangle & \langle a_3, a_3 \rangle \end{bmatrix} = \begin{bmatrix} 3 & 1 \\ 1 & 3 \end{bmatrix} = R^T R$$

where

$$R = \begin{bmatrix} \sqrt{3} & 1/\sqrt{3} \\ 0 & 2\sqrt{2}/\sqrt{3} \end{bmatrix}.$$

Thus the columns of

$$Q = [a_1|a_3] R^{-1} = \begin{bmatrix} 1 & 1 \\ 1 & -1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} 1/\sqrt{3} & -1/2\sqrt{6} \\ 0 & \sqrt{3}/2\sqrt{2} \end{bmatrix} = \begin{bmatrix} 1/\sqrt{3} & 1/\sqrt{6} \\ 1/\sqrt{3} & -2/\sqrt{6} \\ 1/\sqrt{3} & 1/\sqrt{6} \end{bmatrix}.$$

give an orthonormal basis of the range of A.
(1b) Find the 3×3 matrix P which projects orthogonally onto the range of A, and verify that P is an orthogonal projection.

Solution:

$$P = QQ^T = \begin{bmatrix}
1/\sqrt{3} & 1/\sqrt{6} \\
1/\sqrt{3} & -2/\sqrt{6} \\
1/\sqrt{3} & 1/\sqrt{6}
\end{bmatrix} \begin{bmatrix}
1/\sqrt{3} & 1/\sqrt{6} \\
1/\sqrt{3} & -2/\sqrt{6} \\
1/\sqrt{3} & 1/\sqrt{6}
\end{bmatrix}^T = \frac{1}{6} \begin{bmatrix}
3 & 0 & 3 \\
0 & 6 & 0 \\
3 & 0 & 3
\end{bmatrix}.$$

To verify that P is an orthogonal projection, we check that $P^2 = P$ and $P^T = P$.
Let g be a 2π-periodic function with g and the derivative g' both in $L^2(-\pi, \pi)$, and let $u(x, t)$ be the solution of the dispersive wave equation

$$u_t(x, t) = u_{xxx}(x, t)$$

which is 2π-periodic in x and satisfies the initial condition $u(x, 0) = g(x)$. Find the complex Fourier coefficients $\hat{u}(k, t)$ in terms of $\hat{g}(k)$.

Solution: Multiply the given equation by e^{-ikx}, divide by $1/\sqrt{2\pi}$, integrate from $-\pi$ to π, and integrate by parts to get

$$\hat{u}_t(k, t) = -ik^3\hat{u}(k, t).$$

Apply the integrating factor e^{ik^3t} and integrate to get

$$\hat{u}(k, t) = e^{-ik^3t}\hat{u}(k, 0).$$

Since $u(x, 0) = g(x)$, this simplifies to

$$\hat{u}(k, t) = e^{-ik^3t}\hat{g}(k).$$
(2b) Show that \(u \) is \(2\pi \)-periodic in \(t \):

\[
u(x, t + 2\pi) = u(x, t)\]

for \(|x| \leq \pi \) and \(t \geq 0 \). Justify the convergence of any infinite series you employ.

Solution: Since

\[
\hat{u}(k, t) = e^{-ik^3t}\hat{g}(k),
\]

incrementing \(t \) by \(2\pi \) gives

\[
\hat{u}(k, t + 2\pi) = e^{-ik^32\pi}\hat{u}(k, t).\]

Since \(k \) is an integer, \(k^3 \) is also an integer. Hence \(\hat{u}(k, t + 2\pi) = \hat{u}(k, t) \) for each \(t \geq 0 \).

Since \(g \) and \(g' \) are both in \(L^2 \), Parseval implies that

\[
\sum_k |\hat{g}(k)|^2 = \|g\|^2 < \infty
\]

and

\[
\sum_k |\hat{g}'(k)|^2 = \sum_k k^2|\hat{g}(k)|^2 = \|g'\|^2 < \infty
\]

Since \(|\hat{u}(k, t)| = |\hat{g}(k)| \) and \(|\hat{u}_x(k, t)| = |\hat{g}'(k)| \), Parseval implies that \(u \) and \(u_x \) are in \(L^2 \) for each \(t \geq 0 \). Hence the Fourier series of \(u \) converges uniformly for each \(t \geq 0 \) and summing the Fourier series gives the result.
(3a) Compute the complex Fourier coefficients \(\hat{f}(k) \) on the interval \(-\pi < x < \pi\) of the function \(f(x) = 1 \) for \(|x| \leq 1\) and 0 otherwise.

Solution:

\[
\hat{f}(k) = \frac{1}{\sqrt{2\pi}} \int_{-1}^{1} e^{-ikx} \, dx = \frac{\sqrt{2/\pi} \sin(k)}{k}.
\]

For \(k = 0 \) take the limit to get \(\hat{f}(0) = \sqrt{2/\pi} \).
(3b) Prove that
\[\sum_{k=1}^{\infty} \frac{\sin^2(k)}{k^2} = \frac{\pi - 1}{2}. \]
Justify the convergence of any infinite series that you use.

Solution: Since \(f \) is in \(L^2 \), Parseval’s equality says
\[\int_{-1}^{1} 1^2 dx = \sum_k |\hat{f}(k)|^2 \]
or
\[2 = \frac{2}{\pi} + 2 \sum_{k=1}^{\infty} \frac{2 \sin^2(k)}{k^2}. \]
Simplifying gives the result.

Extra credit: When is
\[\sum_{n=-\infty}^{\infty} f(n) = \int_{-\infty}^{\infty} f(x) dx? \]

By the Poisson sum formula,
\[\sum_{n=-\infty}^{\infty} f(n) = \sqrt{2\pi} \sum_{k=-\infty}^{\infty} \hat{f}(2\pi k) \]
where now \(\hat{f} \) is the Fourier transform of \(f \). Since
\[\hat{f}(0) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(x) dx \]
we will have
\[\sum_{n=-\infty}^{\infty} f(n) = \int_{-\infty}^{\infty} f(x) dx \]
whenever \(\hat{f}(k) = 0 \) for \(|k| \geq 2\pi \).