Question 1 Prove the Weierstrass Approximation Theorem: Every continuous function \(f : [-1, 1] \to \infty \) can be uniformly approximated by polynomials. I.e. given \(\epsilon > 0 \), there exists a degree \(n \geq 0 \) and a degree-\(n \) polynomial
\[
p(x) = p_0 + p_1 x + \cdots + p_n x^n
\]
such that
\[
|f(x) - p(x)| \leq \epsilon \quad \text{for} \quad |x| \leq 1.
\]

(a) Define
\[
g(t) = f(\cos t) \quad \text{for} \quad |t| \leq \pi.
\]
Show that \(g \) is even, periodic and continuous for \(|t| \leq \pi \).

(b) Find a sequence of even trigonometric polynomials
\[
q_n(t) = \sum_{|k| \leq n} q_{nk} \cos(kt)
\]
converging uniformly to \(g \) as \(n \to \infty \).

(c) Prove by induction that
\[
T_n(x) = \cos(nt)
\]
is a polynomial in the variable \(x = \cos t \).

(d) Prove the Weierstrass Approximation Theorem.

(e) Find the approximating polynomials explicitly for \(f(x) = |x| \).

Question 2 Solve the classical moment problem: is every continuous function \(f : [-1, 1] \to C \) uniquely determined by the sequence \(\{m_0, m_1, \ldots\} \) of its moments
\[
m_k = \int_{-1}^{1} x^k f(x) \, dx? \]

Question 3 (a) Compute all the moments \(m_k \) over \([0, \infty)\)
\[
m_k = \int_{0}^{\infty} x^k f(x) \, dx
\]
for \(f(x) = \exp(-x^{1/4}) \sin(x^{1/4}) \).

(b) Discuss in view of your answer to Question 2.
Question 4 (a) Compute the coefficients $\hat{f}(k)$ of the Fourier sine series

$$\sum_{k=1}^{\infty} \hat{f}(k) \sin kx$$

over the interval $|x| \leq \pi$ for the odd function $f(x) = \frac{1}{2}\text{sign}(x)$.

(b) Find an explicit formula for the first critical point $x_N > 0$ of the partial sum error

$$g_N(x) = \sum_{k=1}^{N} \hat{f}(k) \sin kx - \frac{1}{2}.$$ (I.e. find the smallest positive solution x_N of the equation $g'_N(x) = 0.$)

(c) Evaluate the limiting overshoot

$$\lim_{N \to \infty} g_N(x_N)$$

(d) Explain Gibbs’ phenomenon quantitatively.