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0 Introduction

T. Gappo and G. Sargsyan have recently shown

Theorem 0.1 (Gappo, Sargsyan [2]). Suppose that there are arbitrarily large Woodin cardinals,
and that there is an lbr hod pair (P,Σ) such that P is countable, Code(Σ) is Hom∞, and
P |= ZFC+“there is a Woodin limit of Woodin cardinals; then the Chang model L(ωOR) satisfies
AD.

The proof relies heavily on the main theorem of Sargsyan’s [3]. Below we shall embellish
their proof slightly. Let F (α,X) iff X ⊆ Pω1(

ωα) and contains a club in Pω1(
ωα). We shall

show

Theorem 0.2. Suppose that there are arbitrarily large Woodin cardinals, and that there is an
lbr hod pair (P,Σ) such that P is countable, Code(Σ) is Hom∞, and P |= ZFC+“there is a
measurable Woodin cardinal. Let F (α,X) iff X contains a club in Pω1(

ωα); then

(1) L(ωOR)[F ] |= AD, and

(2) L(ωOR)[F ] |= “for all α, {X | F (α,X)} is an ultrafilter”.

We don’t see how to reduce the mouse-existence hypothesis in 0.2 to anything close to that
in 0.1.

The proof of 0.2 relies on a corresponding embellishment of the main result of [3]. Below
we shall trace through the proofs given by Sargsyan and Gappo-Sargsyan in [3] and [2], and
indicate where a few extra steps yield a proof of 0.2.

Woodin had already shown1 that the conclusions of 0.1 and 0.2 follow from the hypothesis
that there are arbitrarily large Woodin limits of Woodin cardinals. This is weaker than the
hypothesis of 0.2; we do not know what its relationship to the hypothesis of 0.1 is. Woodin’s
arguments go through long game determinacy, and seem to be fairly different from those given
here. The Gappo-Sargsyan proofs yield natural enlargements of the Chang models L(ωOR)
and L(ωOR)[F ], and connect those enlargements to the derived models of hod pairs. This
connection to the theory of hod pairs gives the proofs a special interest.

1See [7].
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1 A Chang model over the derived model of a hod mouse

Here we trace through [3]. We shall rely on the basic theory of least branch hod pairs in [5],
and the results on full normalization in [6].

Assume AD+, and let (P,Σ) be an lbr hod pair with scope HC such that P is countable.
Suppose that

P |= ZFC + “δ is a regular limit of Woodin cardinals”.

Let g be Col(ω,< δ)-generic over P , R∗g = R ∩ P [g], and Hom∗g = {p[T ] ∩ R∗g | ∃α < δ(P [g �
α] |= T is absolutely complemented}. So L(R∗g,Hom∗g) is the derived model of P at δ, and

L(R∗g,Hom∗g) |= ADR

by [5, 11.3.9]. The iteration strategies ΣP |α for α < δ extend in a canonical way to trees that
are countable in P [g], and the extensions (ΣP |α)g are Wadge cofinal in Hom∗g.

2 By [5, 11.3.2],
HOD in the sense of the derived model is an initial segment of a nondropping iterate of P ; in
fact, letting

θg = Wadge ordinal of Hom∗g,

we have
HODL(R∗g ,Hom∗g)|θg =

⋃
α<δ

M∞(P |α+,P ,Σg
P |α+,P )P [g].

The proof goes by forming in L(R∗g,Hom∗g) the direct limit system F0 consisting of all lbr hod
pairs (N,Λ) such that N is countable and OD-full, and Λ is OD-fullness preserving. The direct
limit of this system is HOD|θ, and the nondropping iterates of pairs (P |α+,P ,ΣP |α+,P ), for
α < δ, are cofinal it. Using Boolean-valued comparisons, one can show that the iterates in P
are cofinal, so that

M∞(P |α+,P ,ΣP |α+,P )P = M∞(P |α+,P ,Σg
P |α+,P )P [g].

Let us look now a stronger direct limit system.

Lemma 1.1. Let (Q,Λ) and (R,Ψ) be nondropping iterates of (P,Σ); then they can be coiterated
by iterating away least extender disagreements to a common (S,Ω).

Proof. By [6], the strategy of an lbr hod pair is positional, and hence no strategy disagreements
show up as we coiterate (Q,Λ) and (R,Ψ).

Working now in P , where δ is inaccessible, we get that if (Q,Λ) and (R,Ψ) be nondropping
iterates of (P,Σ) via trees of size < δ based on P |δ, then they can be coiterated by least
extender disagreement to a common (S,Ω) using trees of size < δ based on Q|δ and R|δ. So
working in P , we can form a direct limit system

F(P,Σ, δ) = {(Q,Λ) | (Q,Λ) is a nondropping iterate of (P,Σ)

via a tree of size < δ based on P |δ}
2See [5, 11.1.1, 11.3.4].
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with the order being

(Q,Λ) ≺ (N,Φ) iff (N,Φ) is a nondropping iterate of (Q,Λ)

and the maps being the iteration maps, and set

M∞(P,Σ, δ) = direct limit of F(P,Σ, δ).

Note that the models (Q,Λ) of the system are proper classes from the point of view of P ,
although the iterations between them have size< δ. One could also allow nondropping iterations
that are countable in P [g], and obtain the system F(P,Σ, δ)g. Boolean-valued comparisons show
that F(P,Σ, δ) is cofinal in F(P,Σ, δ)g, so they have the same direct limit.

When possible, we shall suppress P,Σ, and δ, and write F and Fg for the two systems. If
(Q,Λ) ≺Fg (R,Ω), then

πQ,R : (Q,Λ)→ (R,Ω)

and
πQ,∞ : (Q,Λ)→ (M∞(P,Σ, δ),Ψ)

are the maps of the system Fg. Here Ψ is the tail strategy determined by Σ. We don’t need to
mention the strategies in the subscript of πQ,R or πQ,∞ because Σ is positional. Let

δ∞ = πP,∞(δ).

It is not hard to see that F0 is a subsystem of F , and

HODL(R∗g ,Hom∗g)|θg =

{
M∞(P,Σ, δ)|δ∞ if δ is a limit of cutpoints in P ,

M∞(P,Σ, δ)|πP,∞(κ) if κ is the least < δ strong cardinal of P .

We are most interested in the second case, where θg = πP,∞(κ) and M∞|δ∞ properly extends
HODL(R∗g ,Hom∗g).

Definition 1.2. Let (P,Σ) be an lbr hod pair with scope HC, and P |= ZFC + “δ is a regular
limit of Woodin cardinals.” Let g be Col(ω,< δ)-generic over P ; then working in P [g], we set

Cg(P, δ) = L(R∗g,Hom∗g,M∞,
ωω2),

where M∞ = M∞(P,Σ, δ).

Note ω
P [g]
2 = δ+,P . The set ωω2 is computed in P [g]; that is, all ω-sequences from P [g] are

in it.
Now suppose δ is also measurable in P , via the normal measure D. Let g be Col(ω,< δ)-

generic over P . It is well known that in P [g], D induces a supercompactness measure µD that
is defined on all A ⊆ Pω1(R∗g) such that A is definable from parameters in P ∪ ωOR.3 In P [g]

3µD(A) = 1 iff ∃X ∈ D∀α ∈ X(R ∩ P [g � α] ∈ A). The definability of A and the homogeneity of the forcing
imply that either µD(A) = 1 or µD(Pω1

(R) \A) = 1.
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there is for each α < ω2 a definable4 surjection of R onto ωα, and hence a definable surjection
πα of Pω1(R) onto Pω1(

ωα). So we can define

µαD(B) = 1⇔ µD(π−1α (B)) = 1,

and µαD is defined on all B ⊆ Pω1(
ωα) such that B is definable in P [g] from parameters in

P ∪ ωOR. µD is fine and normal on its domain5, and thus the µαD are all fine and normal on
their domains.

Definition 1.3. Let (P,Σ) be an lbr hod pair with scope HC, and P |= ZFC+“δ is a measurable
limit of Woodin cardinals, as witnessed by the normal measure D on δ”. Let g be Col(ω,< δ)-
generic over P ; then working in P [g], we set

Cg(P,D)+ = L(R∗g,Hom∗g,M∞,
ωω2)[FD],

where M∞ = M∞(P,Σ, δ), and FD(α,B) iff α < ω2 and µαD(B) = 1.

Notice that R∗g = R ∩ P [g], so R∗g is OD in P [g]. Building on this, it is not hard to see that
every set in Cg(P,D)+ is definable in P [g] from parameters in P ∪ ωOR. Thus for all α < δ+,P ,

Cg(P,D)+ |= {B | FD(α,B)} is a fine, normal ultrafilter on Pω1(
ωα).

Sargsyan [3] proves part (a) of the following theorem. The proof of (b) is nearly the same.

Theorem 1.4. [Sargsyan [3]] Assume AD+ and let (P,Σ) be an lbr hod pair with scope HC.
Suppose that P |= “δ is a regular limit of Woodin cardinals, and g is Col(ω,< δ)-generic over
P ; then

(a) P (R∗g) ∩ Cg(P ) = Hom∗g, and thus Cg(P ) |= ADR, and

(b) if δ is measurable via the normal measure D, then P (R∗g) ∩ Cg(P,D)+ = Hom∗g, so that
Cg(P,D)+ |= ADR.

Proof. For definiteness, we prove (b). Let A ⊆ R∗g and A ∈ Cg(P,D)+. Writing M∞ =
M∞(P,Σ, δ), we have that A is definable over Cg(P,D)+ from some ordinal α, some real x0,
some t : ω → δ+,P , M∞, and some Hom∗g set. Let us regularize the parameters.

We assume toward contradiction that A /∈ Hom∗g, and take α least such that some A /∈ Hom∗g
is definable over Cg(P,D)+ from such parameters. Then α is definable over C(P,D)+, so can
assume α = 0.

The iteration strategies Σg
P |γ are Wadge cofinal in Hom∗g, so by enlarging our real x0 we may

assume the Hom∗g parameter is Σg
P |γ0 , where γ0 < δ. So we can fix a formula ϕ such that

z ∈ A iff Cg(P,D)+ |= ϕ[Hom∗g,M∞, FD, x0,Σ
g
P |γ0 , t, z],

4From parameters in P .
5For example, if x 7→ Ax is OD(P ∪ ωOR)P [g] and µD(Ax) = 1 for all x ∈ R∗g, then for µD a.e. σ,

∀x ∈ σ(σ ∈ Ax).
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where M∞ = M∞(P,Σ, δ). 6

Since
δ+,M∞∞ = δ+,P ,

we may assume ran(t) ⊆ δ∞. Since cof(δ∞) = δ = ω1 in P [g], ran(t) is then bounded in
δ∞. F(P,Σ, δ) is countably directed, so we have (P,Σ) ≺ (Q,ΣQ) ∈ F(P,Σ, δ) such that
ran(t) ⊆ ran(πQ,∞). We assume γ0 was chosen large enough that for γ1 = πP,Q(γ0),

ran(t) ⊆ πQ,∞“γ1.

Let x1 be a real that codes x0, Q|γ1, the function

s(i) = π−1Q,∞(t(i)),

and the embedding
π0 = πP,Q � P |γ0.

Letting γ2 be the least Woodin of Q strictly above γ1, we may assume that P -to-Q includes a
genericity iteration such that x1 ∈ Q[h0], where h0 is Col(ω, γ2)-generic over Q and h0 ∈ P [g].
Thus

x0, s, π0 ∈ Q[h0].

The following sublemma captures the absoluteness of our definition of A that is behind every-
thing.

Sublemma 1.5. Let (Q,ΣQ) ≺F (R,ΣR), where crit(πQ,R) > γ2, and let DR = πP,R(D). Let
h1 ∈ P [g] be generic over R[h0] for some poset of size < δ; then for any real z ∈ R[h0][h1],

z ∈ A,

if and only if

R[h0][h1] |=1 forces in Col(ω,< δ) that

Cġ(R,DR)+ |= ϕ[Hom∗ġ, FDR ,M∞(R,ΣR, δ), x0, (Σ
ġ
R|γ1)

π0 , πR,∞(s), z].

Proof. In the formula being forced by Col(ω,< δ), ġ is the name for the Col(ω,< δ) generic.
The other objects (Ψ, DR,M∞(R,Ψ, δ), x0, π0, s, z) belong to R[h0][h1], and we should have
written checks for their forcing names.

To prove the sublemma, let i : R→ S come from an R∗g-genericity iteration of R with crit(i)
above the size of the forcing that gave us h1, so that i lifts to

i : R[h0][h1]→ S[h0][h1],

6M∞ is a proper class of Cg(P,D)+, so ϕ must use it as a predicate. A would have to be definable from
M∞|δ++,P anyway.
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and we have k that is Col(ω,< δ)-generic over S[h0][h1] such that

R∗g = R ∩ S[h0][h1][k].

i comes from a normal stack of normal trees 〈Tα | α < δ〉 is constructed in P [g] from an
enumeration 〈xα | α < δ〉 of R∗g. Tα makes xα generic for the collapse of the next Woodin
cardinal going up. For each α < δ, 〈Tξ | ξ < α〉 is countable in P [g], so that its last model
(Sα,Ψα) ∈ F(P,Σ, δ). (S,Ψ~T ,S) is not itself in F(P,Σ, δ) because the iteration leading to it is
too long.

So S0 = R, Sδ = S, and for α < δ, Sα is the base model of Tα. Let

iα,β : Sα → Sβ

be the iteration map, so that iα,β = πFPSα,Sβ when α < β < δ, and i0,δ = i. We can arrange
that all critical points of Tα are strictly greater than ν, where ν is the least inaccessible strictly
greater than i0,α(α). This has the consequence that

for D-a.e. α(i(α) = α).

Thus i(δ) = δ, and for any X ∈ P ∩ S, X ∈ D iff X ∈ DS.
The most difficult point in Sargsyan’s argument is

M∞(R,ΣR, δ) = M∞(S,ΣS, δ),

and
πFRR,∞“(s) = πFSS,∞“(s).

Let us assume this and finish the proof of 1.5.
Let l be a re-arrangement of 〈h0, h1, k〉 as a Col(ω,< δ)-generic over S. Since crit(i) > γ2

and i : R[h0][h1]→ S[h0][h1] is elementary, it is enough to show

z ∈ A iff Cl(S,DS)+ |= ϕ[Hom∗l , FDS ,M∞(S,ΣS, δ), x0, (Σ
l
S|γ1)

π0 , πS,∞(s), z].

But note that R ∩ P [g] = R ∩ S[l], and since δ+,P = δ+,S,

(ωω2)
P [g] = (ωω2)

S[l].

The strategies Σl
S|α, for α < δ a cardinal of S, are each projective in some tail of a strategy

of the form (Σg
P |γ for γ < δ, where P |γ iterates past S|α without dropping. Every (Σg

P |γ is
projective in its tails corresponding to nondropping iteration, by pullback consistency. Thus
we have

Hom∗g = Hom∗l .

Since D and DS agree on the sets P [g] ∩ S[l] and M∞(P,Σ, δ) = M∞(S,ΣS, δ), we get

Cg(P,D)+ = Cl(S,DS)+.
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This implies that for all z ∈ R ∩ P [g],

Cg(P,D)+ |= ϕ[Hom∗g,M∞, FD, x0,Σ
g
P |γ0 , t, z]

if and only if

Cl(S,DS)+ |= ϕ[Hom∗l ,M∞(S,ΣS, δ), x0, (Σ
l
S|γ1)

π0 , πS,∞“s, z].

(Note here that t = πFRR,∞“(s) = πFSS,∞“(s).) This equivalence yields Sublemma 1.5.

For the proof that M∞(R,ΣR, δ) = M∞(S,ΣS, δ) and πR,∞FR“(s) = πFSS,∞“(s), the reader
should see [3, Theorem 3.8]. We shall just sketch the main points.

The proof uses some elementary facts about the iteration trees that result from comparing
iterates of a single mouse pair that go beyond Lemma 1.1. These facts have some general
interest, so we prove them here. There are also versions of these facts proved in [4].

Definition 1.6. Suppose (M,Ω) is a mouse pair. We say that (Q,Ψ) is γ-sound over (M,Ω)
iff (Q,Ψ) is a nondropping iterate of (M,Ω) with iteration map i, and Q = HullQ(γ ∪ ran(i)).

The next two lemmas can be applied to mouse pairs in F(P,Σ)g, but they are more general
than that, so we leave the background hypotheses somewhat vague. Like Lemma 1.1, they are
consequences of full normalization.

Lemma 1.7. Let (Q,Ψ) and (R,Φ) be γ-sound over (M,Ω), and suppose Q|γ = R|γ; then
(Q,Ψ) = (R,Φ).

Proof. There are normal trees T and U leading from (M,Ω) to (Q,Ψ) and (R,Φ) respectively.
Letting E and F be the extenders of their main branches, ν(E) ≤ γ and ν(F ) ≤ γ by γ-
soundness. But E � γ = F � γ because T and U come from iterating disagreements with
Q|γ = R|γ. Thus E = F , so (Q,Ψ) = (R,Φ).

Let α be a regular cardinal of N . We say that a tree S on N is based on N |α if S = T + for
some T on N |α.7 It is easy to see that a normal tree S is based on N |α iff for all ξ+ 1 < lh(S),

either the partial iteration map î
S
0,ξ is undefined at α, or lh(ESξ ) < î0,ξ(α).

If crit(ESξ ) > ν for all ξ, then we say S is above ν.

Lemma 1.8. Let (M,Ω) be a mouse pair, and (Q,Ψ) and (R,Φ) nondropping iterates of (M,Ω)
via stacks based on M |α and above ν, where α is a cardinal of M . Let i = iT and j = iU be
the iteration maps, and let W and V be the normal trees on Q and R with common last model
(S,Λ) that come from iterating away least extender disagreements. Then

(1) W is based on Q|i(α) and above ν, and V is based on R|j(α) and above ν, and

(2) if all measures in the branch extenders of M-to-Q and M-to-R concentrate on η, then all
measures in the branch extender of M-to-S concentrate on η.

7T + is the lift of T under the identity map. See [5, 4.5.19].
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Proof. We start with (2). Let

Q

M S

R

i

j

k

l

be the comparison maps. Thus k ◦ i = l ◦ j. Let η∗ = k ◦ i(η) = l ◦ j(η), and E = Ek◦i = El◦j.
Then Ult(M,E � η∗) is a model ofW , namely the first model N on the main branch ofW such
that crit(iWN,S) > η∗. Similarly, Ult(M,E � η∗) is a model of V . Since we were iterating away
extender disagreements, S = Ult(M,E � η∗), as desired.

For (1), suppose E is an extender of minimal length used inW or V that is bad, in the sense

that either crit(E) ≤ ν, or E = EWµ and î
W
0,µ ◦ i(α) < lh(E), or E = EVη and î

V
0,η ◦ j(α) < lh(E).

By the symmetry, we may assume that E = EWµ . Note that since î
W
0,µ(i(α)) is defined and i(α)

is a cardinal of Q, the branch [0, µ]W of W does not drop at all.
Let

X = X(T ,W � µ+ 1)

and

Y = X(U ,V � µ∗ + 1)

be the full normalizations, where µ∗ is least such that lh(EVµ∗) ≥ lh(E). W � µ+1 and V � µ∗+1
are based on Q|i(α) and R|j(α) respectively, and above ν, by our choice of E. It follows that
X and Y are based on M |α and above ν.

The last models of X and Y are MW
µ and MV

µ∗ , and

MW
µ || lh(E) = MV

µ∗|| lh(E).

Let γ be least such that E is on the sequence of MX
γ , that is, least such that either lh(EXγ ) ≥

lh(E) or γ + 1 = lh(X ). X and Y are normal and have last models that agree to lh(E), so

X � γ + 1 = Y � γ + 1.

E is on the sequence of MX
γ = MY

γ , and E is not on the sequence of MY
∞ = MV

µ∗ because it was
part of a disagreement, so

E = EYγ .
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So if crit(E) ≤ ν, then Y uses an extender with critical point ≤ ν, contradiction.
Thus crit(E) > ν, [0, µ]W ∩DW = ∅, and iW0,µ ◦ i(α) < lh(E). We claim γ + 1 = lh(X ). For

otherwise [0,∞]X uses an extender F such that lh(F ) > lh(E), and lh(F ) < iX0,∞(α) because X
is based on M |α8, so lh(E) < iX0,∞(α) = iW0,µ ◦ i(α), contradiction.

But then

iY0,γ(α) = iX0,γ(α)

= iX0,∞(α)

= iW0,µ ◦ i(α) < lh(E).

Since E = EYγ , we have that Y is not based on M |α, contradiction.

Let us drop the iteration strategies from our notation when it is clear how to fill them in.
We shall define an isomorphism j : M∞(S)|δS∞ →M∞(R)|δ∞. Thus δS∞ = δ∞, and since M∞(R)
and M∞(S) are both δ∞-sound, M∞(R) = M∞(S) by Lemma 1.7.

Let x ∈M∞(S)|δS∞, and pick W0 and x0 such that

x = πFSW0,∞(x0).

Let U0 be the stack from S to W0
9, and pick a regular cardinal α of R such that

(i) i0,α(α) = α,

(ii) U0 is based on S|α = Sα|α, and

(iii) x0 ∈ W0|πS,W0(α).

Let N0 be the last model of U0 when it is regarded as an iteration tree on Sα, and let

k0 : N0 → W0

come from copying iα,δ : Sα → S via the iteration map of U0. It is important that k0 is itself
an iteration map, via the stack of lifts of the Tη for α ≤ η < δ. Note also crit(k0) > α, so
k0(x0) = x0. We now set

j(x) = πFRN0,∞(x0).

We must see that j(x) is independent of our choices for U0 and α. (These determine W0,
x0, N0, and k0.) Suppose U1 and β are chosen instead, with associated W1, x1, N1, and k1. We
may assume that U1 = 〈U0,V〉 for some V on W0 and α < β. The relevant diagram is

8Let F = EXξ be applied to MXβ ; then crit(F ) < λ(EXβ ) < iX0,β(α), so lh(F ) < iX0,ξ+1(α).
9U0 can be taken to be a single normal tree, but we don’t need that.
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M∞(R) M∞(S)

N1 W1

N0 J W0

Sα Sβ S

π
FR
N1,∞ π

FS
W1,∞

k1

V V

l0 l1

U0 U0 U0

iα,β iβ,δ

π
FR
N0,∞

Here k0 = l1 ◦ l0. Since l0 is an iteration map, πFRN0,∞ = πFRN1,∞ ◦ i
V ◦ l0. The commutativity of

the diagram implies that πFRN0,∞(x0) = πFRN1,∞(x1), as desired.
We must also see that j is surjective. The relevant diagram is below. Let y ∈ M∞(R)|δ∞

and y = πFRJ,∞(y1). Let T be the tree from R to J , and let α be a regular cardinal of R such that
α < δ, i0,α(α) = α, and T is based on R|α. Let (V ,U0) be the coiteration trees on J and Sα,
with common last model N0. Note that U0 is based on Sα|α by Lemma 1.8. Since crit(iα,δ) > α,
we can regard U0 as a tree on S, with last model W0. Letting k0 : N0 → W0 come from lifting
iα,β, we have crit(k0) > α. Let x0 = iV(y1) = k0(i

V(y1)), and x = πFSW0,∞(x0). One can easily
check that j(x) = y. Here is the relevant diagram:

M∞(R) M∞(S)

J N0 W0

R Sα S

π
FR
J,∞ π

FR
N0,∞ π

FS
W0,∞

V k0

T U0 U0

i0,α iα,δ

This completes the proof of Lemma 1.5.

We can now finish the proof of Theorem 1.4. Let ν be the least Woodin cardinal of R strictly
greater than γ2. Let τ be a term such that whenever h1 is Col(ω, ν)-generic over R,

z ∈ τh1 iff R[h0][h1] |= 1 forces in Col(ω,< δ) that

Cġ(R,DR)+ |= ϕ[Hom∗ġ, FDR ,M∞(R,ΣR, δ), x0, (Σ
ġ
R|γ1)

π0 , πR,∞(s), z].

Then z ∈ A iff there is an iteration map i : R → Q according to Σg
R|ν and a generic h for

Col(ω, i(ν)) such that z ∈ i(τ)h. Thus A is projective in Σg
R|ν , so that A ∈ Hom∗g, as desired.
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2 Proof of Theorem 0.2

Suppose that there are arbitrarily large Woodin cardinals, and let (P,Σ) be an lbr hod pair
such that P is countable, Code(Σ) is Hom∞, and

P |= ZFC + “δ is a measurable Woodin cardinal.

Let F (α,X) iff X contains a club in Pω1(
ωα); we wish to show that L(ωOR)[F ] |= AD, and

L(ωOR)[F ] |= “for all α, {X | F (α,X)} is an ultrafilter”. Suppose not, and let α0 be the least
bad level of L(ωOR)[F ]; that is, let α0 be least such that either

(1) Lα0(
ωOR)[F ] |= ¬AD, or

(2) there is some η < α0 and X ⊆ Pω1(
ωη) such that X is definable over Lα0(

ωOR)[F ] and
neither F (η,X) nor F (η, Pω1(

ωη) \X).

We may assume without loss of generality that α0 < ω2 and CH holds. For letting G
be Col(ω1, α0)-generic over V , our hypotheses still hold in V [G], and because no new count-
able sequences of ordinals are added and stationarity in Pω1(Z) is preserved, (L(ωOR)[F ])V =
(L(ωOR)[F ])V [G], and α0 is still the least bad level of L(ωOR)[F ]V [G].

By CH, we can fix A ⊆ ω1 such that A codes Lα0(
ωOR)[F ] as well as the relevant clubs.

(That is, if η,X ∈ Lα0(
ωOR)[F ] and F (η,X), then X contains a club that is coded into A.)

We now construct a genericity iteration of (P,Σ) analogous to the iteration that occurs

in the proof that iterable mice with measurable Woodin cardinals can compute (Σ2
1)
V Col(ω1,R)

truth.10 Let B be the δ-generator extender algebra of P , and let D be the order zero measure
of P on δ. We iterate P by Σ so as to make A generic over the image of B, iterating away
extenders that induce axioms not satisfied by A when we encounter them, and using the current
image of D to continue if there are no such extenders.

The result is an iteration tree T of length ω1 + 1 on (P,Σ) with associated iteration map

i : P → Q = MT
ω1

such that

(1) i(δ) = ω1,

(2) A is i(B)-generic over Q,

(3) for club many η < ω1,

(a) η = iT0,η(η) = crit(iTη,ω1
), and ETη = iT0,η(D),

(b) A ∩ η is iT0,η(B)-generic over Q, and

(4) RV = RQ[A] = RQ[g], for some Col(ω,< i(δ))-generic g over Q.

10See the proof of Theorem 5.9 in [1] for the details of this construction.
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By (3)(a), i(D) agrees with the club filter on ω1 for sets in Q. Every real in V is coded into A∩η
for some η < ω1, so by (3)(b), every real in V is generic over Q for a poset of size < ωV1 = i(δ)
in Q. This and Solovay’s factoring lemmas yield (4).

Fixing g as in (4), let us consider the generalized derived model Cg(Q, i(D))+ of Theorem

1.4(b). Note that α0 < ω
Q[g]
2 because A is Q-generic and codes a collapse of α0 to ω1. Moreover,

for η < α0, Fη ∩ Lα0(
ωOR)[F ] is the club filter. But i(D) is generated by clubs, so (Fi(D))η ∩

Cg(Q, i(D)) is generated by clubs for all η < ω
Q[g]
2 ; moreover these (Fi(D))η ∩ Cg(Q, i(D)) are

all total over Cg(Q, i(D)). It follows that

Lα0(
ωOR)[F ] = (Lα0(

ωOR)[Fi(D)])
Cg(Q,i(D)).

This implies that α0 is not bad, a contradiction. �
The proof of 0.1 involves more work, in that one cannot move δ all the way out to ωV1 in an

iteration.11 One must instead move δ into some properly chosen club C ⊆ ω1, and argue that
this is good enough. See [2].

3 Some questions

The proofs of 0.1 and 0.2 give corresponding generic absoluteness theorems. Let I(α) =
Lα(ωOR) and J(α) = Lα(ωOR)[F ]. Let

ThC1 = {ϕ | ∃α(Lα(ωOR),∈, I � α) |= ϕ)},
ThC

+

1 = {ϕ | ∃α(Lα(ωOR)[F ],∈, J � α) |= ϕ)}.

Corollary 3.1. Under the hypotheses of 0.1, (ThC1)V = (ThC1)V [G], for all G set generic over

V . Under the hypotheses of 0.2, (ThC
+

1 )V = (ThC
+

1 )V [G], for all G set generic over V .

Woodin [7] shows the generic absoluteness of the full first order theories of C and C+, and
obtains indiscernibles for the models. We don’t see how to do that using the methods above.
Can this be done?

Woodin also showed that if A ⊆ ωOR and A ∈ C+, then GA is determined (in V , not in
C+). It should be possible to show this for A ⊆ ωOR in Cg(P,D)+, but we do not see a proof.

Another question is whether θg is regular in Cg(P,D)+, perhaps under stronger hypotheses
on the hod pair (P,Σ). So far as we know, Woodin’s [7] does not answer the corresponding
question for the pure Chang models C and C+.

More generally: what is the first order theory of Cg(P,D)+? How does it depend on (P,Σ)?
.

11It δ is regular but not measurable, its images under iteration have cofinality ω.
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