Question 1 (a) Use Fourier transform to find a bounded solution \(u \) of
\[u_{xx} + u_{tt} = 0 \]
in the upper half plane \(x \in R, t > 0 \), with boundary conditions
\[u(x, 0) = g(x) \]
where \(g \in L^2(R) \) is bounded and continuous.

(b) Show that \(u \) attains its boundary values in the sense that
\[u(x, t) \to g(x) \]
as \(t \to 0 \).

(c) Assume that \(g' \in L^2(R) \) is also bounded and continuous. Argue directly from the Laplace equation that if
\[u_x(x, t) \to \Lambda g(x) \]
then the Dirichlet-Neumann operator \(\Lambda \) must satisfy
\[\Lambda^2 g(x) = -g''(x). \]

(d) Find the kernel of the Hilbert transform operator \(H \) such that
\[\Lambda g = H(g'). \]

Question 2 (a) Use Fourier transform to show that the bounded solution \(u \) of the free-space heat equation
\[u_t = u_{xx} \]
for \(x \in R \) and \(t > 0 \), with bounded continuous initial conditions \(u(x, 0) = u_0(x) \), is given by
\[u(x, t) = K_t * u_0(x) = \frac{1}{\sqrt{4\pi t}} \int_{-\infty}^{\infty} e^{-(x-y)^2/4t} u_0(y) dy \]
for \(t > 0 \).

(b) Show that \(u \) attains its initial conditions in the sense that
\[u(x, t) \to u_0(x) \]
as \(t \to 0 \).
Question 3 Solve the integral equation

\[D^{1/2} h(t) = \int_0^t \frac{1}{\sqrt{4\pi (t-s)}} h(s) \, ds = g(t) \]

where \(g \) is a nice function with \(g(0) = 0 \). (Hint: Square \(D^{1/2} \).)

Question 4 (a) Solve the initial-boundary value problem for the heat equation

\[u_t = u_{xx} \]

for \(x > 0, \ t > 0 \), with homogeneous initial conditions

\[u(x, 0) = 0 \]

and boundary conditions

\[u(0, t) = g(t) \]

where \(g \) is a nice function with \(g(0) = 0 \). (Hint: Try \(u(x, t) = \int_0^t K_{t-s}(x) h(s) \, ds \) and solve an integral equation for \(h \).)

(b) Assume that \(g' \in L^2(\mathbb{R}) \) is also bounded and continuous. Argue directly from the heat equation that if

\[u_x(x, t) \to \Lambda g(t) \]

as \(x \to 0 \), then the Dirichlet-Neumann operator \(\Lambda \) must satisfy

\[\Lambda^2 g(t) = -g'(t). \]

(c) Find the Dirichlet-Neumann operator \(\Lambda \).

Question 5 Use Fourier transform in the variable \(t \) to solve the problem of Question 4. (Hint: Extend \(g \) and \(u \) continuously to be zero for negative \(t \). Be careful when taking square roots of complex numbers.)