Question 1: Suppose you can only afford to evaluate 11 terms of either side of the PSF

\[
\frac{1}{\sqrt{4\pi t}} \sum_{-\infty}^{\infty} e^{-(x-2\pi k)^2/4t} = \frac{1}{\sqrt{2\pi}} \sum_{-\infty}^{\infty} e^{-tk^2} e^{ikx}.
\]

Find \(\delta \) such that the error in the right-hand side (truncated after 11 terms) is smaller than \(10^{-14} \) for \(t \geq \delta \) and \(|x| \leq \pi \) and the relative error in the left hand side (truncated after 11 terms) is smaller than \(10^{-14} \) for \(0 < t \leq \delta \) and \(|x| \leq \pi \).

Question 2: Use the PSF to prove the Euler-Maclaurin summation formula

\[
\sum_{n=0}^{\infty} f(n) = \frac{1}{2} f(0) + \int_{0}^{\infty} f(x) \, dx - \frac{1}{12} f'(0) + \frac{1}{720} f''(0) - \cdots
\]

for a smooth function \(f \). Find formulas for the rest of the coefficients \(B_{2k} \) in

\[
\sum_{n=0}^{\infty} f(n) = \frac{1}{2} f(0) + \int_{0}^{\infty} f(x) \, dx - \sum_{k=1}^{\infty} \frac{B_{2k}}{(2k)!} f^{(2k-1)}(0)
\]

by applying the formula to a suitable test function like \(f(x) = e^{-tx} \).

Question 3: In Problem Set 08, you proved that the Hermite functions \(h_n \) were eigenfunctions of the Fourier transform. Apply the PSF to \(h_n \) and choose parameters \(x \) and \(T \) to find formulas for eigenvectors \(f_p \in C^N \) and eigenvalues \(\lambda_p \in C \) of the \(N \times N \) discrete Fourier transform matrix \(F \) with elements

\[
F_{jk} = \frac{1}{\sqrt{N}} e^{-2\pi ijk/N}
\]

for \(0 \leq j,k \leq N-1 \). Are all the vectors \(f_p \) orthogonal to each other? Why or why not?

Question 4: (a) Use the obvious identity

\[
\frac{1}{x} = \int_{0}^{\infty} e^{-tx} \, dx
\]

to evaluate the integral

\[
\int_{-\infty}^{\infty} \frac{\sin x}{x} \, dx.
\]

1
(b) Use the double angle formula and integrate by parts to evaluate the integral
\[\int_{-\infty}^{\infty} \frac{\sin^2 x}{x^2} \, dx. \]
(c) Prove that both of these integrals converge as improper Riemann integrals (albeit for different reasons). (d) Use scaling to evaluate the integral
\[\int_{-\infty}^{\infty} \frac{\sin tx}{x} \, dx \]
for \(t \in \mathbb{R} \).