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Abstract

This is the first of two papers on the fine structure of HOD in models of the Axiom of
Determinacy (AD). Let M = ADT 4+ V = L(p(R)). [13] shows that under a natural hypothesis
on the existence of iteration strategies, the basic fine structure theory for pure extender models
goes over to HODM . In this paper, we prove a fine condensation theorem, quite similar to
Theorem 9.3.2 of Zeman’s book [16], except that condensation for iteration strategies has been
added to the mix. In the second paper, we shall use this theorem to show that in HOD™ 0,

holds iff x is not subcompact.

1. INTRODUCTION

One goal of descriptive inner model theory is to elucidate the structure of HOD (the universe of
hereditarily ordinal definable sets) in models M of the Axiom of Determinacy. HODM is close to M
in various ways; for example, if M F AD" +V = L(p(R))!, then M can be realized as a symmetric
forcing extension of HODM | so that the first order theory of M is part of the first order theory of
its HOD. ? For this and many other reasons, the study of HOD in models of AD has a long history.
We refer the reader to [12] for a survey of this history.

The study of HOD involves ideas from descriptive set theory (for example, games and definable
scales) and ideas from inner model theory (mice, comparison, fine structure). One early result
showing that inner model theory is relevant is due to the first author, who showed in 1994 ([11])
that if there are w Woodin cardinals with a measurable above them all, then in L(R), HOD up to
0 is a pure extender mouse. Shortly afterward, this result was improved by W. Hugh Woodin, who
reduced its hypothesis to AD*®) | and identified the full HOD*®) as a model of the form L[M, %],
where M is a pure extender premouse, and Y is a partial iteration strategy for M. HODA®) g
thus a new type of mouse, sometimes called a strategy mouse, sometimes called a hod mouse. See

[14] for an account of this work.
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Since the mid-1990s, there has been a great deal of work devoted to extending these results to
models of determinacy beyond L(R). Woodin analyzed HOD in models of AD" below the minimal
model of ADg fine structurally, and Sargsyan pushed the analysis further, first to determinacy
models below ADg + “@ is regular” (see [2]), and more recently, to determinacy models below the
minimal model of the theory “AD" 4+ © = 6,.1 + 0, is the largest Suslin cardinal” (commonly
known as LSA). (See [3].) The hod mice used in this work have the form M = L[E, 3], where E is
a coherent sequence of extenders, and X is an iteration strategy for M. The strategy information
is fed into the model M slowly, in a way that is dictated in part by the determinacy model whose
HOD is being analyzed. One says that the hierarchy of M is rigidly layered, or extender biased.
The object (M, ) is called a rigidly layered (extender biased) hod pair.

Putting the strategy information in this way makes comparison easier, but it has serious costs.
The definition of “premouse” becomes very complicated, and indeed it is not clear how to extend
the definition of rigidly layered hod pairs much past that given in [3]. The definition of “extender
biased hod premouse” is not uniform, in that the extent of extender bias depends on the determinacy
model whose HOD is being analyzed. Fine structure, and in particular condensation, become more
awkward. For example, it is not true in general that the pointwise definable hull of a level of M
is a level of M. (The problem is that the hull will not generally be sufficiently extender biased.)
Because of this, it is open whether the hod mice of [3] satisfy Vk[,. (The second author did show
that VkO, 2 holds in these hod mice; cf. [3].)

The more naive notion of hod premouse would abandon extender bias, and simply add the least
missing piece of strategy information at essentially every stage. This was originally suggested by
Woodin. The first author has recently proved a general comparison theorem that makes it possible
to use this approach, at least in the realm of short extenders. The resulting premice are called
least branch premice (Ipm’s), and the pairs (M, X)) are called least branch hod pairs (Ibr hod pairs).?

Combining results of [13] and [10], one has

Theorem 1.1 ([13],[10]). Assume ADT+ “there is an (w1,w1) iteration strategy for a pure extender
premouse with a long extender on its sequence”. LetT' C P(R) be such that L(T',R) E ADr+ “there
is no (w1, w1) iteration strategy for a pure extender premouse with a long extender on its sequence”;

then HOD*T'R) s o least branch premouse.

Of course, one would like to remove the iterability hypothesis of 1.1, and prove its conclusion
under AD™ alone. Finding a way to do this is one manifestation of the long standing iterability
problem of inner model theory. Although we do not yet know how to do this, the theorem does
make it highly likely that in models of ADr that have not reached an iteration strategy for a pure
extender premouse with a long extender, HOD is an Ipm.

Least branch premice have a fine structure much closer to that of pure extender models than that

of rigidly layered hod premice. The book [13] develops the basics, the solidity and universality of

3The (pure extender or least branch hod) premice in the paper are called pfs (projectum-free space) premice in
[13]. We will occasionally omit the “pfs” for brevity. All premice used in this paper are pfs premice (and their strong
cores), see Section 2 for more discussion.



standard parameters, and a coarse form of condensation. The main theorem of this paper, Theorem
4.6, is a stronger condensation theorem. The statement of 4.6 is parallel to that of Theorem 9.3.2 of
[16], but it has a strategy-condensation feature that is new even in the pure extender model context.
The proof of 4.6 follows the same outline as the proofs of solidity, universality, and condensation
given in [13], but there are a number of additional difficulties to be overcome. These stem from
the restricted elementarity we have for the ultrapowers of phalanxes that are taken in the course
of the proof.

Theorem 4.6 is one of the main ingredients in the proof of the main theorem of our third paper.
We say that (M, X) is a mouse pair iff M is either a pure extender pfs premouse or a least branch
pfs premouse, and X is an iteration strategy for M that has strong hull condensation, normalizes
well, is internally lift consistent, and in the least branch case, is pushforward consistent. See [13,
Chapter 9] and Section 2 below for a full definition.*

Theorem 1.2 (AD"). Let (M,X) be a mouse pair. Let k be a cardinal of M such that M & “k*

exists”; then in M, the following are equivalent.
1. O,.
2. Uy <k

3. Kk is not subcompact.

4. The set of v < kT such that M|v is extender-active is non-stationary in k.

The special case of this theorem in which M is a pure extender model is a landmark result of
Schimmerling and Zeman. (See [5].) Our proof follows the Schimmerling-Zeman proof quite closely.

Theorem 1.2 has applications to consistency strength lower bound questions that we discuss in
the second paper. But our work was also motivated by the desire to put the fine structure theory of
[13] to the test, so to speak. Determining the pattern of [J is a good way to go one level deeper into
the world of projecta, standard parameters, restricted elementarity, and condensation theorems.
We found when we did so that the definition of hod premouse given in the first draft of [13] had
problems, in that strategy information was being added in a way that might not in general be
preserved by X1 hulls.” The better method for strategy insertion comes from [%], and we describe
it further below. [13] has been revised so that it now uses this method.

Acknowledgements. The work reported here began when the second author visited the first
author in March and June of 2016 at UC Berkeley. The second author thanks the NSF for its
generous support through grants No DMS-1565808 and DMS-1945592.

4Theorem 4.6 is also used heavily in the proof in [9] that the iteration strategy component of a mouse pair fully
normalizes well, and is therefore positional.

®Remark 2.47 of [8] shows that in fact it is preserved by i hulls, but the proof involves a phalanx comparison,
and so a lot of theory just to prove a property of mice one would like to have available at the beginning.



2. LEAST-BRANCH HOD PREMICE

All premice used in this paper are in the pfs hierarchy, defined in [13]. We adopt for the most part
the fine structure and notation from [13, Chapter 9] concerning least-branch hod premice (Ipm’s)
and lbr hod pairs. A similar, albeit simpler, fine structure for pure extender premice is discussed in
[13, Chapter 4]. Fine structural condensation is the point of this paper, so we cannot avoid going
into the details covered in these chapters. (Our main result is a fine structural refinement of [13,
Theorem 4.10.10].) We summarize some main points below. The reader can see [13, Chapters 4,9]

for more details.

2.1. Potential least branch premice

The language for lpm’s is £1 with symbols €, E, F,%, B,4. Lo = L1 — {B, Z} is the language of
pure extender mice. An lpm M is of the form (N, k) where N is an £; amenable structure that is
k-sound. We write k = deg(M). We often identify M with N and suppress k. o(M) denotes the
ordinal height of M, and 6(M) denotes the a such that o(M) = wa. (M) = (6(M),deg(M)) is
the index of M. For (v,1) <jex{(M), M|(v,1) is the initial segment of M with index (v,1). We write
N QM iff N = M|(v,1) for some (v,1) <jexl(M). If v < 6(M), write M|v for M|(v,0).5

EM codes the sequence of extenders that go into constructing M. FM it non-empty is the
amenable code for a new extender being added; in this case, we say that M is extender-active
(or just E-active). If FM = F is nonempty, then M E crt(F)" exists and o(M) = i} (1), where
p = crt(F)". Also F must satisfy the Jensen initial segment condition (ISC), that is, whole initial
segments of F must be in EM (see [10] for a detailed discussion of ISC). 4 is the index of the
largest whole initial segment of F' if exists; otherwise, ¥ = 0. We also demand M is coherent, that
is i (BEM) | o(M) 41 = (EM)~(0).

Y™ and BM are used to record information about an iteration strategy Q of M. M codes the
strategy information added at earlier stages; ©™ acts on A-separated trees.” LM (s,b) implies that
s = (v, k,T), where (v,k) < (M) and T is a A-separated tree on M|(v, k) in M of limit length
and 7 b is according to the strategy. We say that s is an M-tree, and write s = (v(s), k(s), T (s)).
We write Eﬂ/[k for the partial iteration strategy for M|(v, k) determined by 3. We write M (s) = b
when XM (s,b), and we say that s is according to M if T (s) is according to Z'],]/V([s)’k(s).

Now we discuss how to code branch information for a tree 7 (s) such that ¥ (s) has not yet
been defined into the BM predicate. Here we use the B-operator in [3]. We are correcting some
errors in the original version of [13]. These corrections have been incorporated in its latest version.

M is branch-active (or just B-active) iff

(a) there is a largest n < o(M) such that M|n E KP, and letting N = M|n,

SM|v can be active. We write M||v, or M|{v, —1), for M|v cut a second time by removing its last extender if it
has one.
"See [13, Chapter 4] for detailed discussions on A-separated trees.



(b) there is a <y-least N-tree s such that s is by ¥V, 7(s) has limit length, and XV (s) is
undefined.

(c) for N and s as above, o(M) < o(N) + 1h(7T(s)).

Note that being branch-active can be expressed by a ¥ sentence in £; — {B}. This contrasts
with being extender-active, which is not a property of the premouse with its top extender removed.

In contrast with extenders, we know when branches must be added before we do so.

Definition 2.1. Suppose that M is branch-active. We set

n™ = the largest 1 such that M|n kE KP,
vM = unique v such that n™ + v = o(M),
sM = least M|nM-tree such that ¥ ™ i undefined, and

WM ={a|n+aec BM.

Moreover,
(1) M is a potential Ipm iff b™ is a cofinal branch of 7 (s)[vM.
(2) M is honest iff V™ =1h(T(s)), or v™ < 1h(T(s)) and b™ = [0, M) ().
(3) M is an lpm iff M is an honest potential lpm.
(4) M is strategy active iff v™ = 1h(T (s)).
4

Note that 7™ is a Eé\/l singleton, because it is the least ordinal in BM (because 0 is in every

M s also a Eé\/l singleton. We have separated honesty

branch of every iteration tree), and thus s
from the other conditions because it is not expressible by a (J-sentence, whereas the rest is. Honesty
is expressible by a Boolean combination of s sentences. See 2.7 below.

The original version of [13] required that when o(M) < 7™ + 1h(7(s)), BM is empty, whereas
here we require that it code [0, 0(M))7(,), in the same way that BM will have to code a new branch
when o(M) = n™ +1h(T(s)). Of course, [0,M)p) € M when o(M) < n™ +1h(T (s)) and M is
honest, so the current B seems equivalent to the original BM — (. However, BM = () leads to
YM being too weak, with the consequence that a ¥y hull of M might collapse to something that is

not an lpm.® Our current choice for BM solves that problem.

Remark 2.2. Suppose N is an lpm, and N E KP. It is very easy to see that =V is defined on all
N-trees s that are by %V iff there are arbitrarily large & < o(N) such that N|¢ £ KP. Thus if M is

8The hull could satisfy o(H) = n™ + Ih(7(s™)), even though o(M) < 7™ + 1h(7(s*)). But then being an lpm
requires B # (). See Remark 2.47 in [2] for a more detailed discussion. Basically, one can show that the LZ[E]
constructions doesn’t break down because the the models constructed are not X-premice; [8, Remark 2.47] outlines
an argument that cores of ¥-premice that are constructed in the LZ[E]—constructions are X-premice.



branch-active, then n™ is a successor admissible; moreover, we do add branch information, related
to exactly one tree, at each successor admissible. Waiting until the next admissible to add branch
information is just a convenient way to make sure we are done coding in the branch information

for a given tree before we move on to the next one. One could go faster. -

We say that an lpm M is (fully) passive if FM — ( and BM = ). Tt cannot be the case that
M is both E-active and B-active. In the case that M is E-active, using the terminology of [5], the
extender FM can be of type A4, B, or C.

2.2.  Solidity and soundness

We adopt the projectum-free space (pfs) fine structure in [13, Chapter 4]. We write p,, (M) for the n-
th projectum of M and p,, (M) for the n-th standard parameter of M. We set p(M) = paeg(nr)+1(M)
and p(M) = pqeg(ar)+1(M), and call them the projectum and parameter of M. We say M is sound
iff it is deg(M) + l-sound. An lpm M must be deg(M)-sound, but it need not be deg(M) + 1-
sound. There are two types of premice, type 1 and type 2, with the distinction being based on the
soundness pattern of the premice. Type 1 are the most important. All proper initial segments of
an lpm must be sound type 1 Ipms. Type 2 premice can be produced by taking a k-ultrapower
that is discontinuous at py.
If M is type 1 and k-sound for k > 1, then it is coded by its reduct M*, where

M* = (M||pr(M), ARy,
and
Ak = {(,b) | @ is 1y Ab € Ml|px A MFTLE b, wyl},

where pp = pp(M), wy = wg(M) = (pp(M), (M), pr.(M)) and (M) is the ¥i-cofinality of
pr(M) over M*=1. We also have the decoding function d* : M*¥ — M and canonical ¥;-Skolem
function h}\/[k over M* defined as in [13, Chapter 4]. We have the k + 1-st projectum, parameter,

strong core ék+17 and core €1 defined by (we will omit the M from the notation)

prr1 = pr(M"),

Prs1 = p1(MF),

€41 = transitive collapse of d* o h}\/lk [(pr+1 U {pr+1, wi })],
P =0 ' (Prt1)

Cr+1 = transitive collapse of d* o h}wk [(Pr+1 YU {PE+1, Plt1, WE )]

Here, we let o : €41 — M and 7 : €1 — M be the uncollapse maps.
For M of type 1, M is k-+1-solid iff M* is parameter solid, projectum solid, stable (see Definition



2.3), and M is weakly ms-solid.” M is k + 1-sound iff M is k + 1-solid and M = €, 1(M). M is
k + 1-strongly sound if M is k + 1-sound and M = &1 (M)~ 0.
Let M be a pfs premouse of type 1 and deg(M) =k < w. We set

0 if M* is strongly sound,
least K s.t. k ¢ Hull{wk(pl(Mk) Up1(MF*))  otherwise.

A A~ k ~
’71%1 = 771(Mk) = COf{w (Pr+1(M)).

Pre1(M) = pr(M*) =

We say that M is almost sound iff
(a) M is solid;
(b) 2% = Hull}"" (o (M*) U {pr(M*) U 41 (MF)});
(c) if p1(M¥*) < gy (MF), then letting
(H. B) = cHull"" (o1 (M*) U ps (M")),
with anticollapse map 7 : (H, B) — M*, we have
M* = Ult((H, B), D),

where D is the order zero measure of H on gy (M*) and © = ip, and
(d) if pr(M*) < pr(M*) then 71 (M*) < p1(M*).

Now suppose M is an acceptable J structure, and for k = deg(M), either £ = 0 or M k=1 g
a pfs premouse of type 1. We say that M is a pfs premouse of type 1A iff pp(M) = pr_1(M)
or pp(M) € Hull{‘/fk_l(pk(M) U pr(M)), equivalently iff deg(M) = 0 or deg(M) > 0 and M~ is
strongly sound. M has type 1B iff deg(M) > 0 and M~ is sound, but not strongly sound. M has

type 2 iff M~ is almost sound, but not sound.'!' So for M a pfs premouse of degree k,
e M has type 1A iff pp(M) =0,

e M has type 1B iff pi(M) = pi(M), and

e M has type 2 iff pp(M) > prp(M).

9M is weakly ms-solid iff either M is passive or the last extender of €; and €, satisfies the weak ms-ISC. M
satisfies the weak ms-ISC if letting E be the top extender of M and x be the critical point of F, then the Jensen
completion of Ey is on the sequence of M|Ih(F). For the other components of solidity, see Definition 2.3 below.

0For a pfs premouse N, N~ is just N but with soundness degree deg(N) — 1.

YIf M is a pfs premouse of type 1B, k = deg(M) > 0, and N = Ulty(M, E) where n}! = crt(E), then
supig “pr(M) = pr(N) < pr(N) = ig(pr(M)), so N is a type 2 pfs premouse of degree k. Fine structural hulls
of type 1 premice can have type 2 as well.



Let M be a pfs premouse of either type, with k£ = deg(M) > 0. We set

where pi (M) is the least p that is not in Hull{”k_l(pk(M) Upk(M)) and (M) = cof{wk_l(ﬁk(M)).

When M is clear from the context, we write wy, for wy (M) etc. Let
Ak = {(,b) | ¢ is D1 Ab € Ml|pp A MF™LE @b, 1iy ]},
and
M* = (M]|px, Afy).

We also have the decoding function d* : M* — M and canonical ¥;-Skolem function h%\?ﬂ@ over M*
defined as in [13, Chapter 4]. We write p~ (M) for paeg(ar)—1(M) ete.'?

We define solidity and soundness for type 2 premice exactly as we did for type 1 premice, but
with M replacing M*. Since M* = M* when M has type 1, the type 1 and type 2 definitions can

be unified. For the record:

Definition 2.3. Let M be a premouse of degree k; then

pri1 (M) = p1(M"),

Prs1(M) = py (MF),

€1 (M) = transitive collapse of d* o h}\% “(pr+1 YU {pk+1}), and
€1 (M) = transitive collapse of d* o h}\;[k “(pre+1 U {Prk+1, P2 })-

Let 0: €41 — M and 7: €, 1 — M be the anticollapse maps, and py1 = 0~ (prs1); then

(a) MF is parameter solid iff py,1 is solid and universal over M* and Pi+1 is solid and universal

over the reduct (€4, 1)* of €y 1.

(b) MF is projectum solid iff pry1 is not measurable by the M-sequence, and either ék+1 = Crt1,
or €41 = Ult(€4,1, D) and 0 = woip, for ip the order zero measure of €,y on py1.

(c) MP¥ is stable iff either A < pry1, or AM is not measurable by the M-sequence.

(d) We say that M is projectum stable if np (M) is not measurable by the M-sequence.

121t is sometimes useful to have also a coding structure for the strong core. Let M be a pfs premouse and
k = deg(M) > 0; then

B* = {{p,b) | ¢ is S1 Ab € Mllpx A M*" E o[b, pi]},
and the reduct of €, (M) is defined as

ME = (M||px, B®).



(e) We say that M has stable type 1 iff M has type 1A, or M has type 1B and is projectum
stable.

We say that M is solid (or k+1-solid) iff M?¥ is parameter solid, projectum solid, and stable. We
say that M is sound (or k + 1-sound) iff M is solid and M = €1 (M).13 =

It is easy to see that M has stable type 1 iff M has type 1, and for any F on the M-sequence,
letting P < M be longest such that Ult(P, F) is defined, Ult(P, E') has type 1.

2.3. Elementarity of maps

Suppose that M is an lpm, and 7: H — M. What sort of elementarity for m do we need to conclude
that H is an lpm? In the proof of square for ordinary mice, we have to deal with embeddings that
are only weakly elementary.'? In the context of proving square in pfs premice, we need a slight
strengthening of weak elementarity, called near elementarity and defined in [I13, Chapters 24].
Nearly elementary maps are produced by lifting constructions, and they will occur in the square
construction.

Roughly a map 7w : H — M with k = deg(M) = deg(H) is nearly elementary if it is weakly
elementary and maps 7 (H) to 7p(M). More precisely, we say that 7 is nearly elementary if 7 is
the completion of 7 | HY and = I HY is a Yo-preserving and cardinal preserving map from HF to
Mk, 7 is elementary if it is nearly elementary and 7 | HF is Y1-elementary.

We note in the above that

(a) If H is of type 1A, then H~ is strongly sound and wy(H) = (0,0, px(H)). In this case, M is of
type 1A, but m may or may not preserve pi(H).

(b) If H is of type 1B, then pi(H) = pr(H) and hence wy(H) = wg(H). M may have type 1B or
type 2. M is of type 1B if and only if wy(M) = wi(M) if and only if m(wi(H)) = wi(M).

(c) If H is of type 2, then M is of type 1B or 2.

The existence of a nearly elementary w: H — M does not imply that H is a premouse when
deg(H) = deg(M) = 0. If M is a passive lpm, then so is H, and there is no problem. If M is
extender-active, then it could be that H is only a protomouse, in that its last extender predicate
is not total. The problem here is solved by the parts of the Schimmerling-Zeman proof related to

protomice, which work in our context. Finally, we must consider the case that M is branch-active.
Definition 2.4. A rQ-formula of L1 is a conjunction of formulae of the form

(a) Yudv(u C v A p), where ¢ is a X1 formula of £1 such that u does not occur free in ¢,

13Similarly, if k& = deg(M), then p(M) = pry1(M), p(M) = prr1 (M), p(M) = prr1(M), and so on for the other
k-free notations.

1See section 1.4 of [13] for a discussion of the degrees of elementarity. If deg(H) = deg(M) = 0, then 7 is weakly
elementary iff it is ¥ elementary and cardinal-preserving.



or of the form
(b) “F # 0, and for p = crt(F)T, there are cofinally many & < u such that »”, where 1 is 3;.

_{

Formulae of type (a) are usually called Q-formulae. Being a passive Ipm can be expressed by
a Q-sentence, but in order to express being an extender-active lpm, we need type (b) clauses, in
order to say that the last extender is total. rQ) formulae are Ils, and hence preserved downward

under Xi-elementary maps. They are preserved upward under g maps that are strongly cofinal.

Definition 2.5. Let M and N be Ly-structures and m: M — N be ¥y and cofinal. We say that
m is strongly cofinal iff M and N are not extender active, or M and N are extender active, and
7¥(crt(F)H)M is cofinal in (crt(F)T)N. =

It is easy to see that

Lemma 2.6. Q) formulae are preserved downward under X1 -elementary maps, and upward under

strongly cofinal Xg-elementary maps.

Lemma 2.7. (a) There is a Q-sentence ¢ of L1 such that for all transitive Ly structures M,

M E ¢ iff M is a passive lpm.

(b) There is a rQ-sentence ¢ of L1 such that for all transitive Ly structures M, M E ¢ iff M is

an extender-active lpm.

(¢) There is a Q-sentence ¢ of L1 such that for all transitive Ly structures M, M E ¢ iff M is

a potential branch-active lpm.

Proof. (Sketch.) We omit the proofs of (a) and (b). For (c), note that “B # (” is ¥1. One can go
on then to say with a 31 sentence that if 7 is least in B, then M |n is admissible, and s exists.
One can say with a II; sentence that {a | B(n+ )} is a branch of T (s), perhaps of successor order
type. One can say that B is cofinal in the ordinals with a Q-sentence. Collectively, these sentences
express the conditions on potential lpm-hood related to B. That the rest of M constitutes an

extender-passive Ipm can be expressed by a II; sentence. O

Corollary 2.8. (a) If M is a passive ( resp. extender-active, potential branch-active ) lpm,
and Ultg(M, E) is wellfounded, then Ultg(M, E) is a passive (resp.extender-active, potential

branch-active ) lpm.

(b) Suppose that M is a passive (resp. extender-active, potential branch-active) lpm, and w: H —

M is ¥y -elementary; then H is a passive (resp. potential branch-active) lpm.

(c) Let deg(M) = deg(H) =0, and m: H — M be ¥y elementary; then H is a branch-active lpm

iff M is a branch-active Ipm.

10



Proof. rQ-sentences are preserved upward by strongly cofinal 3y embeddings, so we have (a). They
are Ilp, hence preserved downward by ;- elementary embeddings, so we have (b).

It is easy to see that honesty is expressible by a Boolean combination of Y5 sentences, so we

get (c).
O

Remark 2.9. It could happen that M is a branch-active lpm, 7: H — M is cofinal and elementary
(with deg(M) = deg(H) = 0), and b™ is not cofinal in T (s™), but b is cofinal in T (s¥). If we
were using the branch coding in the original version of [13], then BM =, so BE =0, so H is not

an lpm. —

Part (c) of Lemma 2.7 is not particularly useful. In general, our embeddings will preserve
honesty of a potential branch active lpm M because SM and BM are determined by a complete
iteration strategy for M that has strong hull condensation. So the more useful preservation theorem
in the branch-active case applies to hod pairs, rather than to hod premice.

2.4. Plus trees

The iteration trees we use below are A-separated plus trees. These notions are defined in detail in
[13, Section 4.4] and we briefly summarize the relevant concepts here. Suppose M is a pfs premouse

and FE is an extender on the M-sequence, then

e E7 is the extender with generators Ap U {\g} that represents iglt(M’E) 0iM where F is the

order zero total measure on Ag in Ult(M, E).
o MET)=\g.
o Ih(ET) =1h(E).

o(ET) = (Ih(E)*)VEALET),

We say that an extender G is of plus type if G = ET for some extender E on the sequence of a pfs

premouse M; we let G— = E. In general, if E is an extender (of plus type or not)
o we let ¢(E) =1h(F) if E is of plus type; otherwise, (E) = A(E).

e if F is on the sequence of some premouse, then

The extended M -sequence consists of all E such that £~ is on the M-sequence.

A plus tree T on a pfs premouse is like an ordinary normal tree, except that

(i) We only require that EZ be on the extended ./\/laT sequence,
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ii) ET is applied to the longest possible initial segment of M7, where f is least such that
@ B
ert(ET) < X(Eg), and

(iii) the length-increasing condition is weakened slightly.'®

See [13, Definition 4.4.3] for the complete definition.

A X-separated tree is a plus tree in which every extender used along the tree is of plus type. The
weakening in (iii) above does not affect \-separated trees; that is, the lengths of the extenders used in
a A-separated tree are strictly increasing. Moreover, quasi-normalization coincides with embedding
normalization on stacks of A-separated plus trees. [13, Section 8.1] shows that A-separated trees
are enough for comparisons. For these and other reasons it is convenient to restrict one’s attention
to the way an iteration strategy ¥ acts on stacks of A-separated trees. By Lemma 9.3.2 of [13], if

(P,Y) is a mouse pair, then ¥ is determined by its action on countable A-separated trees.

2.5. Mouse pairs and Dodd-Jensen
Two of the main definitions from [13] are
Definition 2.10. (M,€Q) is a pure extender pair with scope Hy iff
(a) M is a pure extender pfs premouse.
(b) Q is a complete (w, §) iteration strategy for M, and

e () is internally lift-consistent, quasi-normalizes well, and has strong hull condensation.'”

Definition 2.11. (M,Q) is a least branch hod pair (lbr hod pair) with scope Hy iff
(a) M is an lpm.
(b) Q is a complete (w, d) iteration strategy for M,
(¢) Q is internally lift-consistent, quasi-normalizes well, and has strong hull condensation, and

(d) € is pushforward consistent, that is if s is by © with last model N, then ¥V C Q,, where
Q(t) = Q(s7t).18

_|

Definition 2.12. (M, ) is a mouse pair iff it is either a pure extender pair or an lbr hod pair. -

5The length-increasing condition is enough to guarantee that T-pred(c + 1) is the least 8 such that crt(E]) <
E(Eg) Thus none of the generators of a plus extender E, including the generator A(E), are moved later on a branch
in which F has been used.

16See [13, 4.6.3].
"See [13, 5.4.4, 7.1.1, 7.1.9].
18Gee [13, 9.2.1].
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Remark 2.13. [13] required that M have type 1 in order for (M, ) to qualify as a mouse pair,

because that was sufficient generality for its purposes. Here we are allowing M to have type 2. -

Included in 2.11(b) is the requirement that all Q-iterates of M be least branch premice. Because
of our honesty requirement in the branch-active case, this no longer follows automatically from the
elementarity of the iteration maps. That the iterates of M are honest comes out of the construction
of 2, as a consequence of pushforward consistency.

If (M, Q) is an lbr hod pair and 7: H — M is nearly elementary, then Q7 is the pullback strategy,
given by

07 (s) = Q(ms).
We show now that, except in the protomouse case, (H,§2™) is an lbr hod pair.’

Lemma 2.14. Let (M, Q) be an lbr hod pair with scope Hs, and let m: H — M be nearly elementary.
Suppose that one of the following holds:

(a) M is passive or branch-active, or
(b) H is an lpm.
Then (H,Q7) is an lbr hod pair with scope Hs.

Proof. We show first that H is an lpm. If (b) holds, this is rather easy. If M is passive, we can
apply (a) of 2.7, noting that @ sentences go down under nearly elementary embeddings. So let us
assume that M is branch-active.

By (b) of 2.7, H is a potential branch active lpm. So we just need to see that H is honest. Let
v=vl b=0" and T = T(s"). If v = Ih(T), there is nothing to show, so assume v < Ih(T).
We must show that b = [0,)7. We have by induction that for N = H|n*, (N, Q%) is an Ibr hod
pair. Thus 7 is by 27, and so we just need to see that for i/ = T v and W =U"b, W is by QT,
or equivalently, that 7V is by Q. But it is easy to see that 7V is a psuedo-hull of = (U )’\bM , and
Q) has strong hull condensation, so we are done.

For the proof that (H,Q7) is internally lift-consistent, normalizes well, and has strong hull
condensation, the reader should see [13]. We give here the proof that (H,{2") is pushforward
consistent, because it extends the honesty proof given above.

Let P be an Q7 iterate of H via the stack of trees s. Let @ be the corresponding 2 iterate of
M via s, and let 7: P — @ be the nearly elementary copy map. Then for U € P,

U is by ¥ = 7(U) is by 29
= U is by Qrs 0
= U is by (Q27)s p,

19This is Lemma 9.2.3 of [13].
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as desired.
O

The basic results of inner model theory, such as the Comparison Lemma and the Dodd-Jensen
Lemma, are better stated and proved as results about mouse pairs than as results about mice, with
the notions of elementary submodel and iterate adjusted so that this is possible. For example, if
(H,¥) and (M, X)) are mouse pairs, then 7: (H,¥) — (M, X) is elementary (resp. nearly elemen-
tary) iff 7 is elementary (nearly elementary) as a map from H to M, and ¥ = ¥7. We say that
(M,Y) is an iterate of (H, V) iff there is a stack s on H such that s is by ¥, and ¥ = U,. It is a
non-dropping iterate iff the branch H-to-M does not drop. Assuming AD™ and that our pairs have
scope HC, [13] proves the following:

(1) If (M, %) is a mouse pair, H is a premouse, and 7: H — M is nearly elementary, then (H,X™)

is a mouse pair.

(2) If (H, V) is a mouse pair, and (M, ) is a non-dropping iterate of (H, ¥), then the iteration
map is: (H,V) — (M, X) is elementary in the category of pairs.

(3) (Dodd-Jensen) If (H,WV) is a mouse pair, (M, Y) is an iterate of (H, ¥) via the stack s, and
m: (H,¥) — (M,X) is nearly elementary, then

(i) the branch H-to-M of s does not drop, and

(i) for all n < o(H), is(n) < w(n), where is is the iteration map.

(4) (Mouse order) Let (H,¥) <* (M, X) iff there is a nearly elementary embedding of (H, ¥) into
some iterate of (M,3); then <* is a prewellorder of the mouse pairs with scope HC in each

of the two types.

The prelinearity of the mouse pair order is the content of the Comparison Lemma for mouse
pairs. For pure extender pairs, it is proved in Theorem 8.4.5 of [13]. The proof for Ibr hod pairs is

basically the same; it is Theorem 9.5.10 of [13].

3. COMPARING STRATEGIES FOR UNSOUND MICE

Let us assume AD™ throughout this section.

The comparison theorems of [13] are stated and proved for mouse pairs of stable type 1. (This
includes all mouse pairs of degree 0.) Mouse pairs that are not of stable type 1 (that is, those of
type 2, or of type 1B and not projectum stable) can arise in our fine condensation results, so we
need a comparison process that applies to them as well. In this section we generalize the process
of [13] to such pairs.

The problem is that all levels of a background construction are type 1 pairs, so a type 2 pair

(P, %) cannot literally iterate into a level of a background construction.? In the end, our solution

29We shall see that a projectum stable pair of type 1B cannot do so either.
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to this problem amounts to making small adjustments to the formulation and proof of (x)(P,X) in
[13]. Since there is nothing very new involved, we shall omit some details.?!

A premouse M has type 2 iff M~ is almost sound, but not sound. The paradigm example is
M = (Ultgy1(P, E), k + 1), where P has type 1B and degree k + 1, and the canonical embedding
i is discontinuous at pgi1(P). The point of setting deg(M) = k + 1 here, rather than k, is that
we want to take k + l-ultrapowers of M, and deg(M) = k + 1 fits better with our definitions of
elementarity and plus trees in that context.

However, almost soundness records a number of properties of M~ that are peculiar to this
particular way of producing unsound mice. If we are going to iterate almost sound type 1 premice
N at the deg(N) + 1 level, and compare their iteration strategies, then it is more natural to go all
the way, and look at deg(N) + 1-strategies for arbitrary solid N.?2

So we shall consider arbitrary solid type 1 premice N, and look at deg(N) + 1-level iterations
of them.?3 The solidity hypothesis is useful at several points, and we are building on the theory of

[13] rather than trying to re-do it, so there is no value in dropping solidity.

3.1. +1-iteration trees

Definition 3.1. Let N be a solid premouse and deg(N) = k, and let E be an extender over N
such that crt(E) < pr41(N); then

(a) Ulty,1(N, E) is the decoding of Ult; (N*, E), where the latter ultrapower is formed using all
boldface X * functions.

(b) We set deg(Ultgy1 (N, E)) = k.

C) zgk N* — Ult;(N*, E) is the canonical embedding, and i%: N — Ulty (N, E) is its com-

pletion.

Familiar calculations show

Lemma 3.2. Let N be a solid premouse and deg(N) = k, and let P = Ultg11(N, E), where E is
an extender over N such that crt(E) < pry1(N). Let i =i¥ andi=1i | N¥ = ng Suppose that
P is wellfounded; then

(1) i is Yo-elementary as a map from N* to P*.

(2) P is a type 1 premouse of degree k, and P* = Ult;(N*, E).

21[

, 4.6.12] states a comparison theorem for pure extender pfs mice that are are not of stable type 1. There is no
discussion of strategy comparison in this case.

22For one thing, it can happen that (P,X) and (Q, A) are type 2 pairs, but the result of comparing them is some
(R, 2) that is not type 2, because p~ (P) and p~ (Q) are mapped to different points in R. In this case R is two order
zero ultrapowers away from its type 1 core, not just one.

230ne could look at deg(N) + 2-level iterations, etc. This is done in a rudimentary way in [1], and fully and
systematically in Jensen’s X* theory. [1] proves the basic results about the deg(N) 4 1 case.
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(3) If ThY" (@' U {q}) € N*, then i( ThY" (a U {g})) = Th{" (i(a) U {i(q)}).
(4) i(pr(N)) = pr(P) and i(ng) = ni)-
(5) P is solid, i(p1(N*)) = p1(PF), and p1(P*) = supi“p;(NF).

Proof. Of course, Los’s theorem holds for Ult;(N*, E) for all ¥; formulae, and the canonical em-
bedding 7 is X9 elementary. So we have (1). Since “z = Thy(a U {¢})” is I, we also get (3).

(2) follows from the Upward Extension of Embeddings Lemma.?*

For (4): “z = pi(N)” is equivalent to N*~1 £ [z], where 6 is a Boolean combination of II3
formulae.?® Since 4 is Y3 elementary as a map from N*~! to P*~1 i(pp(N)) = pr(P). By Lemma
4.3.4 of [13] we get that i(nY) = nf as well.

For (5): We claim first that supi“p;(N¥) < pfk. For if crt(E) < a < p1(N*) and r = [a, f]gk
where f is E{Vk in ¢, then Thfk (i(or) U{r}) can be easily computed from Thfk (i(a) U{i(q)}), and
the latter is in P* by (3). We claim next that p;(P*) < supi“py(N*). For let ¢ = pi(N*) and
p = p1(N*); then the fact that N is solid implies there is a E{Vk(q) map of p onto p™, and since
e(E) < supi“p, this yields a ka (i(q)) map of supi“p onto (supi“p)t¥, so that Thfk(supi“p U
{ie)}) ¢ P*.

The calculations just done show that p1(P*) <jex i(p1(N*)), and i(p1(N¥)) <jex p1(P*) follows
from the preservation of solidity witnesses given by (3).

Let us show that P is solid. We have already shown that P is parameter solid. Let p = py (N*);
then since N is projectum solid, p is not measurable in N, so i(p) is not measurable in P, so if i
is continuous at p, then P is projectum solid. So assume ¢ is discontinuous at p; then we have a
boldface %{ * function f: kg — p such that f is order preserving and continuous at limits. This
implies p is a limit cardinal in N, and f|a € N for all @ < kg, so that N E “f(«) is singular” for
all a. But then supi“p = [{kg}, f]gk is singular is P, and hence not measurable in P.

Finally, we must show that P is stable. But n! =i(n)), so if ! is measurable in P, then 7’
is measurable in N, so nYY < pr41(IN) by stability of N, so nf’ < pr+1(P) by (4), as desired. O

Let us turn the lemma into a definition.

Definition 3.3. Let i: N — P, where deg(N) = deg(P) = k;
and P are solid premice of type 1, and conclusions (1), (3), (4), and (5) of Lemma 3.2 are satisfied
by 4, N, and P. —

then we say i is +1-elementary ifft N

Now we look at iteration trees T in which such “soundness degree +1” ultrapowers are taken.
We record the degrees of the ultrapowers that can be taken in the degrees degT(a) of the nodes,
so now deg” (a) = deg(MT) 4 1 is possible.

Definition 3.4. Let M be a solid premouse of degree k; then a I-bounded plus tree on M is a
system (T, (E] | a+1 < 1h(T)),deg”) such that dom(deg”) = Ih(7), and there are My, iq 5, D
satisfying

248ee [13, 4.3.7(b)].
?5See [13, 2.4.5-2.4.7].
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(1) If deg” (0) = deg(M), then T is a plus tree on M in the sense of [13, 4.4.3], with models,
embeddings, and dropset My, in,, D. In this case, we also put 0 € D, and say that 7 has a
small drop at 0.

(2) If deg” (0) = deg(M) + 1 = k + 1, then M,, inp, D satisfy all the properties listed in [13,
4.4.3], except that clause (3)(b) is modified so that if T-pred(a+ 1) = 3, [0, Sl N D = (), and
crt(ET) < pr(Mg), then

(a) if ert(E]) < pry1(Mp), then Myy1 = Ultgy1 (Mg, E7), and
(b) if pr+1(Mpg) < ert(ET), then Maiq = Ulty (Mg, E]).
(c) In case (b), we put a + 1 € D7 and say that 7 has a small drop at o + 1.

(3) Bisa +1-nodeof T iff [0, 8]7ND7T = (. If B is a +1-node, then we set deg” (8) = deg(Mjp)+1.
Otherwise, we set deg” (8) = deg(Mp).

(4) T is 1-mazimal iff 0 is a +1-node of 7. If T is not 1-maximal, then we say it is 0-bounded.
_|

If T is 1-bounded, there is at most one small drop along any branch, and if there is a small
drop, it must be the first drop along that branch. We call a drop a+ 1 € D7 large iff it is not

small.

Remark 3.5. It is easy to see that M7 is unsound (i.e. not deg(M!) sound) iff [0, a]7 has a large
drop. —

In a 1-bounded tree, all the drops are forced, including the small ones, except possibly a small
drop at 0. If there is such a drop, then 7 is 0-bounded, and therefore it is just a plus tree in the
sense of [13]. In general, a 1-maximal plus tree may not be a plus tree in the sense of [13], but
it seems better to expand the meaning of “plus tree” than to invent a new term. In a 1-bounded
tree, after a branch has dropped in any way, the later ultrapowers on the branch are always n-
ultrapowers of n-sound premice.?® If M is not just solid, but sound, then a 1-maximal plus tree on
M is essentially the same thing as a plus tree on M™ in the sense of [13].

From Lemma 3.2 we get

Lemma 3.6. Let T be a 1-bounded plus tree on the solid premouse M, a <7 (3, and DT N[a, Bl =
(0; then iaTﬂ is elementary, and if T is 1-maximal, then it is exact. If in addition (B is a +1-node,

then iaT,,B is +1-elementary.

Exactness uses that 7 is 1-maximal and M is stable, for otherwise we might take a deg(M)-
ultrapower with critical point 77,]{\/[ , producing thereby an inexact canonical embedding.

Along branches that have only a small drop, the embeddings are slightly less elementary.

26We could relax clause (2) by allowing Ma+1 = Ultg(Mgs, E]) when crt(E]) < prr1(Mg). Only a few things
become more complicated.
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Definition 3.7. Let M and N be solid premice, k = deg(M) = deg(NV), and 7: M — N. We say

that m is nearly +1-elementary iff
(i) 7 is elementary and exact,
.. « MK k
(it) mpi"™ € pi", w(p2(M*)) = pr(N*), and

(iii) 7 is k + 1-theory preserving, in that for all a < p{”k and all ¢ € M*, 7T(Th11\41C (aU{q})) =
k
Thi" (m(a) U {m(q)}).

4

Nearly +1-elementary m: M — N are called deg(M )+ 1-apt in [1]. That paper proves a copying
lemma and a Dodd-Jensen lemma for such maps.?” We shall use those results below.

Notice that if 7 is nearly elementary as a map from M to N, then it is nearly (41)-elementary
as a map from M~ to N~. M and N may have either type, but M~ and N~ have type 1.

Clause (i) of 3.7 implies that m(n) = V.28

Lemma 3.8. Let N be a solid premouse and deg(N) = k, and let P = Ulty(N, E), where E
is an extender over N that is close to N such that ppi1(N) < crt(E) < prp(N). Suppose P is

wellfounded; then P is solid, and the canonical embedding zg 1s nearly +1-elementary. Moreover,
Pe+1(N) = pri1(P).

Proof. This is proved in [13, Lemma 2.4.12], except for the assertions that P is projectum solid
and stable, and that zg is exact.

Note that crt(E) & {pr+1(IN), 7Y} because crt(E) is measurable in N by closeness, while N is
projectum solid and stable. Since py41(N) < crt(E), P is projectum solid, and since n} # crt(E),

i¥ is continuous at pg(N), and therefore exact. Since i is continuous at pg(N), i%(nh) = nk.
But N is stable, so P is stable. ]

Remark 3.9. With more work, one can weaken the hypotheses on E by dropping closeness, and
requiring of crt(F) only that crt(E) < pp(N) and crt(E) ¢ {pr+1(N),n}. In the case that
crt(E) < pr+1(N), one must weaken the conclusion to pyi1(P) = supi“pr+1(N), for i = i¥¥, but

otherwise the conclusions remain the same.? =
Note also

Lemma 3.10. Let M be solid, and let w: €(M)~ — M be the anticore map; then w is nearly

+1-elementary.

Proof. Let k = deg(M); then 7 is cofinal and ¥y elementary, and hence ¥; elementary, as a map
from @(M)* to M*. Because we are using pfs fine structure pi(M) € ran(n), so 7 is exact. The

rest is easy to verify. O

#"See [4, 2.11, 2.12].
283ee [13, 4.3.4].
2That pg41(P) = supi“pg+1(N) under these hypotheses is a result of Schlutzenberg; see [13, 9.6.1].
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From Lemma 3.8 we get

Lemma 3.11. Let T be a 1-maximal plus tree on the solid premouse M, o <7 3, and suppose that

if v € DT N[0, Blr, then ~ is a small drop; then iz;ﬁ is nearly (+1)-elementary.
Nearly +1-elementary embeddings suffice for copying 1-maximal trees.

Definition 3.12. Let M and N be solid premice with degree k, and F and F' be extenders over
M and N respectively. We say
*,1
<7T7Q0>: (MaE) — (NvF)

iff 7 is nearly +1-elementary, and (m, p): (M*, E) — (N* F) in the sense of [13, 2.5.17]. =

Lemma 3.13. [Shift Lemma/] Suppose that (m,p): (M, E) RN (N, F), where M and N are solid
premice of degree k. Let m =k + 1 if crt(E) < pp+1(M), and m = k otherwise, and let n =k + 1
if crt(F) < pp+1(IN) and n = k otherwise. Let

o1 Ulty(M, E) = Ulty (N, F)

be the completion of the map oo([a, f]%[k) = [(p(a),ﬂ(f)]gk. Then

(1) o is nearly +1-elementary,
(ii) ollh(E) = ¢[lh(E), and
(iii) o oiM =i or.

Proof. (Sketch.) Since sup7“pri1(M) < prpy1(N), m = k + 1 implies n = k + 1.3° Thus the
definition of og makes sense, in that m can be applied to f (even if f is only XM "), and 7(f) is a
function that is used in the N-ultrapower. Note that both z%f and zg are exact, so o is exact by

commutativity. The remaining calculations are the usual ones. O

Definition 3.14. Let w: M — N be nearly +1-elementary, and let 7 be a 1-bounded plus tree on
M; then «T is the 1-bounded copied tree on N. -

Of course we stop the construction of 77 if we reach an illfounded model. Letting 7, : My, — Ny

be the copy map, we prove by induction that if 5 = T-pred(« + 1), then
<7r5 rM:z+1v 7TO¢> : (M;+1v EZ) i> ( c*erlv EgT)’

and if D7 N0, 8]y = 0, then 75 is nearly +1-elementary. This can be done.?!

Definition 3.15. A I-bounded stack on M is a stack s of trees such that

30Tt is possible that m = k and n = k + 1. We could have copied with n = k in this case, but we are not going to
do that, because we want to stay in the realm of 1-maximal trees.
31See [13, Section 4.5].
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(1) each tree 7T;(s) in s is 1-bounded, and

(2) for i > 0, letting N be the base model of 7;(s), T;(s) is 1-maximal iff M-to-N has no drops

of any kind. s is I-mazimal iff To(s) is 1-maximal; otherwise, s is 0-bounded.

_|
Let GY(M, A, 0) be the variant of G(M, \,6) in which the output is a 1-bounded stack on M.

Definition 3.16. A (), 0)* -iteration strategy for M is a winning strategy for player I in G*(M, ), 6).
Let 3 be such a strategy; then

(a) (Tail strategy.) For s a 1-bounded stack by ¥ with last model N, ¥, ny(t) = X(s7¢t). If
M-to-N does not drop in s, then X y is a (A—1h(s), #)*-iteration strategy for N. Otherwise,
it is a (A — 1h(s), 0)-strategy.

(b) (Pullback strategy.) If m: N — M is nearly +1-elementary, then 37 is the (A, 6)T-strategy
for N given by: X7 (s) = X(7s).

_1

If ¥ is a (A, ) T-strategy for M, then we obtain an ordinary (), §)-strategy for M by restriction
3’ to act on 0-bounded stacks s. We call this restricted strategy 3.

Notation: If T is a tree on (P,¥) and o < 1h(7), then we may write X7 for the tail strategy

ET[aJrl,MQT'

3.2. Background-induced +1-strategies

We get (A, 0)t-iteration strategies from the same background constructions that gave us (), 6)-
strategies. The constructions themselves do not change at all, because the strategy predicate of an
lpm still has only information about the action of the strategy on 0-bounded, A-separated trees.
Recall that a conversion stage is a tuple (M,,Q,C, R) such that R is an appropriate back-
ground universe, C is a maximal hod pair construction in the sense of R, @ is a level of C, and

Y: M — Q is nearly elementary.>?

Definition 3.17. A +I1-conversion stage is a conversion stage (M, 1, Q, D, R) such that M and @

are solid, and 1 is nearly +1-elementary. —

Given a conversion stage ¢ = (M, 4, Q,C, R) and a 0-bounded plus tree 7 on M, [13, Section

4.8] defines the conversion system

Lift (T, ¢) = (T, (ca | & < In(T))).

32See Section 4.8 and Section 9.4 of [13].
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Here ¢y = ¢, and ¢q = (My, Yo, Qa,Ca, Ry) is a conversion stage such that M, = /\/lz: and
R, = MZ; The same construction applies when 7 is 1-bounded and ¢ is a +1-conversion stage;
we just need to note that when « is a +1-node of 7, then the conversion stage ¢, produced by our
construction is a +1-conversion stage.

This comes down to adding a few lines to the Shift Lemma for Conversions.?*> Suppose a + 1 is
a +1-node of T, T-pred(a + 1) = 8, and E = E]. Let

¥ = ng [Qalh(Ya(ET))] 0 Yas,
E* = B% (p(E")),

and
El" = E*

So E* is the background extender for the resurrection of ¥, (E~). There is enough agreement
between ¢ and vz that E* should be applied to Rg = ./\/lg in a normal continuation of 7T*.

Letting k = deg(M) and i* = ig’f , our next conversion stage is then
Cot+1 = <Ultk+1(Mg, E), T, i*(Qg), i*((C,g), Ult(ng, E*)>

Since a+1is a +1 node, M, ; = Mg. 7 is (the completion of) the map 7: Ultl(Mg, E)— z*(Qg)

given by
Mk R
m(la, f1g”) = le(a), ¥a(f)] &,
Mk
where 153 moves f by moving its X, 7 definition. Since 15 is Th;-preserving, 7 is well defined. It

is easy to check that 7 is 3i-elementary and Thi-preserving as a map from Ultl(Mg, E) to i*(Qg),
using that
WoiAE/[B =1"o)g.

Commutativity and the fact that igﬁ , 1"[Qs, and g are all exact also implies that 7 is exact.

Finally,

44 ‘M (13
Sup 7 “pp 1 (Ma+1) = supm o iy “ppy1(Mp)
=supi” o g “pry1(Mp)
< (pr+1(Qp)) = pr+1(i7(Qp))-

Collectively, these calculations show that 7 is nearly +1-elementary. It agrees with ¢ on 1h(E),
which we need to keep the conversion going.

We lift 1-bounded stacks in the natural way. For example, lift((7,U), c) = (lift(T, ¢), lift (U, d)),
where d is the last conversion stage in lift(7,¢). Letting 7* = lift(7,c)o and U* = lift(U, d)o,

33113, 3.3.2, 4.8.2].
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(T*,U*) is the corresponding stack of nice trees on the background universe in ¢. Abusing notation,

we write

lift (T, ¢)o = (77" | i < 1h(T))
for the stack of lifted trees on the background universe in c.

Definition 3.18. Let ((N*, €, w, F, V), U*) be a coarse strategy pair,** and let C be the maximal
least branch (w,F, ¥)-construction of (N*, €,w,F, ¥)%* with models M, ) = Mffk and induced
strategies 0, = Qi(,:k.

(1) Let ¢ be a +1-conversion stage of the form (M, 1), Q,C, N*); then Q*(c, ¥*) is the (w1, wq)t-
iteration strategy for M given by

T is by Q (¢, U%) iff lift(T, ¢)o is by U*.

(2) () =T (Mg, id, M, z,C, N*), U*).
_|

Clearly, 2, = (ij)_ As one would expect, €, 1 is the pullback of ij under the anticore

map.

Lemma 3.19. Let C be the maximal least branch (w,F,W)-construction of some coarse strategy
pair, with associated models M, ) and strategies €, and ij. Let 7 Mu_k+1 — M, be the

anticore map; then m is nearly +1-elementary, and
Q%k;_;’_l = (Q:k)ﬂ—

Proof. m is nearly +1-elementary by 3.10.

Note first that the identity makes sense. €1, ;41 is a strategy acting on 0-bounded stacks on
M, j+1, or equivalently, on 1-maximal stacks on M;k+1' If s is a 1-maximal stack on Mz;k+1’ then
s is a 1-maximal stack on M, ;, and so ij acts on it. Thus the identity makes sense.

The identity is true because, letting

Cc= <M1/,k+17 id 7Ml/,k+17 (Cv N*>

34Gee [13, 9.4.14]. Roughly, the requirements are that

(a) (N*,€,w,F,V) is a coarse strategy premouse, i.e. N* is countable and transitive, N* E ZFC + “(w, F) is
a coherent pair” + “U is a (§*,0",F)-iteration strategy for V that quasi-normalizes well, has strong hull
condensation, and is pushforward consistent”, and

(b) ™ is a complete (w1,w:)-iteration strategy for (N*,€,w,F, ¥) that normalizes well and has strong hull
condensation, and

(c) ifi: N* — S is the iteration map associated to a stack ¢ according to U*, then i(¥) C ¥} .

(w, F) is a coherent pair iff w is a wellorder of Vs, where § = §(w), and F C Vs is a set of nice extenders such that
for E € F and v =1h(F), ig(w) N Viy1 =wNViyr and ig(F) N Vg1 = FN Vg, See [13, 2.9.6].
35Cf. [13, 9.4.10].
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and
d= (M, id ,M,,C,N™),
and letting s be a 0-bounded stack on M, 41,
lift(s, c)o = lift(ms, d)o.
Thus letting U* be the strategy for N*,

s is by €, iff lift(s, c)o is by ¥*
iff lift(7s, d)g is by ¥U*
iff ws is by ij

The proof that lift(s, c)g = lift(7s,d)o is a routine induction, essentially identical to the proof
of [13, Lemma 5.4.2]. We omit further detail. O

3.3. Regularity properties and comparison

The definitions and results of [13] go over to +1-strategies with almost no change.

For example, if T and U are 1-maximal trees on M, then ® is a tree embedding from T to U
iff letting ® = (u, v, (so | @ <1h(T)), (ta | @+ 1 <1h(T))), ® has all the properties enumerated in
[13, Definition 6.4.1], and in addition

o« is a +1-node of T = s, is +1-elementary.

A +1-strategy X has strong hull condensation iff whenever ®: T — U is a tree embedding and U is
by X, then 7 is by 3; moreover, whenever a < 1h(7), v(a) <y 8, m = %Z;’(a)ﬁ 0 8q, and @ <dom(w),
then we have %7 ¢ = (Zy1541,7(Q))™

If s is a l-maximal stack, then the quasi-normalization V(s) and embedding normalization
W (s) are defined just as before, but so that the trees they produce are l-maximal. If the trees
in s are A-separated, then V(s) = W(s). This is the only case we care about. A 1-strategy X
quasi-normalizes well iff whenever s is a 1-maximal stack by ¥, then V(s) is by ¥; moreover if
Q@ and R are the last models of s and V (s), and o: @ — R is the quasi-normalization map, then
Y6 = (Bv(s),r)-
The definition of internal lift consistency does not change at all.
If Pis an lpm and ¥ is a (), 0)T-strategy for P, then we say (P,X) is pushforward consistent

iff whenever s is a stack by ¥ with last model @, »Q C Y50

36Tf M-to-Q does not drop in s, then M-to-R does not drop in V(s) and o is nearly +1-elementary, so (Zv(s),r)”
is indeed a strategy for 1-maximal stacks on Q.
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Definition 3.20. (AD") A +1-hod pair with scope H,, is a pair (P, %) such that P is a countable
Ipm, ¥ is an (w,w; ) -iteration strategy for P, and (P, X) has strong hull condensation, normalizes

well, and is internally lift consistent and pushforward consistent. —

Remarks 3.21. (a) If we are not assuming AD" we may want to consider uncountable P, and

Y that are defined on uncountable trees.
(b) If (P, %) is a +1-hod pair, then (P,¥7) is an lbr hod pair in the sense of [13].

(c) If (P,X) is a +1-hod pair and P is sound, then (P*,Y) is an lbr hod pair in the sense of [13].
_1

Since nearly +1-elementary maps suffice to copy 1-maximal trees, we get a Dodd-Jensen lemma:

Lemma 3.22. [Dodd-Jensen] Let (M, %) be a +1-mouse pair, s a 1-mazimal stack on (M,X) with
last pair (N,A), and w: (M,X) — (Q, Q) < (N, A) be nearly +1-elementary; then (Q,Q) = (N, A),
the branch M-to-N of s does not have a large drop, and is(n) < w(n) for all n € oM.

Lemma 3.23. Let (N*,€,w, F,¥),U*) be a coarse strategy pair, and let C be the mazximal least
branch (w, F,¥)-construction of (N*, €, w, F,¥) with models M,; and induced +1-strategies le;
then for all v,l, le has strong hull condensation, quasi-normalizes well, and is internally lift

consistent and pushforward consistent.

Proof. (Sketch.) The proof in [13] that €2,,; has these properties works also for Q:l. O
We turn now the comparison theorem for +1-hod pairs.

Definition 3.24. Let (P, ) be a +1-hod pair; then

(1) (P, X) iterates strictly past (Q, A) iff there is a 1-maximal, A-separated tree 7 on (P, X)) with
last pair (R, ¥) such that either (Q,A) < (R, ¥), or P-to-R has a large drop and (Q,A) =
(R, V).

(2) (P,X) iterates to (Q,A) iff there is a 1-maximal, A\-separated tree T on (P, Y) with last pair
(@, A) and such that P-to-Q does not have a large drop.

_{

In case (1), (Q,A) must be an ordinary lbr hod pair, and in case (2) it must be a 1-hod pair.
In both cases, the 1-maximal tree 7 is uniquely determined by (P, X) and (@, A).

Definition 3.25. (P, X) be a +1-hod pair. We say that a coarse strategy pair ((N*, €, w, F, V), ¥¥)
captures (P, Y) iff there is an inductive-like pointclass I' with the scale property such that Code(X) €
Ar, and for 0* = 6(w),

(i) N*E “6* is Woodin”, and
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(ii) P € HCN, and there is a Coll(w, §*)-term 7 and a universal I'-set U such that if i : N* — S
is via ¥* and g C Col(w, i(6*)) is S-generic, then i(7), = U N S[g].

_1

Theorem 3.26. (AD") Let (Py,Xo) be a +1-hod pair, let (N*, €,w, F, W), U*) be a coarse strategy
pair that captures (Po, Xo), and let C be the mazimal least branch (w, F, ¥)-construction of (N*, €
yw, F,W); then there is a (6,n) <jex (0%,0) such that

(1) for all (v, k) <iex (8,n), (FPo,X0) iterates strictly past (M, , S ), and
(2) (Po,Xo) iterates to (Mg,n,Q;{n).

Proof. (Sketch.) The proof is very close to that of [13, Theorem 9.5.2], so we shall just give an
outline.

Let (0, n) be lex least such that (P, ¥) does not iterate strictly past (Mg, Q). For (v, k) <jex
(0,n), let

W*’k = A-separated tree whereby (P, Xo) iterates strictly past (M, Q).

v

Let
(Ma Qa Q+) = (MQ,TM Qﬁ,na Q;’n),

and let T be the tree on (P, Y() formed by iterating away least extender disagreements with M,

as follows. We assume by induction
Induction hypothesis (}),.
If the current last pair of 7 is (Q,A) = (M7, 7)), then

(1) (M is passive in extender disagreements) if E is on the M-sequence and M |[Ih(E) = Q|[Ih(E),
then M|h(E) = Q|Ih(E).

(2) (No strategy disagreements) if S <@ and S < M, then

(a) if S<a M, then S <@ and Ag = Qg, and
(b) if S= M, then S = Q, o is a +1-node of T, and A = Q.

Note that (2)(a) implies that @ is not a proper initial segment of M.
If ()q is false, then we stop the construction of 7, and say that T fails at a. Let us assume
that 7 never fails, and finish the proof.

Claim 3.27. If () holds, then either

(i) a is a +1-node of T, Q = M, and A = Q7 , or
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(ii) there is an extender E on the Q-sequence such that (Q, A)|[Ih(E) = (M, Q)||1h(E) but M|1h(E)

1S passive.

Proof. Suppose that (ii) fails. Then by (1)a(1), @ <M or M < Q. By (2)(a) then (with S = Q),
M < Q. But then (2)(b) with S = M implies that (i) holds. O

If 3.27(i) holds, then (Py,Xg) has iterated to (M,Q%), as desired. In this case we again stop
the construction, and say that 7 succeeds at . Assume now that 7 neither fails nor succeeds
at «, and let E be the unique extender on the Q-sequence such that Q|[Ih(E) = M]|[Ih(E) but
Q|Ih(E) # M|Ih(E). We set

ET = E*
and continue constructing 7. At limit steps we use Xy to choose a branch, as a tree on (P, X)
must do.

The lengths of the EZ are strictly increasing, so if 7 never fails, then eventually it must succeed,
that is, we must reach « such that (f), holds and part (i) of Claim 3.27 holds. This means that
(Py,X0) has iterated to (M, Q7"), as desired.

For (v, k) <jex (0,n), let

W:k = l-maximal A-separated tree whereby (P, ¥o) iterates strictly past (M, Qy k).

Let us check that the lemma of [13, Section 8.3] on realizing resurrection embeddings as branch
embeddings holds for the new W7, . Fix (v, k) <iex (#,n) for a while, and suppose that M, , is not
sound. Let & = 1h(W} ;).

w w
By definition, ./\/lél”’k > M, \, so since M, is not sound, ./\/lgl”’k = M. (Po,Xp) iterates
strictly past (Myk, Qux), so [0,&]w  has a large drop. Let

no = largest v in [0, &)y N Dok,

n = W, -pred(no),
R (A

= o
¢ "noer © o>

and

* WW*
R = dom(i*) = M, “*.

W*
R is the proper initial segment of M, ** that lies on the branch from 7 to &. R has degree k, and

it is sound because the drop at 79 is a large one. Thus

Rt =€ 1(R) = €1 (Mo 1) = My 1,
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and ¢* is the anticore map. Let p = p(M,, ).
w w
Claim 3.28. p < Ih(E, "), and for all T < n, Ih(E: "*) < p.

W*
Proof We have p < crt(i*) < lh(E, “*). Suppose toward contradiction that 7 < n and p <
lh(E " '“) We can then find such 7 with 7+1 <y 7. But this implies that whenever 5 < ./\/ln

with o(S) > lh(Er ”k), then Ih(E; ”k) < p(S). Since p(R) = p, we have a contradiction. O

Sublemma 8.3.1.1 of [13] goes over verbatim when (v, k + 1) <jex (6, n):

Lemma 3.29. Let (v, k+1) <iex (0, 1), and suppose that M, is not sound. Let w: M, — My
be the anticore map. Let & = 1h( ;k), let n,m0, R be as above, and let i*: R — ME Mok _ M, ). be

the branch embedding of Wy, as above; then
(a) R™ = M, ;41 and i* = 7.
(b) n is the least vy such that lh(El/V;’k) > p(My,1).

() Wopir =Wokln+1,
Proof. We have already shown (a) and (b), and (c) follows at once. O

As a result, Lemma 8.3.1 goes over verbatim for resurrections from some (v, k) <jex (0,n):

Corollary 3.30. Let (v, k) <jex (0,n), P <M, ,
Wik
n= least & such that P I M, ™",
and
My; = Res, ;[ P];
then
sl (m+1) =W, . [(n+1),

W, ; has last model M,, ;, and for { = lh(W;;’j), we have n <w: . &, and

W
O-/'L:j [P] - Z'r] f
Proof. The proof of [13, Lemma 8.3.1] also goes over verbatim.3 O

We can now finish the proof of the theorem in the case n > 0.

3"The fact that W, i is A-separated plays a role in the proof.
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Claim 3.31. Ifn > 0, then T succeeds at some a.

Proof. Let n =k + 1, and suppose toward contradiction that 7T fails at «. Let
(Q.A) = (M, z]),

and let

wg 4%
(N, 0) = (Mg 0%

be the last pair in W',
Suppose first that Mjy ;, is sound. Since

_ At
Mo jey1 = My,

(i.e. they are the same as bare premice), Tlao+ 1 = Wy, Ja+ 1. But W}, never failed, so
clearly 7 does not fail at a for the “bad extender disagreement” reason; i.e. (1)o(1) holds. We

verify ()a(2), i.e. that there is no strategy disagreement between A and $j41, and in fact

(Q,A) = (Me,k+1a Q;—,lﬁ-l)‘
Let S 4Q and S QA My jy1. If S < Mg 41 then S < My, and

(Qok)s = (,k+1)s-

Since P iterated strictly past My, either S <N or S = N and 0, §]ng has a large drop. In the

latter case My is not sound, contradiction. So S <1 IV, and thus

(Qo+1)s = (Qk)s
W*
= (Za M)S
= (ZZ;)Sa
which verifies (1)a(2) when S < Mpy 1. Line 3 holds by strategy coherence.
Suppose next that S = Mg j1.
Subclaim 3.32. If S = My ;11 < Q or [0,a]r has a large drop, then Qg 11 = Ag.

Proof. The strategy comparison proof of [13, Theorem 8.4.3] works here pretty much word-for-
word. O

Subclaim 3.33. If S = My 11, then S = Q and [0, a]r has no large drops.

Proof. Otherwise (P, ¥o) iterates strictly past (Mg p, ) by Subclaim 3.32. O
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Subclaim 3.34. If S = My ;41 = Q and [0, a]r has no large drops, then Q;/H-l =A.
Proof. The strategy comparison proof of [13, Theorem 8.4.3] works pretty much word-for-word. [

Putting the subclaims together, we see that (P, Y) iterates to (M97k+1,(2;k+1) in the case
that My is sound.

So we assume that My ;. is not sound. We adopt our previous notation, with # = v. That is,
_ - Wy
mo = largest 5 in [0, & Jws N DVir,
1 = Wy -pred(i),
e Wik

= o
¢ bnoser © o>

and

* W
R = dom(i*) = M %

W*
R is the proper initial segment of M,, * that lies on the branch from 7 to &. R has degree k, and

it is sound because the drop at 79 is a large one. Thus
R = €1 (R) = €1 (Mo) = Mo gy,

and ¢* is the anticore map.

*

4%
Let p = prr1(M). By 3.28, n is least such that 1h(E, **) > p, so
TIn+1=Wsiln+1.

Note that

(Qorsr1)r = (Qog)"

(by Lemma 3.19)

W* -k
= ((251 o )Me,k )'

( because W; . iterates (Py, Xo) strictly past (Mpx, Q1))

W*
= (2 “")r

( by pullback consistency of ¥)



Now we proceed as we did when Mpy j, was sound.
Subclaim 3.35. If RT <M] or [0,n]r has a large drop, then Qg1 = (37 ) g+
Proof. The strategy comparison proof of [13, Theorem 8.4.3] works. O
Subclaim 3.36. RT = MnT and [0,n]7 has no large drops.
Proof. Otherwise (Fy, Xo) iterates strictly past (Mg k1,0 +1) by Subclaim 3.35. O
Subclaim 3.37. If RT = ./\/lnT and [0,n]7 has no large drops, then Qf;kﬂ = EZ—.
Proof. The strategy comparison proof of [13, Theorem 8.4.3] works. O

Putting these subclaims together, we see that (Py, Xo) iterates to (Mp 1, ngﬂ) in the case
that My, is unsound.
This completes the proof of Claim 3.31. O

Now let us prove (f) for 7 in the case n = 0.

Claim 3.38. If n =0, then T succeeds at some a.

Proof. We cannot have a strategy disagreement involving an S <t My 1. For if (v, k) <jex (6,0) is
sufficiently large, then S < M, and (2,—1)s = (2%)s, so this would mean that (Fp, ¥¢) did not
iterate strictly past (M, , Q,,,k).:js Similarly, we cannot have a bad extender disagreement involving
some E on the My o-sequence other than its last extender.

Thus we can fix 7 least such that My ¢ ﬁ./\/lnT, and we have (9 _1)s = (27{)5 for all S<tMpy _;.

Subclaim 3.39. Qy _; = (EUT)M&_I.
Proof. By the proof of [13, 8.4.3]. O
Subclaim 3.40. If the last extender E of My is nonempty, then E is on the sequence of MZ—

Proof. Let E* be the background extender B¢(E). The usual proof®” shows that E is an initial
segment of the branch extender of [k, ig(kg)) in ig«(T), so ET is used in ig«(T), so E is on the

./\/lnT—sequence, a contradiction.?® O

By 3.39 and 3.40, My, < M.

Subclaim 3.41. If My < ./\/177{ or [0,n]r has a large drop, then Qg o = (EZ)MB’O.

Proof. The strategy comparison proof of [13, Theorem 8.4.3] works. O

38M9,,1 is My, with its last extender, if nonempty, being removed. It is the “lim inf” of the M,  for (v, k) <iex
(0,0). Its strategy provided by C is Qg _1.

39¢f. [13, 8.1.12).

49This argument gives a different proof that if My o is active, then Qg _1 = (EnT)Mg,,y We simply go to ig=(V),
use the strategy agreement we have there, and then pull it back to V' by strategy coherence.
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Subclaim 3.42. My, = MZ;- and [0,n]7r has no large drops.
Proof. Otherwise (Py, ¥o) iterates strictly past (Mg, $2,0) by Subclaim 3.41. O

Subclaim 3.43. If My = ./\/l;r and [0, n]7 has no large drops, then Q , = ZZ—.

Proof. The strategy comparison proof of [13, Theorem 8.4.3] works. O
These subclaims complete the proof of Claim 3.38. O
This in turn completes the proof of Theorem 3.26. O

3.4. The sound case

In the case that deg(P) > 0, Theorem 3.26 implies the statement of (x)(P, ) that was proved in
[13] in the case that P has stable type 1.

For suppose (P, Y) has stable type 1 and deg(P) = k + 1. Then (P7,X) is a +1-hod pair of
degree k. Letting N*,C, etc. be as in the statement of (x)(P,X) in [13], Theorem 3.26 gives us a
pair (M, j, 2, k) such that

(i) (P7,%) iterates to (M, 2}, ), and

(i) (P~,X) iterates strictly past (M, j, €2, ;) whenever (n,j) <iex (v, k).

The iterations here are by l-maximal trees on (P~,X), which are the same as ordinary (“O-
maximal”) trees on (P, Y). The iterations in (ii) witness that (P, Y) iterates strictly past (M, ;, 2y ;)
whenever (1, ) <iex (. k).

Let 7 be the 1-maximal tree that witnesses that (P~,X) iterates to (M, ij), €+ 1 be its
length. If M, is sound, then (M, i1, pr1) = (M:k,Q;k), so T (regarded as 0-maximal on
(P,)) witnesses that (P,Y) iterates to (M k+1, Quk+1)-

So suppose that M, ; is not sound. Let 3 <t & be largest such that /\/lg is k 4+ 1-sound. Since
P has stable type 1, 8 is the largest 4+1-node on [0,{]7.(This is where we use that fact.) Letting
Bo <7 & be such that T-pred(f8y) = £, T must have a small drop at Sy, and no further drops in

(Bo, €] So setting
-k LT T
U= 80,6 © %0,60

and
R = dom(i*)

we get that RT = M,, ;41 and ¢* is the anticore map. Moreover

Rt =M]
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because the drop at 5y was small. We then have

Qu,kJrl = (Q:k)l*
— =D)"
= Z,B)?

( T

by Lemma 3.19 and pullback consistency. This means that (P, X) iterates to (M, k11, k+1) in
the sense required by (¥)(P,X).

3.5. The almost sound case

Now suppose (P, ) is not of stable type 1, i.e., it is either of type 2, or of type 1B and not projectum
stable. This implies deg(P) > 0; so say deg(P) = k 4+ 1. Again (P~,) is a +1-hod pair. Let
N*,C, etc. be as in (x)(P,X). Let (P~,X) iterate to (M, ) via the 1-maximal tree 7 with
length £ + 1, as above.

If P has type 2, then P~ is not sound, so M, is not sound. If P has type 1B and 775+1 is
measurable in P, then some total measure on the image of n,f 41 is used in [0, §)7, producing a type
2 ultrapower. So again M, . is unsound. In both cases, M, j has a measurable cardinal x such that
pPr+1(My k) < k < pp(M, ). Preimages of xk were hit in [0, {7, so [0,&]r has a small drop.

Thus, letting 8 be the largest +1-node of 7 in [0, &7, we have 5 < . Let

i=1i)
R =M},
and

Here deg(R) = k. Since R = cHullf‘k (supi“p1(P*) U {p1(R), p1(R)}) and supi“p1(P*) = p1(RF),
R™ is of type 2. E;— is a +1-iteration strategy for R, or equivalently an ordinary strategy for RT,

moreover

*

SE ="
(My 41, Q0 k+1) is the type 1 core of the type 2 pair (R, Zg), in the following sense.
Definition 3.44. If Q) is a pfs premouse, then we set

Q if @ has type 1
Caeg(@)(Q)  if Q has type 2.

c@) =

We call C(Q) the type 1 core of Q. @ and C(Q) have the same degree. If ) has type 2, then C(Q)
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has type 1A, and we let D(Q) be the unique order zero measure on p(Q~) such that

Q™ =Ul(C(Q)", D(Q))-

The type 1 core of (Q,A) is (C(Q),A?), where i = id if C(Q) = Q, and i = ip(Q) otherwise. -

Remark 3.45. Notice that if (Q,A) is a type 2 lbr hod pair of degree k, then for i = ip),
(C(Q),AY) is a type 1 pair of degree k. A’ is defined on “level k” stacks because i is nearly
+1-elementary as a map from C(Q)~ to Q. -

Claim 3.46. (M, 11, k+1) is the type 1 core of (RT, Zg)

Proof. We have that k = deg(R), and ¢* is nearly +1-elementary as a map from R to M, . It
follows that

Crr1(R) = Cpp1(Myg) = My g1

Moreover, letting D = D(R) and 7: M, ;41 — M, be the anticore map, we have the diagram

Rt Z;, My,k
ip T /
My,k+1
But then
Qi1 = (Q,)"
— (ij)i*oiD
= (Eg)iDv
as required. O

We extend the mouse order to type 2 pairs by regarding (Q, A) as being equivalent to its type
1 core. That is,

Definition 3.47. Let (Q,A) and (R, 2) be mouse pairs with type 1 cores (Qo,Ao) and (R, Q)
respectively; then (Q,A) <* (R, Q) iff (Qo,Ao) <* (Ro, Ao). =

3.6. Generating type 2 pairs

We show that any type 2 pair (Q,A) can be recovered from its type 1 core (C(Q),€2). Of course,
@ can be recovered from C(Q) by taking an ultrapower, the question is how to recover A from €.
The tail strategy (p(qg)) is a strategy for 7, not Q. But we can apply the strategy extension
method*!' to Q to obtain a strategy for @, and this strategy works out to be A.

We aren’t going to use the result in this subsection later, so we shall omit some details.

“See [9] and [13, 7.3.11].
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Definition 3.48. Suppose that (M, ) is an lbr hod pair of type 1A and degree k + 1, and D is
the order zero measure of M on k, where py11(M) < k < pr(M). Suppose also that cofy, (k) <
Pk+1(M). Let

QT = (Ult(M~, D), k+1),

and for U a M-separated tree on QT of limit length, let

Q<+D> U) = biff V((D),U"b) is by €;
then we call (Q7, Q?D>) the type 2 pair generated by (M, ) and D. -

Lemma 3.49. Let (Q,A) be a type 2 pair, and let (M, ) be its type 1 core; then (Q,A) is the type
2 pair generated by (M, ) and D(Q).

Proof. Let k + 1 = deg(Q), and let Q% = Ulto(M*, D) where D = D(Q) is the order zero measure
of M* on p1(Q). Let

71':1']1\)4_.

In order to see that (Q,A) is the type 2 pair generated by (M,Q) and D, we must show that

A= QZLD>. Letting U be a plus tree on @, the relevant diagram is
0 T R U g
M———Q——N

Here 7 is the copy map, or what is the same, the canonical embedding from @ to Ult(Q~, n(D)).

Since 7 is nearly +1-elementary as a map on @ it can be used to lift /. We then calculate

U is by Qjm U) iff V((D),U) is by Q
iff 7V ((D),U) is by A
ifft V((m(D)),mU) is by A
iff (x(D)), 7U) is by A
iff U is by A.

Line 3 holds because quasi-normalizing commutes with lifting, line 4 holds because A quasi-

normalizes well, and line 5 holds because A is pullback consistent. ]

4. CONDENSATION LEMMA

The main theorem of this section is Theorem 4.6. This theorem will be used in the [-construction,

but it is more general than is necessary for that application. Its full generality is used in [9].
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Our theorem extends Theorem 9.3.2 of [16], which deals with condensation under 7: H — M
for pure extender mice H and M. That theorem breaks naturally into two cases: either (1) H ¢ M,
in which case H is the crt(m)-core of M, or (2) H € M, in which case H is a proper initial segment
of either M or an ultrapower of M. The proof in case (1) works for least branch hod mice without

much change, so we begin with that case.

Definition 4.1. Let M be an lpm or a pure extender premouse, and n < deg(M); then

(a) A7t is the completion of h}\;[m the ;-Skolem function of M™. We write hy; for Bj/e[g(M)H.

So dom(hy;) C M .42

(b) Let p(M) < « and r = p(M) — «, and suppose that r is solid. Let m: H — M with H
transitive be such that ran(m) = hy;“(eUr), and suppose that 7= (r) is solid over H. Then
we call H the a-core of M, and write H = core,(M). In addition, if (M, ) is a mouse pair,
then the a-core of (M,X) is (H,A), where H = core,(M) and A = ¥™ and 7 is the anticore

map.
(c) M is a-sound iff M = core,(M).
_1

We note that core(M) = Cyeg(ar)+1(M) is the p(M) + 1-core of M. According to this definition,
if M is a-sound, then p(M) < a. So M could be sound, but not a-sound because o < p(M), which

might be confusing at first.

Remark 4.2. Let H be the a-core of M, as witnessed by w. We have p(M) C ran(7), so the new
Yaeg(m)+1 subset of p(M) is Bgeg(ar)4+1 over H. Thus p(H) = p(M) and 7(p(H)) = p(M), and

One also gets that if both H, M are of type 1, then H is of type 1A iff M is of type 1A.

One might guess that P(a)™ C H, but this need not be the case, as the following example
shows. Let N be sound, and let M = Ult(N, E), where p(N) < k = crt(F), and E has one
additional generator o. Let H = Ult(N, Ef«), and let 7: H — M be the factor map. Clearly, 7
witnesses that H is the a-core of M. But a = (k7) < (k7)™ so H doesn’t even have all the
bounded subsets of o that are in M. -

Theorem 4.3 (AD"). Suppose (M, X)) is a Ibr hod pair with scope HC. Suppose H and M are both

type 1 premice, 7 : H — M is nontrivial'®, and letting n = deg(M) = deg(H) and o = crt(r),*

a < pp(M). Suppose also
(1) H is a-sound,

(2) 7 is nearly elementary, and

“2See [13, Definition 2.3.9].
437 is trivial iff H = M and 7 is the identity.
“Here we allow a to be o(H) and 7 to be the identity.
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(3) H is an Ipm of the same kind as M*®, and

(4) H ¢ M.
Then H 1is the a-core of M.

Proof. Let r = p(H) — .
T =Thi" (aUr),

so that T codes H. T is sometimes denoted by Thfl, (e Ur).

Suppose first that = [ H" is not cofinal. We have that T is X; over H", and hence T is ¥
over some proper initial segment of M"™, so that 7' € M™. If n > 0, then M|p,(M) E KP and
T € M|pn(M),so H e M. If n =0 and H is fully passive, then we have 7: H — M|n for some
n < o(M), and ran(7w) in M. Any premouse is closed under transitive collapse, so we again get
H e M. If n =0 and H is extender-active, then letting H~ = H||o(H), we get H~ € M by the
argument just given. However, FH can be computed from the fragment FM | supm“o(H) and 7
inside M, so H € M. The case that n = 0 and H is branch-active can be handled similarly, noting
that the proper initial segments of b™ are in M.

So we may assume 7 | H™ is cofinal ¥, and hence ¥; elementary. We then get that 7(nk) = n.
We claim that p(M) < a. For if not, T is a bounded subset of p(M) that is X1 over M™. Thus
T e Mp(M),so He M.

Suppose r = (. If v € (p(M) — «), then T can be computed easily from the solidity witness
W%,‘m so T in M, and with a bit more work, H € M. So we have p(M) — a = (), which implies
that H is the a-core of M, as witnessed by 7.

Suppose next that r = (o, ..., 51), and p(M) — a = (70, ..., Ym), where 3; > Bit1 and v; > ;11
for all i. We show by induction on ¢ < [ that ¢ < m and 7(5;) = ~;. Suppose we know it for
1 <k<l Let W= Wfﬂkﬂ be the solidity witness for Sxy1 in H. Since m [ H" is ¥; elementary,
7(W) can be used to compute Th | (7(Br11) U {70, -, & }) inside M. But p(M) < m(Br+1), so we
must have k < m. Similarly, vx11 < 7(Bk+1) is impossible, as otherwise (W) could be used in M
to compute the 3,41 theory of p(M) U p(M). On the other hand, if 7(Br+1) < Vk+1, then using
the solidity witness W%M)%H for yx+1 in M, we get H € M.

It follows that m(r) = p(M) — «, and thus H is the ag-core of M.

O

Remark 4.4. In the case H is the core of M, we can also get agreement of 3 and ™ up to
(p)H = (pT)M. See [13, Corollary 9.6.6]. It may be possible to prove strategy condensation in
the other cases, but we have not tried to do that.

An analog of the above theorem can be stated and proved for type 2 premice. -

45This means: H is passive if and only if M is passive; H is B-active if and only if M is B-active; and H is
E-active if and only if M is E-active; in the third case, ¥ is of type A (B, C) if and only if FM is of type A (B, C
respectively). All but the last clause are implicit in (2).

46Here recall that W, - is the transitive collapse of HullM" (y U {r — {7}}).
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Next we deal with condensation under 7: H — M in the case H € M.*" We shall actually prove
a stronger result, one that includes condensation for iteration strategies as well as condensation for
the mice themselves.

The following is an easy case of condensation for pairs.

Lemma 4.5 (AD"). Let (M,X) be a mouse pair with scope HC, and let w: (H,¥) — (M,Y) be
elementary, with © = identity; then either (H,¥) < (M,X), or (H,¥) < Ult((M, %), EM), where
a=o(H).

Proof. Suppose first H is extender-active. Let F = FH and G = FM_ and let k = crt(F). So
kP = gtM < o(H), and il “sTH = i} “stM. Thus ran(r) is cofinal in o(M), which implies
(H,¥) = (M,).

Next, suppose that H is branch active.*® Since 7 is the identity, n = n = 7™ and s = s = sM.
Let 7 = T(s), and let v = v, so that o(H) = n + v. Because 7 preserves B, b = pM np.
But b N v = bMIeU) hecause M is an Ipm, so H = M. We get X7 = Yy from the internal-lift
consistency of (M, %), so (H,¥) < (M, ).

Finally, suppose that H is fully passive. Clearly, M ||6(H) is branch-passive, and thus M ||6(H) =
H. Using internal-lift consistency for (M, Y), we get (H,¥) < (M,3), unless M|6(H) is extender-
active. In that case we get (H, W) < Ult(M, EM), where o = 6(H), using internal-lift consistency

and strategy coherence. ]

Our main condensation theorem for mouse pairs is:

Theorem 4.6 (AD). Suppose (M, X) is a mouse pair with scope HC. Suppose w : (H, V) — (M, )

is nearly elementary, and not the identity. Let o = crt(m), and suppose
(1) p(H) <a < p (H), and H is a-sound, and

(2) H is a premouse of the same kind as M, deg(H) = deg(M), both H and M are solid pfs

premice, and
(3) He M.
Let (Hy, Wq) be the type 1 core of (H,V); then exactly one of the following holds.
(a) (Ho,¥o) < (M,X),
(b) (Ho, Wo) <t Ulto((M, %), EA).

See Footnote 45 for the definition of “same kind”. It does not mean “same type”; we are leaving
open the possibility that one of H and M has type 1, while the other has type 2. Note that if
p(H) < a, then conclusion (b) is impossible.

f w: H — M is elementary, a = crt(n), H is a-sound, and o < p(M), then H € M. This is the case with the
coarser condensation results of [13, 5.55] and [1, 8.2], where a = p(H) and 7(a) = p(M).

480f course, this only applies when M is an Ipm. In general, our proofs for pure extender pairs are special cases of
the proofs for lbr hod pairs, so it doesn’t hurt to assume our mouse pair is an lbr hod pair.
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When one applies Theorem 4.6 in the proof of [, in pfs mice, then M has type 1, and one can
arrange that H has type 1 as well, so that (Hy, Vo) = (H,¥). One also has that H € M. In that
proof, p(H) = p(M) = k, and a = (x*)¥, and both H and M are sound. Since p(H) < a, (b)
does not hold. So one gets conclusion (a), that (H, ¥) <1 (M,X). In the square proof, what matters
then is just that H < M; the full external strategy agreement given by X" = ¥ g is not used.

In the applications of 4.6 to full normalization and positionality in [9], one must consider the

case that H and M have different types, and both alternatives in the conclusion are needed.

Remark 4.7. It follows from the theorem that the hypothesis & < pgeg(sr)(H) can be dropped, if

one omits condensation of the external strategy from its conclusion. See 4.14 below. -

By condition (3) and Theorem 4.3 (and the remark after), H is not an a-core of M. If H is
a-sound and is not the a-core of M, then by 4.3, H € M.

Notice that one of the alternatives in the conclusion of [16, Theorem 9.3.2] does not occur here.
The alternative that (H, W) < Ultg((M|E,X), E) where p(M|£) = p is the predecessor of o in M
and F is an extender on the sequence of M with critical point pu cannot occur here because M is
projectum solid.

A relatively coarse special case of Theorem 4.6 is sketched in [13, Theorem 5.55]. In that case,

7 is assumed to be fully elementary and crt(m) = p(H).

Proof of Theorem 4.6. Let w: (H,V) — (M, X) be nearly elementary, and let ag = o = crt(7) and

deg(H) = deg(M) = ko. For definiteness, let us assume that H and M are least branch premice.

The proof in the case that they are pure extender mice is similar.*?%

Definition 4.8. A tuple ((N,®),(G,A),o,v) is problematic iff
(1) (N,®) and (G, A) are of the same kind, with scope HC, and G € N,
(2) o: (G,A) = (N, ®) is nearly elementary, with crt(o) = v,

(3) p(G) £V < paeg()(G) and G is v-sound, deg(N) = deg(G), G, N are both solid pfs premice,

and

(4) letting (Go, Ag) be the type 1 core of (G, A), both conclusions (a) and (b) of 4.6 fail for the
pair (Go, Ag), (N, ®); that is, it is not the case that (Go, Ag) < (N, ®), and it is not the case
that (G, Ag) <t Ulte((N, ®), EN).

_|

““Even in the pure extender case, one cannot simply quote 9.3.2 of [16], because we are demanding strategy
condensation.

50Under AD™, every countable w-iterable pure extender mouse M has an complete iteration strategy 3 such (M, %)
is a pure extender pair. Thus our theorems 4.3,4.5, and 4.6 together imply the version of 9.3.2 of [16] for pfs mice,
modulo some details about where the strategies live, and how elementary 7 is. See also Remark 4.7.
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Claim 1. Let ((N,®),(G,A),o0,v) be a problematic tuple, and k = deg(G); then o(v) is a cardinal
of N, o(v) < pr(N), and G € N||o(v).

Proof. By (3), pr+1(G) < v < pi(G), so o(v) < pr(N). Since v = crt(o), it is a cardinal of G, so
o(v) is a cardinal of N. But G is v-sound, so it is coded by a subset of v in N, so G € N||o(v).
0

We must show that ((M,X), (H, V), w, ap) is not problematic. Assume toward contradiction
that it is, and that (M, ¥) is minimal in the mouse order such that (M, X) is the first term in some
problematic tuple, and let ko = deg(M).

We obtain a contradiction by comparing the phalanx (M, H, ) with M, as usual. However,
since we are comparing strategies, this must be done indirectly, by iterating both into some suffi-
ciently strong background construction C. It can happen that at some point, the two sides agree
with each other (but not with C). This leads to a problem in the argument that the end model on
the phalanx side can’t be above M. The solution employed in [13] is to modify how the phalanx is
iterated, moving the whole phalanx (including its exchange ordinal) up at certain stages. Our main
new problem here is that because of the restricted elementarity of our maps, if we move up naively,
the new phalanx and associated embedding may not be problematic. This forces us to drop to a

new problematic phalanx on occasion.

Claim 2. Let ((N,®),(G,A),o,v) be a problematic tuple, and k = deg(G); then we can decompose
ol G* as

where each ¢ belongs to NE.

Proof. Assume first k = 0 (so G, N are of type 1), and that 6(G) is a limit ordinal. For n < 6(G),
let G" be G||n, expanded by I", where I" is the appropriate fragment of FG if G is extender active,
the appropriate initial segment of BC if G is branch active, and I = () otherwise . Let N” be
Nllo(n), expanded by o(I"). Let s = pi1(G)\v and o be the fragment of o given by

dom(o") = him “(v U s),

and

Jn(héﬂ (67 S)) = h}\[fr(n) (67 U(S))v

for § <v. We have that 0" € N, and o =, 4y 0"- 1f 6(G) is a successor ordinal, we can ramify
using the S-hierarchy.
The case k > 0 is similar. We have G* = (G||px(G), A) where A = A’é For n < pi(G), let

G" = (G|, AN G||n) = G¥||n.
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Let s = p1(G*)\v, and let hék be the 1 Skolem function, so that G¥ = hék “(vUs). For n < pr(G),
dom(c™) = him “(v U s),

and for v < v in dom(o"),
Jn(h%}” (7,8)) = h}vkug(n) (v,0(s)).

It is easy to see that this works. ]
We call ((67,G") | v < n < pp(G)) as above the natural decomposition of o | G¥.
Using claim 2, we can move a problematic tuple ((N, ®), (G,A),o,v) up via an iteration map
that is continuous at pi(G). When the iteration map is discontinuous at pg(G), we may have to

drop.

Definition 4.9. Let ® = ((N, ®), (G, A), 0,v) be a problematic tuple; then ® is extender-active iff
EY #0. H

When we move up extender-active tuples, the new exchange ordinal is always the image of the

old one, so the new tuple is still extender-active.

Claim 3. Let ((N,®), (G, ), o, v) be problematic, and suppose that (N, ®) <* (M, X); then there
is no proper initial segment (@, ) of (G, A) such that v = p(Q) and either

(i) EY =0, and (Q, ) is not an initial segment of (N, ®), or

(ii) EN # 0, and (Q,) is not a proper initial segment of Ult((N, ®), EY).

Proof. This follows from the minimality of (M,3) in the mouse order. For if (Q,€) is a coun-
terexample, then letting (R,I') < (N, ®) be such that R = ¢(Q), we have that (R,T") <* (M, X),
and ((R,I"),(Q,Aq),0 | Q,v) is problematic. We note that since Q@ < G, @ is of type 1 and hence
c@Q) = Q.

U

So under the hypotheses of claim 3, (N, ®) agrees with (G, A) strictly below v €.

We are ready now to enter the phalanx comparison argument of [13]. Fix a coarse strategy pair
((N*, €,w, F, W), U*) that captures X, and let C be the maximal (w, F) construction, with models
M, and induced strategies €,,;. Let §* = 6(w). By Theorem 3.26, (x)(M, %) holds, so we can fix
(no, ko) lex least such that either

(i) (M,X) iterates to (M, ko> 2no,ko)s OF
(i) (M,Y) iterates to some type 2 pair generated by (M, ko> o ko )-

As we showed in §3, alternative (i) occurs if M has stable type 1, and alternative (ii) occurs

otherwise. Let U, , be the A-separated tree on (Fy, X) that witnesses this. For (v,1) <iex (10, ko)

0,k0
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let U,,; be the unique A-separated tree on M witnessing that (M, X)) iterates strictly past (M, 2,;).
51

We define A-separated trees S,; on (M, H, ap) for certain (v,1) < (no, ko). Fix (v,1) < (no, ko)
for now, and assume S,y is defined whenever (v/,I') < (v,1). Let U = U,;, and for 7 < 1h(U), let

E17/'{ = EM{(’r-i—l)

be the tail strategy for MY induced by X. We proceed to define S = 8,1, by comparing the phalanx
(M, H, o) with M,,;. As we define S, we lift S to a padded tree 7 on M, by copying. Let us write

Z;?r = XT1(0+1)

for the tail strategy for M;r induced by X. For 6 < 1h(S), we will have copy map
Ty - ./\/lbg — MZ—

The map 7y is nearly elementary. We attach the complete strategy
Ao = (ZF)™

to M‘g. We also define a non-decreasing sequence of ordinals A\g = /\‘99 that measure agreement
between models of S, and tell us which model we should apply the next extender to.

The following claim will be useful in pushing up problematic tuples.
.S
Claim 4. Suppose § <g 0 and (§,0]s does not drop; then A¢ = A;E’G.
Proof. Because Y is pullback consistent, we have ZZ = (ZZ—)ZZ@. But then

Ae = (5]

_ (ZT)Z'ZGMQ

>

_ (ZT)WQOig’g

>

as desired. ]
We start with

MS = M, MS = H, X\ = ap,
and

M =MT =M, 7o =id, m =,

51We can work in N* from now on, and interpret these statements there. But in fact, the strategies Q. are induced
by X" in a way that guarantees they extend to X*-induced strategies 2} ; defined on all of HC. U, ; iterates (M, X)
past (M., ;) in V.
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and
Ap=3X, Ay =X™,

We say that 0,1 are distinct roots of S. We say that 0 is unstable, and 1 is stable®?. As we
proceed, we shall declare additional nodes 6 of S to be unstable. We do so because (/\/lbs, Ag) =
(M%’, 224) for some v°3, and when we do so, we shall immediately define ./\/l‘g 1, as well as oy and
ap such that

¢.9 —df <(Mg7 A9>7 (M‘05+17 A9+1)7 g, 050>

is a problematic tuple. Here Ag,1 = Ag‘). In this case, [0, 0]s does not drop, and all £ <g 6 are also
unstable. We regard 6 + 1 as a new root of §. This is the only way new roots are constructed.

Let us also write
Py =qr <M‘(9§’M‘9§+1709’O‘9>
for the part of ®y that is definable over ./\/lg . We say ®, is problematic iff ®¢ is problematic for
reason that do not involve the external strategies; that is, iff both statements “C(Mg 1) < MG
S
and “C(My ;) < Ulto(M§, Eﬁ:" )” are false.

If 6 is unstable, then we define
By = (o )Mis.

If £ <g, 0, then we shall have By < igg(ﬁg), and
By = i£g(Be) = ®g = ig o(De),

in the appropriate sense. In this connection: it will turn out that i¢g(8¢) = By implies ig,e is

continuous at pk(M‘gH), where k = ko = deg(M‘g_H). So we can set

Z? g(0¢) = upward extension of U i?,e(gg ),

nN<pk (M?+1)

where <a7€7 | n < pk(Mé_I» is the natural decomposition of o¢. This enables us to make sense of
i o(®F)-

The construction of S takes place in rounds in which we either add one stable 8, or one unstable
f and its stable successor 6 + 1. Thus the current last model is always stable, and all extenders

used in § are plus extenders taken from stable models. If v is stable, then

Ay = MES).

52This is different from the notion of “stable pfs premice”. We shall let context dictate the meaning of the term.
53In the first version of [13] the external strategy agreement was not required for 6 to be declared unstable, but it
is important to do so here.
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In the case v is unstable and v+ 1 < Ih(S), we first define A4 and set
Ay = inf(Ay 41, ).

See below for more detail.

In sum, we are maintaining by induction that the last node v of our current § is stable, and

Induction hypotheses (}),. If # < and § is unstable, then
(1) 0 <g # and [0,60]s does not drop (in model or degree), and every £ <g 6 is unstable,
(2) there is a v such that (M5, Ag) = (Mg’, E%’),
(3) ®g = ((MF,Ng), (MZ 1, Ag+1), 09, ) is a problematic tuple,
(4) Py is extender-active iff @ is extender-active, and if @y is extender-active, then iosﬁ(ao) = g,
(5) if £ <g 6, then apy < i‘gﬁ(ag) and By < ige(ﬂg),

(6) if <069,59> = Z§G(<a§75§>)v then
(a) &, = i§9(<1>g), and
(b) ige is continuous at py, (/\/lgﬂ), where ko = deg(/\/lfﬂ),

(7) Mg+1 = M], and 7p11 = g 0 0y,

Setting o¢ = 7, we have ().
For a node 7 of S, we write S-pred(v) for the immediate <g-predecessor of . For v a node in
S, we set
st(y) = the least stable 8 such that 6 <g ~,
and
o) S-pred(st(y)) if S-pred(st(y)) exists
rt(y) =
st(7) otherwise.

The construction of S ends when we reach a stable 6 such that
() (M, Q) < (MG, Ag), or (M,y,Q2,1) = (M3, Ag) and [1t(6),6]s drops, or

(II) [rt(0),6]s does not drop in model or degree and either (M3, Ag) < (M,;, ), or (M, )
is the type 1 core of (./\/l‘g, Ag).

We need the second alternative in (II) because models on the phalanx side might have type 2.
The comparison arguments of §3 and [I13] show that if (v,l) is least such that (II) holds, and
(M‘g; AG) g (Mz/,la QI/,Z)v then (M37A9) = (MV,lv Qu,l)a
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If case (I) occurs, then we go on to define S, ;4. If case (II) occurs, we stop the construction.
We will sometimes write “case (II)(a)” for the first case of (II) and “case (II)(b)” for the second
case.

We now describe how to extend S one more step. First we assume S has successor length v+ 1
and let M§ be the current last model, so that v is stable. Suppose (f), holds. Suppose (I) and
(IT) above do not hold for v, so that we have a least disagreement between /\/lf and M, ;. By the
results of §3, i.e. essentially the proof of [13, Lemma 9.6.5], the least disagreement involves only an
extender E on the sequence of ./\/l§ as long as crt(E) < pi(M,,).5* In this case, letting 7 = Ih(E),

we have
o M, |(1,0) = M§’<T,—1),55 and

o (Ut)(rg) = M) rm)-

Set
A = A,

and let £ be least such that crt(E) < )\‘g. We let S-pred(y + 1) = &. Let (8, k) be lex least such
that either p(/\/lf\(ﬁ, k)) <crt(E) or (B,k) = (é(/\/lf),deg(./\/l?)). Set R = M?Kﬁ, k) and set

MS, | = Ul(R,E"),

and let %f,wl be the canonical embedding. Let
M’Z/-H ZUlt(Mg-‘(ng(ﬁ), k)? WW(EJF))?

and let m,41 be given by the Shift Lemma . This determines A,i;. We write Ef for E* and
similarly we write EZ’ for m,(ET). Similar notations apply to extenders Ezj on the tree U.

If ¢ is stable or (8, k) < (6(/\/1‘2), deg(M‘g)), then we declare v + 1 to be stable. (f)+1 follows
vacuously from (1),.%

If £ is unstable, (5,k) = ((3(/\/1‘5), deg(/\/l?)), and (Mgﬂ, A 41) is not a model of U, then again
we declare v + 1 stable. Again, ({)y41 follows vacuously from ().

Finally, suppose ¢ is unstable, (8, k) = (6(M‘§),deg(M‘g)), and for some T,

(M§+17A7+1) = (Ml;!v 217/'1)

®The only extender that has critical point > p;(M,,), if exists, is the order zero measure F' = D(M$) witnessing
case (II)(b). This happens precisely when some model on the main branch [rt(), 8]s has type 2. In this case, F' is
the last extender used in the comparison and is the only extender on the M, ;-sequence used.

®Recall M5|(7,—1) is the structure obtained from MS |7 by removing E.

56Tt is possible that ¢ is unstable, A¢ = ¢, S-pred(y + 1) = ¢, and crt(Ef) = Ar where F is the last extender of
./\/lf|a5. In this case, (8,k) = (Ih(F),0). The problem then is that M3, is not an lpm, because its last extender
ig,~+1(F) has a missing whole initial segment, namely F'. Schindler and Zeman found a way to deal with this anomaly
in [7]. Their method works in the hod mouse context as well. Here we shall not go into the details of this case. The
anomaly cannot occur when £ is stable, because then A\¢ = X(Ef) is inaccessible in ./\/lig,
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We then we declare v + 1 to be unstable and ~ + 2 stable. We must define the problematic tuple
needed for ()y4o. Let i = igvﬂ’ and

<(N7 \11)7 (Gv (fb), g, a> = <(M§7 A§)7 (Mg+17 A£+1)7 O¢, a§>-
We have that ((N,¥), (G, ®),0,q) is problematic. We must define ®,; and verify (}),4+2. We
break into 2 cases. Let k = deg(G). (So k = ko = deg(N) = deg(M).)
Case 1. i is continuous at pi(G).
In this case, we simply let
(M3, ay11) = (i(G), i(a)).

We must define 0,,1. Note that by our case hypothesis,

Let (0" | n < pr(@)) be the natural decomposition of o | G¥, and set

i1 G =[] ilo").

n<pr(G)

Using the continuity of i at p(G), it is easy to see that i(c | GF) is Sg-elementary and cardinal
preserving from z(é)k to z(]\f)k We set

0,41 = completion of i(o | G’k) via upward extension of embeddings,

and

— A9+l
A’Y+2 - A7+1 :

This defines ®,1, that is

D1 = ((((N), A1), (i(G), Ay, i(0), (@),

Abusing notation a bit, let us write

@7, = (i(N),i(G), i(0), ().

We must see that ®, is problematic. First, it satisfies the hypotheses of the Condensation
Theorem 4.6. For G is a-sound, so i(G) is i(«)-sound. (Note G € N, so i|G is X,-elementary.) By
downward extension of embeddings (cf. [6, Lemma 3.3]), i(c | G¥) extends to a unique embedding
from some K into i(N), and it is easy to see that K = i(G), because i(G) is k-sound, and that the
embedding in question is what we have called i(c). i(o) is nearly elementary: it maps parameters
correctly, and i(o) | z(é)k is Yg-elementary and cardinal preserving by construction.

Finally, crt(i(0)) = i(a), because for all sufficiently large n < pr(G), a + 1 C dom(o") and

crt(o”) = a, so crt(i(o")) = i(«).
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So we must see that one of the conclusions of 4.6 fails. We show that the conclusion that failed
for ®, fails for ®,4;.

Suppose first that <I>f_ is problematic. We break into cases. If Eév = () and G is of type 1, then
-G < N. But then E;((O]:[)) = 0, i(G) is of type 1, and —i(G) < i(N), so ®_; is problematic. If
G is of type 1 and EY # 0, then -G < Ult(N, EY). But then i(G) is of type 1, E;((i\;) # 0, and
—i(G) < Ult(i(N), E;gi\g)), so @ is problematic.’” If G is of type 2, since ®, is problematic, no
L <N (orif EY # 0, no L < Ultg(N, EY)) is such that L = C(G). By elementarity of i the same
fact holds for i() and therefore, ¢~ is problematic.

So we may assume <I>g is not problematic, and hence also ®, 4, is not problematic. Suppose
first G <N, so i(G) <i(N). We must show Ai(i)l # (Ay+1)i(c), so suppose otherwise. Using Claim
4 we get Ag = A%, so

a contradiction. Equation 2 holds because i o 0 = i(0) o i, and equation 5 comes from equation 4
using claim 4 again. Thus ®; is not problematic, contradiction.
Suppose next G <ULt(N, Eqo). We want to show (A¢)(g, ¢y = AZ. This comes from the following

calculations (see Figure 1).

i

This first equality follows from Claim 4. The third equality follows from the assumption that ®,;
is not problematic. The last equality follows from the fact that A¢ = (Ay41)%, so the tail strategy
(Ay+1)(i(Ea),i(v)) is pulled back by the Shift lemma map from Ult(N, E,) to Ult(i(NV),i(Ey)), which

is just .

57In both cases, i has enough elementarity to preserve these facts. For instance, if =(G <t Ult(N, EY)), then this is
equivalent to ~(G < Ult(N|(a™)N, EY)), and i preserves this fact.
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Ut(N,E,) > G

Figure 1: Diagram illustrating that (A¢) (g, ¢y = Ag.

Figure 2: Diagram illustrating that Agoj = (A¢)r-

Suppose next that G is of type 2. Suppose L <1 N is such that C(G) = L. (Then case that L
is an ultrapower away from N is similar.) Let j: L — G be the ultrapower map, and let I = i(j),
so that {:i(L) — i(G) = Ulte(i(L),i(D)). i(G) has type 2, so since ®,1; is not problematic,

i(L) <i(N) and (Ayy1)ir) = Ai(i)fl. We wish to show that (A¢)r = Agoj.58 But we can calculate

Agoj _ Aioooj

y+1
_ Ai(i)loloi _ (Afy(i)lol)i
= (A1)’
= (A¢)L-

Line 1 uses Claim 4, as does the step from line 3 to line 4. Line 2 uses the commutativity of the
diagram in Figure 2. As we noted, line 3 holds because ®-1 is not problematic.

Thus (M§+1,M§+2,ny+1, Qy4+1) is problematic. Setting
M7y'+2 = M'yTJrl and 7y 19 = Ty41 © Oyt

the rest of (f),42 is clear.

Case 2. i is discontinuous at pi(G).

Set k = crt(E:?). In case 2, pi(G) has cofinality x in N. Since p(G) < a and G is a-sound, we
have a &1 over G*¥ map of a onto (at)Y. Ramifying this map, we see that (o) also has cofinality
% in N. Here recall that p(G) = p1(G¥) and p(G) = p1(G*).

8 As we remarked in 3.45, Affﬁoz and AZ* are indeed level k strategies.
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Figure 3: Lift up of (N, G, 0, ) in the case 7 is discontinuous at pi(G)

Let (0", G") | a <1 < pp(G)) be the natural decomposition of o [ G¥.5 Let s = p(G) — a, so
that
dom(c™) = him“(a U s).

Let

7= |J (")

n<pr(G)

The domain of 7 is no longer all of i(G¥), instead

dom(r) = | hlgn“(i(0) Ui(s)).
n<pi(G)

But set
J =Ult(G, E; | supi“a),

and let t: G — J be the canonical embedding, and v: J — i(G) be the factor map. This is a X
ultrapower, by what may be a long extender. That is, J is the decoding of Jk = Ulto(ék,Ei i
supi“a). Note that t is continuous at «, because « is regular in G (because a@ = crt(o)), and
a < pp(G).

We claim that ran(v | J*) C dom(7). For let f € G* and b C supi“a be finite, so that ¢(f)(b) is
a typical element of J*, and v(¢(f)(b)) = i(f)(b). We can find ) < pj(G) such that f € dom(c”) and
n > a, so that i(f) € dom(i(o")) and b C i(n). Since f“(a) C dom(c™), i(f)“i(a)) C dom(i(co™)),
so i(f)(b) € dom(T), as desired.

Let 7 be the extension of 7 given by: for a C supi“pk(G) finite,

(B (0, p(I(G))) = RN, (F(a), p(i(N))).

It is easy to check that ran(v) C dom(7).

This gives us the diagram in Figure 3.

The map 7 here is only partial on i(G), but 7owv: J — i(N) is total. Also, i“G C dom(7), so
T o1 is total on G. For each n < pi(G), and x € dom(c"),

ioo'(z)=1i(c")(i(x)),

59We encourage the reader to focus on the case k = 0, which has the main ideas.
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so T o agrees on G¥ with i o 0. Since both map pi(G) to pr(i(N)),
Tot=100.

Clearly i | G = v ot, so the diagram commutes.

Since F; | supi“a is a long extender, we need some care to show that J is a premouse. The
worry is that it could be a protomouse, in the the case that G is extender active and & = 0. So
suppose k = 0 and p = crt(F€); it is enough to see that ¢ is continuous at p™C. If not, we have
f € G and b C supi“a finite such that

supi ‘'t <#(f)(b) <i(u™).

We may assume dom(f) = Al where v < @, and by Los, ran(f) is unbounded in p+¢. It follows
that ™% < a, so p™¢ = (%) = p™N. But cof (u™%) = cof(6(G)) = x in N, so u*¢ is not a
cardinal in NV, contradiction.

Thus J is a premouse. We claim that 7 o v is nearly elementary. First, 7 is a partial ¥y map
from i(G*) to i(N¥), so T ov | J¥ is B¢ from J*¥ to i(N*). It is also easy to see that 7 ov | J¥ is
cardinal preserving.

For n < px(G), we have that o” is the identity on av N7, so
supi“a = supt“a < crt(T o).

But a < g(a), so i(a) < ioo(a) = Tovot(a). Also, t(a) < i(w), so t(a) < T ov(t(a)). Thus

crt(7 ov) < t(a), and since t(a) = supt“a, we get
crt(T owv) = supi“a = t(a).

Remark 4.10. It is possible that i is continuous at «, even though it is discontinuous at py(G)

and hence J # i(G). In this case crt(v) > i(a) = supi“a and crt(7) = i(a) = t(a). =
We set
M§+1 = Z(N)a
S
M’Y+2 - J,

Oy+1 =Tow, and

Q1 = crt(T o).

We define then

(I)’y—‘rl = <(/i(N)7A’Y+1)7 (Ja Aj‘y:/:il), O~+1, a7+1>‘

Claim 5. ®.41 is problematic.
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Proof. We begin with proving a subclaim.
Subclaim 5a.

(a) If ®, is problematic, then ®7, is problematic.

(b) ®¢ is extender-active iff ®,,; is extender-active; moreover, if ®, is extender-active, then

i?,m(as) = Qv+l

Proof. Recall that we write
L = (i(N), J, T ov,ert(T 0 v)).

It is easy to see that the tuple obeys the hypotheses of 4.6: clearly J is Y1 generated by sup“aU
t(s), and as we showed above, crt(7 o v) = supi“a. t preserves the solidity of s, so t(s) = p(J) —
supi“a. We have shown that 7o v is nearly elementary. Since i(G) € i(N), we have J € i(N), so
J is not the crt(7 o v)-core of i(N).

So what we need to see is that neither of the conclusions (a)-(b) of 4.6 hold for (i(N),J, T o

v, crt(T o v)), and that P, is extender-active iff <I>£_ is extender-active. We break into two cases.
Case A. ®¢ is not extender-active.

Let us show that @, is not extender active. For this, we must see that crt(r o v) is not an
index in ¢(IN). There are two cases. If i is continuous at «, then crt(v) > i(«) and crt(7) = (@),
so crt(7 o v) = i(«), which is not an index in (V). Otherwise, crt(7 o v) = crt(v) = supi“a. But
then supi“a has cofinality x in i(N), and since & is a limit cardinal in (), it is not the cofinality
of the index of a total extender in (V).

Now we show that CIJV_ 41 is problematic. Suppose toward contradiction that it is not; that is,
that

C(J) <i(N).

We have EY = 0. Since (N, ) <* (M[,%]) <* (M, %), Claim 3 gives
Gl(@™)% = NJ|(a™)“.

Since G € N, there is a first level P of N such that P||(a™)% = G|(a™)® and p(P) < a. Because
P, is problematic, P # G and if G is of type 2, G # Ult(P, D) where D is the Mitchell order 0
measure on p~ (G). Letting n = deg(P), we get by the argument above that in N, p,(P) has the
same cofinality as (a)F = (o), namely «.
We set
Q = Ult(P, E; | supi“a),

and let tg: P — @ be the canonical embedding, and vg: Q — i(P) be the factor map.%® We wish
to show that C(Q) <i(N). Let us assume that @ # i(P), as otherwise this is trivial. This implies
that vy # id and crt(vg) < pn(Q).

59More precisely, @ is decoded from Ulto(P”, E; | supi“a).
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Again, we must see that () is not a protomouse, in the case P is extender active with crt(FP ) =
i, and n = 0. The proof is the same as it was for J. Namely, if o < p™ then tg is continuous at
1P because any f € P such that f: [y]¥l — ut* for v < o has bounded range. If u™F < «, then

because Pla™F = G|atC, ptF is a cardinal of G, and hence of N, so i is continuous at . so

to is continuous at putr.

It is easy to check that the hypotheses of 4.6 hold for ((i(P), ), (Q, "), vy, crt(vg)), where
Q = (Ay+1)ip)- Note here that
supi“a = to(a) < crt(vp).

to is continuous at o and o™F, and i is discontinuous at at because cf¥ (o) = k. Thus

to(e) if ¢ is discontinuous at «,
crt(vg) = '
to(a)H@  otherwise.

Let so = p(P) \ o; then P = It “a U sy because P is sound and p(P) < a. Thus

Q= hg‘H “(supi“aUtp(sp))-

Moreover, t; maps the solidity witnesses for so to solidity witnesses for ¢ (sg), so
Q is crt(vp)-sound,

with parameter ¢o(s) \ crt(vg). Also,

p(Q) < to() < ert(vo) < to(a™) < pu(Q),

where the last inequality comes from p,(Q) = suptp“p,(P) and the fact that ¢y is continuous at
atP . Tt is easy to verify that vg is nearly elementary. Finally, i(P) is sound, so @ cannot be its
crt(vg)-core.

Thus the hypotheses of 4.6 hold for ((i(P), ), (Q,2"), vy, crt(vy)). But note

(i(P), ) 9 (((N), Ayy1) < (M1, 2T10) < (M, 5).

So because (M, X)) is minimal, one of the conclusions of 4.6 holds for @, i(P). However, to(a) is not
an index in i(N) because « is not an index in N, and to(a)™? is not an index in i(/N) because it

has cofinality  in i(N), and & is a limit cardinal in i(N). So
C(Q) <i(P)<i(N).

So C(J) and C(Q) are each the first level of i(N) collapsing (o)™ = to(a)t? to t(a) = to(a),

SO
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It follows that n = k. We get a contradiction by pulling back to G and P.
Case (i). J,Q are both of type 1.
Then J = Q, tla = tole, and t(s) = to(so) = p(J) — t(«). It follows that G = P, so G < N,

contradicting our assumption that <I>g is problematic.

There are some bothersome details in the remaining cases. Some arise from the possibility that ¢
and to do not preserve pg. In that connection, the following lemma is useful. It is implicit (very

nearly explicit) in the proof of solidity and universality for pfs mice in [13, Section 4.10].

Lemma 4.11. (AD") Let (R,Y) be a sound Ibr hod pair of degree k, and suppose that either R
has type 1A, or R has type 1B and is not projectum stable; then R](‘j is sound, in the sense that

k
Rl = Hull{ (py (Rf) + 1 U py(RE)).

Proof. (Sketch.) This is implicit in the proof of Theorem 4.10.9 in [13], and in fact it is pointed
out in the last 3 lines of that proof. The problem is that R’g does not have a name for pi(R) in its
language, whereas R* does.

Let pr = pr(R), p = pry1(R), and if R has type 1B, let € (R) be its strong core and i: €, (R) —
R = Ult(€(R), D) be the canonical embedding. Let

least v s.t. pp = h}%k_l (v, pr(R)) if R has type 1A,
least 7 s.t. i(D) = hj_i (v, pr(R))  if R has type 1B.

E =

Our hypotheses on R imply that ¢ exists®!, and € € Hully(p Ur), where r = p;(RE).%? Letting
p=p1 (Rk), this enables us to show that p C r, and to translate ka definitions using parameters

in p+ 1Up into Zf}g definitions using parameters in p + 1 U .53 It follows that
HulllﬁlDc (p+1Ur) = Hull{%k (p+1Up).
Since we have assumed that RF is 1-sound, this is what we need. ]
Let us return to Subclaim 5a.

Case (ii). @ has type 1 and J has type 2.

In this case, G must have type 1B or type 2. Suppose first it has type 1B. The relevant diagram is

51See [13, 4.10.8].
52See [13, 4.10.9, Claim 1].
53See Claims 2 and 3 in the proof of [13, 4.10.9].
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J Cc(J =
lin) (J) Q
t ty to
G 1 (Q) P

(55)

Here ip: €4 (G) — G is the ultrapower by the order zero measure D, and t; is the canonical
embedding associated to Ult(€x(G), E; supi“a). t; agrees with ¢ and tg on a™F.

Since C(J) is type 1A, Q is type 1A, so P is type 1A. Thus P} is sound by Lemma 4.11. Since
G is type 1B and J is type 2, GG is not projectum stable, so G’g is a-sound by the lemma. Letting
r=p1(G) — o and w = p1(PF) — a, we get that t1(r) is the top part of p;(C(J)§), hence the top
part of p1(QF) = to(w), so t1(r) = to(w). Since tg and ¢ agree on o™, we get that €4 (G) = P.
This is a contradiction, because py(€(G)) is measurable in €;(G) , so €;(G) is not a pfs premouse.

Suppose next that G has type 2. Now the relevant diagram is

J——C(J) =
lin) (J) Q
t 1 to
D

The proof in the type 1B case now tells us that C(G) = P. That means that ®, is not

problematic, again a contradiction.

Case (iii). @Q has type 2.

In this case, P has type 1B and is not projectum stable. By the Lemma, P(;“ is sound. We take
subcases on the type of G.
If G has type 1A, the relevant diagram is

tol(z
;o= ol
t 1 to
G ¢, (P) L’ P

As above, the agreement between t and to and the fact that J = C(Q) implies that G = € (P).
This is impossible because € (P) is not a pfs premouse.

If G has type 1B, then J must have type 2, since otherwise J = C(J) = C(Q), so J has type
1A, so GG has type 1A. So our diagram is
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to(ip)

J —C(J) = C@Q) Q
tl(ZU)

t 1 t{ to

G &G &) —2p

G is not projectum stable, so Glg is a-sound. The agreement of t; and ¢t on a™% then implies
that GE = P¥, hence €;(G) = €;(P), and hence G = P. So ®, is not problematic, contradiction.

If G has type 2, the argument above shows that C'(G) = €, (P). But this is impossible, because
C(Q) is a pfs premouse and € (P) is not.

Cases (i)-(iii) exhaust the possibilities, so we have proved Subclaim 5a in the case that ®¢ is

not extender active.

Case B. ®¢ is extender-active.

In this case supi“a = i(a), because « has cofinality crt(EY)*™" in N. So i(a) is an index in i(N),
say of F. Moreover, i(a) = crt(7 o v), so we have (b) of the subclaim.

Let R = Ult(N,EY). G|a™% is an initial segment of R by (x)(N). If a™® = o™ then
i(a)t = i(a)HUENLE) where F = i(EY), so (i(N), J, Towv,i(a)) is problematic. (Since crt(v) >
i(), i(a) = crt(r).) Otherwise, we have a first initial segment P of R past ot that projects to
or below a. We can now use P just as we did in Case A, thereby proving (a) of the subclaim.

This finishes the proof of Subclaim 5a. (|

We are trying to show @, is problematic, so by Subclaim 5a, we may assume that <I>§_ and
®_,, are not problematic. Suppose for example that G <N and that J < i(N) (so both G, J are
of type 1). The relevant diagram is

T

J

i(@)
\

Since ®¢ is problematic, Ag # (A¢)g. If @441 is not problematic, then

i

N

G—% N

)

(Ay1)s = AT, (4.1)

Because (i(G), (Ay+1)iq)) <" (M, %), we can apply our induction hypothesis that Theorem 4.6 is
true to v: J — i(G). Let

¥ = (Ay+1)i(a)-

Since v is nearly elementary and J is a premouse, Lemma 9.2.3 of [13] implies that (J, ¥¥) is an lbr

hod pair and v is a nearly elementary map of it into (i(G), V) with crt(v) > p(J). The arguments
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above show that the other hypotheses of 4.6 are satisfied, so we have
V;=UY

in other words

((Ay+1)i(@)” = (Ay)igey)s = (Ay41)- (4.2)

The second line here follows from the fact that A, is mildly positional.f4

‘We now have:

The first equality follows from Claim 4. The second equality follows from the fact that ioo = Tovot.
The fourth equality follows from Equation 4.1. The fifth equality follows from Equation 4.2. We
have shown Ag = (A¢). This contradicts our assumption that ®¢ is problematic, and finishes the
proof of Claim 5 in the case that G < N and J < i(N).

The following subclaim will help deal with the type 2 case.

Subclaim 5b. Suppose ((N,®), (G, A),o,v) is a tuple satisfying (1)—(3) of Definition 4.8. Suppose
G is of type 2. Let n = deg(G), D be the measure of Mitchell order 0 on p,(G) such that
G = Ult(C(G), D), and let ip be the ultrapower map. Suppose C(G) < N and @) = $IoiD |
Then

(®c(@))py.a = A

Proof. Consider the diagram in Figure 4, where we let H be Ult(G,ip(D)) and j be the correspond-
ing ultrapower map, and Y be the image of H under the copy construction. We let k: N — Y be
the ultrapower map by o(ip(D)).

4See [13, Definition 3.6.1] for the definition of mild positionality. [13, Lemma 4.6.10] shows that background-
induced strategies are mildy positional.

95



N——Y
d dl
G—' . m
ZDT . jT
oG —2 . ¢

Figure 4: Diagram illustrating that (®c(q))(py,c = A-
Let ¥ = ®,(;,(p))),y be the tail of ¥ on Y. We have

(Pc(6))(py,c = ()7
— Ekoa

=A

The first equality follows from the definition of pullback strategies on stacks. The second equality
follows from commutativity, i.e. 0 oj = koo. The third equality follows from our assumption that
A = &7 and the definition of X..

O

Returning to the proof of Claim 5, i.e. that @, is problematic, let us consider the case that

G < N and J has type 2, so that J = Ult(J, D), where J = C(J) <ti(N) and D is the measure of
Mitchell order 0 on ﬁf} The relevant diagram is

TG — T i)
\ 7 12
G N

Again we assume toward contradiction that ®,.; is not problematic, so that (Ay41)7 = ATV

v+1
Combined with Subclaim 5b, applied with ® = A1 and o = 7 o v, this yields

TOV

(Ay+1) 7)o,y = A3 (4.3)

Since (i(G), (Ay+1)ic)) <* (M,X) and v: (J, (Ay11)i(c))") = (i(G), (Ay+41)ic)) satisfies the
hypotheses of Theorem 4.6, we get from 5b and the mild positionality of A;:

(A1) )p,gy = (Ay1)i@)" (4.4)
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i(G) — i(G) i(N)
H—" i
o

a1 .a g N

Figure 5: Diagram for the case G is of type 2.

Now we calculate

Line 1 uses Claim 4. Line 2 uses commutativity. Line 4 uses equation 4.3 and line 5 uses equation
4.4. Line 7 uses Claim 4 again. Since Ag = (A¢)a, P¢ is not problematic, contradiction.
Let us consider the case that G is of type 2. Let (G, Aéoa) be the type 1 core of (G, Ag), where
j = i% for D the order zero measure on p;(G). Since ®, is not problematic, G <N and i(G) <1i(N).
J is also of type 2, and setting
H = Ult(G, E;| supi“a)

and letting t*: G — H be the canonical embedding, we have
J =Ult(H, t*(D)).

So J has type 2, and H = C(J), and t*(D) = D(J). Let m : H — J be the t*(D)-ultrapower map,

and [ : i(G) — i(G) be the i(D)-ultrapower map. Let v* be the factor map from H to i(G), so that
v*ot* =i | G. See Figure 5 for a diagram of the situation.

Assuming toward contradiction that @, is not problematic, we have

(A1) = (A1) (4.5)

As above, the fact that (i(G), (Ay+1)4(@)) 1s strictly below (M, %) in the mouse order gives

*

(M) = ((Ai1)ya)n = (M1)ia)” - (4.6)
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We then calculate

00j __ A Tolov*ot*
Ag _A'y+1

__ A Tovomot*
- A’Y-‘rl
*

= (Ayi1)w
(by equation 4.5)

- (AVH);}(*C%*
(by equation 4.6)

— (M)

= (Ag)e-

This shows that ®¢ is not problematic, contradiction.
The cases where G <t Ult(N, EY) or C(G) < Ult(N, EY) are handled similarly. For example, let
E = EY and suppose G < Ult(N, E) and J is of type 1. In this case, note that i is continuous at

a, so crt(7 o v) = i(«). The relevant diagram is

Here P = Ult(N, E) and Q = Ult(i(NV),i(E)).

We assume toward contradiction that @, is not problematic. This implies

(A1) e)) s = (Ay1)™". (4.7)

As above, the fact that (i(G), (Ay+1)3(E)))i(@)) 18 strictly below (M, ) in the mouse order gives

(A1) amy)a = (A1) ae)y)ie)s = (A1) a@))ie)- (4.8)

We then calculate
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Thus @, is not problematic, contradiction.

So we conclude that ®,; is problematic in all cases. This finishes the proof of Claim 5. O

Claim 5 finishes the definition of ®,;, and the proof that it is a problematic tuple. We have
also proved (4) of ()y4+2. We now verify the rest of (f)y42. For the first part of (5), note that if
is discontinuous at «, then supi“a = crt(v) = crt(r o v) < i(a), and if 7 is continuous at «, then
crt(7) = i(a) = crt(7 ov). Thus in either case, a1 < ifﬁﬂ(ag).

For the rest of (5) and (6), it is enough to see that 3,41 < i(3), where 8 = B¢ = (o). (Recall
that we are in the case that i is discontinuous at pg(G).) If ¢ is discontinuous at «, then « is a
limit cardinal of G, and $,41 = (supi“a)t’/ <i(a) < i(B), as desired. If i is continuous at «, then

since (a)% has cofinality x in N, we get

()P = i)™ = supi“B < i(),

as desired.

(7) of ()42 is obvious from our definitions.

Remark 4.12. If Case 2 occurs in the passage from ¢, = (N,G,0,a) to to Py = (i(N),J, T o
v, crt(Tow)), then pi(J) = sup t“pi(G) has cofinality « in i(IV), where k = crt(Ef). Along branches
of § containing v + 1, x can no longer be a critical point. It follows that along any given branch,

Case 2 can occur at most once. =

If (I) or (II) hold at 4 2, then the construction of S is over. Otherwise, we let E§+2 be the

least disagreement between J\/l‘7S o and My, and we set

~

A1 = inf(ay4, )\(E§+2))'

This completes the successor step in the construction of S.

Now suppose we are given S [ 0, where 6 is a limit ordinal. Let b = 3(7 | 0).

Case 1. There is a largest 1 € b such that 7 is unstable.

Fix n. There are two subcases.
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(A) forally e b—(n+1), rt(y) =n+ 1. In this case, b — (n+ 1) is a branch of S. Let S choose
this branch,

m+1,0)s =b—(n+1),

and let Mg be the direct limit of the Mﬁ for sufficiently large v € b — (n+ 1). We define the
branch embedding i§,9 a usual and 7y : M‘g — Mg' is given by the fact that the copy maps
commute with the branch embeddings. We declare 6 to be stable.

(B) forall y € b— (n+1), rt(y) = n. Let S choose
[07 9)3 = (b - 77) U [07 77]57

and let M‘g be the direct limit of the /\/lf for sufficiently large v € b. Branch embeddings iig
for v > n are defined as usual. 7y : Mg — ./\/lér is given by the fact that copy maps commute
with branch embeddings. We declare 6 to be stable.

Since 0 is stable, (1)g follows at once from Vvy < 6(f),.
Case 2. There are boundedly many unstable ordinals in b but no largest one.
We let 1 be the sup of the unstable ordinals in b. Let & choose

[0,0)s = (b—n)U[0,1]s,

and define the corresponding objects as in case 1(B). We declare 6 stable, and again (f)g is imme-
diate.
Case 3. There are arbitrarily large unstable ordinals in b. In this case, b is a disjoint union of

pairs {v,7v + 1} such that v is unstable and v + 1 is stable. We set
[0,0)s = {£ € b | { is unstable},

and let Mg be the direct limit of the M‘g ’s for £ € b unstable. There is no dropping in model
or degree along [0,6)s. We define maps z‘g 9> To as usual. If (./\/lbS ,Ag) is not a pair of the form
(MY 3, then we declare § stable and (1) is immediate.

Suppose that (Mg, A) is a pair of . We declare 0 unstable. Note that by clauses (4) and (5)
of (1), there is a £ <g 6 such that for all v with £ <g v <g 0, igy(@ﬁvﬁf» = (v, By). So we can
set

g = common value of ifw(ay), for v <g 0 sufficiently large.
By clause (5), we can set
M3y, = common value of iig(/\/lfH), for v <g 0 sufficiently large.
We also let

o9 = common value of iie(f’v)v for v <g 0 sufficiently large.
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Here
'6.579 (0y) = upward extension of U ifﬁ(a@,
n<p
where p = pk(./\/l§+1) for k = deg(./\/l§+1), and the o’ are the terms in the natural decomposition
of 0. By (6) of (f) and Remark 4.12, iia is continuous at pi(M41) for v <g 6 sufficiently large,
so og is defined on all of M‘gH. It is easy then to see that ®p = (M3, Ag), (Mg+1,A9+1), 00, g)
is a problematic tuple.
If (I) holds, then we stop the construction of S = S,; and move on to S, 1. If (II) holds, we
stop the construction of S and do not move on. If neither holds, we let Eg '+, be the extender on

the ./\/lg .1 sequence that represents its first disagreement with M, ;, and set
Xos1 = MEg 1),

and

/\9 = inf()\g_H, Ozg).

It then is routine to verify (1)g41.

This finishes our construction of S = §,; and 7. Note that every extender used in S is taken
from a stable node, and every stable node except the last model of & contributes exactly one
extender to §. The last model of S is stable.

Claim 6. The construction of S, ; stops for one of the reasons (I) and (II).

Proof sketch. This comes from the proof of Theorem 3.26 and the analysis of the type 2 case in
subsection 3.5, together with the method for adapting such results to the comparison of phalanxes

with background constructions used in [13]. O
Claim 7. For some (v,1) < (1o, ko), the construction of S, ; stops for reason (II).

Proof. If not, then the construction of S = &, , must reach some stable 6 such that (M, x,, Qo ko) <D
(./\/l‘g, Ap), and either (M, ko, Qg .ko) < (M‘(,S,Ag) or the branch of S leading to # has a drop. Let

Q= 779(M770J<30)§

then either (Q, (2] )g) < (MJ,%]) or the branch [0, 6] has a drop.

Suppose first that M,
map given by Uy, i,. Letting T = Ty, r,, we have g : ./\/lg,S — Mg from the copying construction.
Note that

is a nondropping iterate of M and let j : M — M, , be the iteration

0,k0 0,k0

Mo j: (M, 2) = (Q,(£])q)

is an elementary map, because

S=0 = (M), ) = (B])Q)™.
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Thus 7y o j maps (M,X) into an initial segment of (Mg', ZZ') which is either proper or reached
along a branch that drops. This is contrary to the Dodd-Jensen Theorem.

Suppose next that j : M — N = Ult(M,, ,, F') is the iteration map from U, ,. Let R =
Ult(Q, mp(F')). We have the diagram

iT
M : Q R

o o

M0,ko

M

Here we have drawn the case Q = ./\/l;r for simplicity. o is the copy map.

We need to replace M by M~ in calibrating elementarity, because i, ) o z'OTﬁ is not elementary
as a map on M, because of the drop at the end. But i, o ig:e is an iteration map associated
to a +1-iteration tree on M ~, and o o j is +1-elementary as a map on M ~. Thus we can apply

Dodd-Jensen in the category of +1-iteration maps, and we have a contradiction as above.5?

O

By Claim 7, we may fix (v,1) < (1o, ko) such that the construction of S,; terminates for reason
(II). Let S = S,; and 1h(S) = 0 + 1. Thus 6 is stable, [rt(d),6]s does not drop in model or degree
(so l = ko), and either

(a) (MG, Ng) = (M,1,,), or%

(b) (Mg,Ag) has type 2, and (M, ;,€Q,;) is its type 1 core.

Let U = Uy, and v + 1 = Ih(U). The result of comparison via U is that either
(a7) (My, Q1) S (MY, XY, or

(b?) (MY, 2Y) has type 2, and (M,,;,€,) is its type 1 core.

In the usual (M, H, «) vs. M comparisons, one shows that the phalanx side does not terminate
on a branch above M. The next claim adapts that argument to our current situation, in which the

phalanx has been lifted along various branches of S.
Claim 8. For some unstable &, rt(0) = £ + 1.

Proof. If not, then 0 <g # and the branch [0, 0]s does not drop in model or degree. We take cases
on how § and U end. Let i = z"gﬂ and i* = ig:e. Let Ih(f) =+ 1 and j = izolﬁ.

55Dodd-Jensen applies because we can copy +1 trees on using nearly +1-elementary copy maps. See §3. The more
general statement of this fact belongs to Jensen’s ¥ theory.

56The comparison arguments of §3 and [13] show that if (v, 1) is least such that (II) holds, and (M§, Ag)<I(M, 1, 1),
then (Mg,/\g) = (MI,J, Qy,l),
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Case 1. M§ = M, and M,; 4 MZ,’Y{

Proof. We claim that (M, Ay) = (MZ,E%) For otherwise ¢ maps (M,X) to a proper initial
segment of a X-iterate of (M, Y), contrary to the Dodd-Jensen Theorem. (Note here that ¥ is
the pullback of Ay under i, by Claim 4.) For the same reason, [0,~|y does not drop, and thus

(v,1) = (no, ko). The relevant diagram is now

M " M,y —— My,
M M M
Using Dodd-Jensen we get that
1=7.

To see this, note that both are elementary maps from (M, ) to (M$, Ag) = (M%, 214) = (My,1,).
Since j is an iteration map, for all £

(&) <i(§).

Since ¢* is also an iteration map, for all &
i*(§) = mg 0i(§) < g 0 ().

Multiplying by 7'('9_1, we get that i(£) < j(€) for all £&. So i = j.
Since we can recover branch extenders from branch embeddings, we get then that

S _ U 67
69—67.

Let n <g 0 be least such that 7 is stable. Then 6;9, = e‘g [0 = e,LY’ [ & for some 6. But there is 7
such that e = ezj [ 6. Thus ./\/lg = MY. We have also

A= Az’ﬁ,e _ (Eu)iljﬁ — U
N 0 Y T

S U

by pullback consistency, since ima =7

If n is a limit ordinal, then by the rules at limit stages of S above, we declare n unstable. This
contradicts our assumption. If S-pred(n) = p, then u is unstable by our minimality assumption on
7; but then we declare n unstable by our rules at successor stages. Again, we reach a contradiction.
This finishes Case 1. ]

Case 2. M‘g has type 2, and M,,; < ./\/lzjf

Proof. Let (/Vlg, Ag) = Ult((M,;1,8,), F'), where F is the order zero measure on ﬁl(Mg).

67¢5 is the sequence of extenders used along the branch [0,0]s and similarly for e,LY{.
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We claim that MZ,’Y’ = M, and [0,7]y does not drop. For if M, ; < MZ:/’ or [0,7]y drops, then
U (F) is a +1-iteration tree on (M~,%) whose last model is (M3, Ag) and whose main branch
has a large drop, while i is a +1-elementary map from (M, %) to (/\/l‘g,Ag). This contradicts
Dodd-Jensen, in the form of Lemma 3.22. The relevant diagram is now

) i

M] M M,,
M M M

From the claim, we have that ip o j is defined (and total on M). Dodd-Jensen yields i = i o j.
For ip o j is a +1-iteration map on (M, X)), so i o j(n) < i(n) for all n. But i* is a +1-iteration
map on (M~,%), so i*(n) =mgoi(n) < mgoiroj(n),soi(n) <ipoj(n). Thusi=ipoj.

On the other hand, the generators of the extender of i are contained in supi“p;(M) = p;(M,,),
while ip o j has the generator crt(F) > p;(M,,;). So i # i o j, contradiction. O

Case 3. Mg = M, and MZ:Y’ has type 2.
Proof. Let (M%, Z%’) = Ult((M,1, 1), F), where F' is the order zero measure on ,5;(./\/1%’). The

relevant diagram is now

M] M, MY
M M M

Here Q = Ult(M] , mo(F)) and o: Ult(M,,;, F) — Ult(M] , me(F)) is the copy map.

We shall use Dodd-Jensen to show that i[p;(M) = j[pi(M).

First, j is a +1-iteration map on (M—,X), and ipoi: (M~,%) — (Ult(My,l,F),Eg) is +1-
elementary, so j(n) < i oi(n) for all n. But crt(F') > p;(M,;), so

v < pi(M)(j(n) < i(n))-

On the other hand, i, p) o i* is a +1-iteration map from (M~,¥) to (Q,2), where ) =
Y7~ (mg(F))- Here 2 is a level [ strategy, so (Q,(2) is a type 2 pair generated by (MZ, Eg—). Qisa
+1-strategy for QQ~. Since

Q) = Qo™

— QO‘O’iF
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we have
U _ oo
¥y =%
So o o j is elementary in the category of mouse pairs. By Dodd-Jensen,

bmg(F) © 1 (N) = ix,(py 0 Mo 0 i(n) < 0 0ipoi(n) =00 j(n)

for all 5. But i,y and ip are the identity on p;(M,,), and o agrees with mg on p;(M,,;). Thus

v < pi(M)(i(n) < j(n))-

Thus i[p (M) = j[pi(M). But the generators of ¢ and j are all below p;(M,,;) = supi“p; (M) =
sup j“pi(M). It follows that MS = M%{, contrary to our case hypothesis. .

Case 4. Mjg and M,LY{ are both of type 2.

Proof. We shall show that ¢ = j. This then leads to the same contradiction we arrived at in case 1.
Let F' and G be the order zero measures on the M, ; sequence such that M§ = Ult(M,;, F')
and MZ:/’ = Ult(M,;, G) respectively. Let Fy =ip(F) and Gy = ig(G), and

P = Ult(M§, Fy) = Ult(M,,;, FT),
Q = Ult(MY, Go) = Ult(M,,;,G™),
R =Ul(P,ip+(G)) = U(Q, ig+ (F7)),

and

Q= () (F+) iy (64) = Q) (G4) dig s (FH))-

Q1 quasi-normalizes well when considered as a +1-strategy for M, and (F*,ip+(G™)) is a stack
of A\-separated trees, so the identity on the last displayed line is justified. €2 is a level [ strategy for
R, that is, a +1-strategy for R~. The following diagram describes our situation:
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(R*, Q") —~— (R, Q)

/
(0

P* P Q
+ Gt
i 70 Jo
MI — S M, MY
0 0 r v,l e vy
i i j
M M M

Here 19, %1, jo, and j; are the ultrapower maps. 7 and ¢] come from copying the ultrapowers giving
rise to i9 and ¢;. The copy maps are 1 and 0. We claim that ¢; oigoi = j; o jgo j. For
j1ojooj(n) <iyoigoi(n) for all n, because j1 0 jg o j is an iteration map and ¥ = Q/1°0° 5o that
i1 049 01 is +1-elementary as a map from (M~,%) to (R,2). On the other hand,

i oigoit(n) =0 oiyoigoi(n)

< oojiojooj(n)

because i} 04 0 i* is a +1-iteration map on (M ~,X) and o o jj 0 jp o j is nearly +1-elementary on
(M—,%).
Thus ¢ 0igoi =j10jp0j. Let

p=pi(My,);

then the generators of ¢ and j are contained in p, while the generators of g, 1, jo, and j; are all

strictly above p. So

Ei r p — Eiloiooi r p
= Ejiojpoj [ P
=Ej[p

Thus i = j and M = Mﬁ’ . The stability of 6 then leads to a contradiction, as in case 1. O
This completes the proof of Claim 8. U
Let € be as in Claim 8, and let 7 be such that (M‘g, A¢) = (MY, 5Y). We have eg = é“ by the

proof in claim 8.

Claim 9. T < 7y, and a¢ < Ih(EY) < az,Mi‘.
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Proof. Suppose 7 = . Let B code M‘gH as a subset of a¢, namely for Q = /\/l‘gﬂ,
- .
B = ThY (ag Upi(Q")).

Then B € /\/l? because ®¢ is problematic, so B € MY. But B ¢ M?H, so B¢ M5, s0 B¢ M,
Suppose 0 > £ 4+ 1, then M$ = M, or M, is a type 1 core of ./\/l“g; in either case, M,; is not
[ +1-sound. This means either M, ; = MY or M, is a type 1 core of MY In both cases, Mg, M,;,
and ./\/124 agree to their common value for p; > a¢, so B € MBS . Contradiction.

So 0§ = £+ 1 and therefore, (Mgﬂ,AfH) = (My,;,Qy) < (MY S;) (the possibility that
(M‘gﬂ,AgH) is a type 1 core of (MY, %) cannot occur because Mf_ﬂ € MY). This contradicts
the problematicity of ®¢. So we must have 7 < .

Note that (./\/lf,Ag), (M§+1,A£+1), and (MY, ¥¥) all agree with M, below ag. (Possibly
not at ag.) This is because otherwise A\¢ < a¢, and £ + 1 is a dead node in S. It follows that
ag < Th(EY).

If ae < Ih(EY), then MY 1 agrees with M,LY’ up to their common value 7 for ag. Suppose for

u
contradiction that Ih(EY) > ozg’MT

u
note that B € MY — M,LY’, son < a;’MT. Contradiction. Now suppose M,,; < Mg’ Then by the

u
way our comparison works, o(M,;) > Ih(EY) > a;rJr’M”. But p(M,,;) = p(/\/l‘gﬂ) = p(Mg) < g

and M, ; is sound. Contradiction.
Thus Ih(EY) < a as desired. O
Now let

u
. Son= o Mz Suppose M, ; is M,Ly’ or its type 1 core, then

pP= P(M%SH) = Pl+1(M§+1)-
Thus p = p(M§) = p(M,,;) as well.
Claim 10. Either p = ag, or p+’M§+1 = a¢. Moreover, lh(Eg) <pforall g <.

Proof. p < a¢ because MZ?H is ag-sound, so we are done unless p < ag.

Suppose p < ag. Since p is a cardinal in M‘gﬂ and o¢loe = id, p is a cardinal in Mf But

lag] < pin Mf, so |ag| = pin ./\/lf Since o is a cardinal in ./\/lgﬂ, ag = p+’Mg+1. O

The following elementary fact will help:

Proposition 4.13. Let W be a A-separated tree, let p+1 <y n, and let M};V]lh(EL/V) 4N <4 M};V;
then

(a) In(EY) < p=(N), and
(b) p(N) is not in the open interval (crt(E)Y),1h(E}Y)).

Proof. Let E, = E)Y and My = MY. If p(M}, ) < crt(E,) then p(Myy1) = p(M;;

crt(Ey,) < p(M),), then

Ih(E,) <supijy “p(Mjy1) = p(Myi1).
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We use here that E, has plus type; otherwise 1h(E,) = p(M,+1) is possible.5® Note also that
1h(E,) < p~(M,+1) in both cases. So the proposition holds when n = p+1 and N = M, 4.
If MM+1|lh(EL/V) 4N < M%V, then 1h(E,) < p(N) because 1h(E,) is a cardinal in M, and
1h(E,) < p~(N). Thus the proposition holds when n = p + 1.

We now proceed by induction on 7. Let p+1 <y 841 and W-pred(5+ 1) = a. By induction,
(a) and (b) hold at n = a. We claim that they hold at = +1. For since Mq[lh(E,) IMj, | IM,,
we have Ih(E),) < p~(Mj, ) and p(M}, ) is not in the open interval (crt(E),), h(E,)).% But then,
taking the Eg ultrapower, we see that Ih(E,) < Ih(Eg) < p~(May1) and p(Mpy1) is not in the
open interval (crt(E,),Ih(E,)). The same is true for N < Mg, such that Ih(Eg) < o(IN) because
Ih(Epg) is a cardinal in Mg, and hence for N < Mg such that Ih(E,) < o(IN) by coherence.

The induction hypotheses (a) and (b) clearly pass through limits. O

S
Claim. 11. Eo® # 10,

Mg
Proof. Suppose Eq,* = @. Thus
p < ae < AEY) < In(EY).

Let F = Eff be the first extender used in [0, 7]y such that 1h(F) > a¢. (Thus Ih(F) > a¢.) We
must have crt(F) < A(EY), since otherwise U-pred(u + 1) > 7 + 1, so some extender used in
[0, U-pred(p + 1)]y has length > ag.

We claim that p < crt(F). First notice that there is an N < Mﬂf such that 1h(F) < o(NN)
and p(N) = p; namely, N = M%’ if Mﬁ’ has type 2 with M,,; as its type 1 core, and N = M,
otherwise. So by Proposition 4.13, p is not in the open interval (crt(F),1h(F)). But p < lh(F)
because ag < Ih(F), so

p < crt(F).

By Claim 10, lh(Eg) < p for all § < 7, so we get
U-pred(p+1) = 7.
u u
By Claim 9, a;r’M“’ = az’MT“ < az’MZTA. It follows that M:fl < M?|a§’Mg, so U drops
at u + 1. This implies that MZ:/’ has type 1 and is unsound, so M, ; < ./\/l%’ If M,; < ./\/l%, then
Ih(F) < p(M,,;) = p by 4.13. Thus

MY =My,

58But even in the A-separated case, it is possible that p(M,) = Ih(E,,) for u+ 1 <w n.
%But p(Mj,,) = lh(E,) is possible, which is why the proposition allows p(M,") = 1h(E,).
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Moreover p = p(M,;), so there can be no further dropping along [u + 1, 7]y, and thus

U
pP= pl+1(MM+1)7
M = € (M),

and
. . .*J/{
20 =df tpt1,y Oyt

is the anticore map.
Taking the type 1 core of a type 2 premouse of degree [ commutes with taking its standard [+ 1

core, SO

C(ME,) = C (€1 (M3))
= €11 (C(M7))
= €l+1(MV,l)

j— *7“
= MY

So C(M‘gﬂ) QMY = M?, which means that ®, is not problematic. To see that ®¢ is not

problematic, consider the diagram

.S . .
Yer1,0 %0 20

MEo o COMED) = A

Here D = D(Mé_l) if M?—&-l has type 2, and D is principal otherwise. D = i‘gﬂﬂ(D). Note
MS has type 2 iff /\/l‘;r1 has type 2, because /\/l‘;r1 is stable and p(/\/l‘gﬂ) < crt(i‘gﬂﬂ). We now

calculate

U
Ao, ) = Er)aey,
= QZVOZ
— AéDoiO

;S P
. AZ§+1,9°ZD
-0

7;,
= Agir

™At this point we know that MY = M, is not ae-sound, so & + 1 <s 6.
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Line 1 holds because (M‘g, Ag) = (MY, 5Y). Line 3 holds by pullback consistency for ¥ and the
fact that Y¥ = ,;. Line 3 holds because AED = 1,;. The last line holds by Claim 4. Thus ®; is
not problematic, contradiction. ]

The final claim completes our proof by contradiction.

MS
Claim 12. Eaf = (.

MS
Proof. Otherwise E,,* = (E4)™, so Ih((E¥)™) = ag. By Claim 10,

AEY) < p.

Let F = Eﬁ’ be the first extender used in [0,7]y such that 1h(F) > ag. We claim that p = 7.
For if not,
Qe < lh(F),

and F is incompatible with EY, so that
crt(F) < M(EY) < p < ag.

But this means that there is an N < MZ:/’ such that h(F) < o(N) and p(N) is in the open interval
(crt(F),Ih(F)), contrary to Proposition 4.13.7!
Thus F = EY and 7+ 1 <y . But

p(MT+1) ¢ (Crt(F)vlh(F)]v

and
o (MY,,) > In(F).

(Here we use that F' has plus type to rule out p(M% ;) = Ih(F). This implies that whenever
N<IMY  1h(F) < o(N), and p(N) = Ih(F), then N € MY ;. That in turn implies that 741 # .7

Now let G = E,L]’, where 4+ 1 <y v and U-pred(n + 1) = 7 + 1. crt(G) > A(F), so crt(G) >
ag > p. Since p = p(NN) where either N = sz or N =M,; < /\/lz;’, we get p = p(MY,,), from
4.13. Moreover, U must drop at n + 1, with p(./\/l;;fl) = p, and have no further drops. It follows

that MZ:Y{ has type 1 and is not [ + 1-sound, MZZY’ = M,,, and

M;ﬁ = €1 (My,)
= €1 (C(MF))
= C(Mfﬂ)-

'Namely, N = M, if M,; <MY, and N = MY otherwise.
"Otherwise N = M,; or N = MY is a counterexample.
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Moreover the anticore map from M:#l to M, is

sk U
o1

.U
0= Int1y Oty

There is enough agreement between MY, | and Ultg(MY, F) that M;fl < Ult(MY, F). This
implies that <I>g is not problematic, because the “ultrapower away” conclusion holds. To see that

P, is not problematic, consider first the diagram

M§ ——M,;, = MY
ip

te+1,0 to to

M S CMg) = Myl
D

(Again, D = D(Mgﬂ) if /\/l‘g_H has type 2 and D is principal otherwise, and D = i‘gﬂﬂ(l—?).)

Calculating as above, we get

U O
(ET"!‘I)M;’_‘Z_’{l - Qu,l
__ A%DOlo
= Ag
_ Ai§+1,9°if>
e

= AD

E+1°
Since A¢ = Y¥ what we must see is that
u _(yU
((ZT)<F>)M$1 = (ETH)M;#I- (4.9)

That is, the tail of ¥ after the length 2 stack (U [7+1, (F')) agrees with the tail of ¥ after the length
1 stack U |7 + 2, as far as trees based on M;fl goes. This follows from the fact that X normalizes
well. For let W =W (U |7 + 1, F) and consider the embedding normalization diagram

T iR

Ult(MY, F)

EV =F=FEY soWlT+2=U|T+2. Let

+,Ult (MY, F)
o = O‘g .
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It is not hard to see that a < Ih(EYY,), so since ¥ is strategy coherent,

Because ¥ normalizes well,

But oJa = id by the elementary properties of embedding normalization, so

(54 ) e = () ot

n+1 n+1

Putting these equalities together, we get equation 4.9.
Thus @, is not problematic, a contradiction. ]
Claims 11 and 12 are the contradiction that finishes our proof of the Condensation Theorem,
4.6. O

We can drop the hypothesis that crt(m) < pgeg(sr)(H) from Theorem 4.6, at the cost of omitting
its conclusions concerning condensation of the external strategies. This will be useful in the proof

of square and full normalization.

Theorem 4.14. Assume AD™, and let (M, A) be a mouse pair with scope HC. Let H be a sound

premouse, w: H — M be nearly elementary, and suppose that
(1) p(H) < ext(r), and
(2) He M.
Then either
(a) C(H)< M, or
(b) C(H) < Ult(M, EM), where a = crt(n).

Proof. Let a = crt(m), n be largest such that o < p,(H), and n < deg(H). Let G and N be the
same as H and M, except that deg(G) = n = deg(N). Let ¥ = X7%,. The hypotheses of 4.6 hold of
(G,¥), (N,Xn), and . (We have H € M by 4.3, hence G € N, hence G is not the a-core of N.)
Hence one of the conclusions of 4.6 holds of them.

If it is conclusion (a), then C(G) < N, which easily implies C(H) < M. If it is (b), then
C(G) < Ulty(N, EM) yields C(H) < Ulto(M, EM). O
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