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Abstract

This is the first of two papers on the fine structure of HOD in models of the Axiom of

Determinacy (AD). Let M ⊨ AD+ + V = L(℘(R)). [13] shows that under a natural hypothesis

on the existence of iteration strategies, the basic fine structure theory for pure extender models

goes over to HODM . In this paper, we prove a fine condensation theorem, quite similar to

Theorem 9.3.2 of Zeman’s book [16], except that condensation for iteration strategies has been

added to the mix. In the second paper, we shall use this theorem to show that in HODM , □κ

holds iff κ is not subcompact.

1. INTRODUCTION

One goal of descriptive inner model theory is to elucidate the structure of HOD (the universe of

hereditarily ordinal definable sets) in modelsM of the Axiom of Determinacy. HODM is close toM

in various ways; for example, if M ⊨ AD+ +V = L(℘(R))1, then M can be realized as a symmetric

forcing extension of HODM , so that the first order theory of M is part of the first order theory of

its HOD. 2 For this and many other reasons, the study of HOD in models of AD has a long history.

We refer the reader to [12] for a survey of this history.

The study of HOD involves ideas from descriptive set theory (for example, games and definable

scales) and ideas from inner model theory (mice, comparison, fine structure). One early result

showing that inner model theory is relevant is due to the first author, who showed in 1994 ([11])

that if there are ω Woodin cardinals with a measurable above them all, then in L(R), HOD up to

θ is a pure extender mouse. Shortly afterward, this result was improved by W. Hugh Woodin, who

reduced its hypothesis to ADL(R), and identified the full HODL(R) as a model of the form L[M,Σ],

where M is a pure extender premouse, and Σ is a partial iteration strategy for M . HODL(R) is

thus a new type of mouse, sometimes called a strategy mouse, sometimes called a hod mouse. See

[14] for an account of this work.
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Since the mid-1990s, there has been a great deal of work devoted to extending these results to

models of determinacy beyond L(R). Woodin analyzed HOD in models of AD+ below the minimal

model of ADR fine structurally, and Sargsyan pushed the analysis further, first to determinacy

models below ADR + “θ is regular” (see [2]), and more recently, to determinacy models below the

minimal model of the theory “AD+ + Θ = θα+1 + θα is the largest Suslin cardinal” (commonly

known as LSA). (See [3].) The hod mice used in this work have the form M = L[E⃗,Σ], where E⃗ is

a coherent sequence of extenders, and Σ is an iteration strategy for M . The strategy information

is fed into the model M slowly, in a way that is dictated in part by the determinacy model whose

HOD is being analyzed. One says that the hierarchy of M is rigidly layered, or extender biased.

The object (M,Σ) is called a rigidly layered (extender biased) hod pair.

Putting the strategy information in this way makes comparison easier, but it has serious costs.

The definition of “premouse” becomes very complicated, and indeed it is not clear how to extend

the definition of rigidly layered hod pairs much past that given in [3]. The definition of “extender

biased hod premouse” is not uniform, in that the extent of extender bias depends on the determinacy

model whose HOD is being analyzed. Fine structure, and in particular condensation, become more

awkward. For example, it is not true in general that the pointwise definable hull of a level of M

is a level of M . (The problem is that the hull will not generally be sufficiently extender biased.)

Because of this, it is open whether the hod mice of [3] satisfy ∀κ□κ. (The second author did show

that ∀κ□κ,2 holds in these hod mice; cf. [3].)

The more naive notion of hod premouse would abandon extender bias, and simply add the least

missing piece of strategy information at essentially every stage. This was originally suggested by

Woodin. The first author has recently proved a general comparison theorem that makes it possible

to use this approach, at least in the realm of short extenders. The resulting premice are called

least branch premice (lpm’s), and the pairs (M,Σ) are called least branch hod pairs (lbr hod pairs).3

Combining results of [13] and [10], one has

Theorem 1.1 ([13],[10]). Assume AD++ “there is an (ω1, ω1) iteration strategy for a pure extender

premouse with a long extender on its sequence”. Let Γ ⊆ P (R) be such that L(Γ,R) ⊨ ADR+ “there

is no (ω1, ω1) iteration strategy for a pure extender premouse with a long extender on its sequence”;

then HODL(Γ,R) is a least branch premouse.

Of course, one would like to remove the iterability hypothesis of 1.1, and prove its conclusion

under AD+ alone. Finding a way to do this is one manifestation of the long standing iterability

problem of inner model theory. Although we do not yet know how to do this, the theorem does

make it highly likely that in models of ADR that have not reached an iteration strategy for a pure

extender premouse with a long extender, HOD is an lpm.

Least branch premice have a fine structure much closer to that of pure extender models than that

of rigidly layered hod premice. The book [13] develops the basics, the solidity and universality of

3The (pure extender or least branch hod) premice in the paper are called pfs (projectum-free space) premice in
[13]. We will occasionally omit the “pfs” for brevity. All premice used in this paper are pfs premice (and their strong
cores), see Section 2 for more discussion.
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standard parameters, and a coarse form of condensation. The main theorem of this paper, Theorem

4.6, is a stronger condensation theorem. The statement of 4.6 is parallel to that of Theorem 9.3.2 of

[16], but it has a strategy-condensation feature that is new even in the pure extender model context.

The proof of 4.6 follows the same outline as the proofs of solidity, universality, and condensation

given in [13], but there are a number of additional difficulties to be overcome. These stem from

the restricted elementarity we have for the ultrapowers of phalanxes that are taken in the course

of the proof.

Theorem 4.6 is one of the main ingredients in the proof of the main theorem of our third paper.

We say that (M,Σ) is a mouse pair iff M is either a pure extender pfs premouse or a least branch

pfs premouse, and Σ is an iteration strategy for M that has strong hull condensation, normalizes

well, is internally lift consistent, and in the least branch case, is pushforward consistent. See [13,

Chapter 9] and Section 2 below for a full definition.4

Theorem 1.2 (AD+). Let (M,Σ) be a mouse pair. Let κ be a cardinal of M such that M ⊨ “κ+

exists”; then in M , the following are equivalent.

1. □κ.

2. □κ,<κ.

3. κ is not subcompact.

4. The set of ν < κ+ such that M |ν is extender-active is non-stationary in κ+.

The special case of this theorem in which M is a pure extender model is a landmark result of

Schimmerling and Zeman. (See [5].) Our proof follows the Schimmerling-Zeman proof quite closely.

Theorem 1.2 has applications to consistency strength lower bound questions that we discuss in

the second paper. But our work was also motivated by the desire to put the fine structure theory of

[13] to the test, so to speak. Determining the pattern of □ is a good way to go one level deeper into

the world of projecta, standard parameters, restricted elementarity, and condensation theorems.

We found when we did so that the definition of hod premouse given in the first draft of [13] had

problems, in that strategy information was being added in a way that might not in general be

preserved by Σ1 hulls.5 The better method for strategy insertion comes from [8], and we describe

it further below. [13] has been revised so that it now uses this method.

Acknowledgements. The work reported here began when the second author visited the first

author in March and June of 2016 at UC Berkeley. The second author thanks the NSF for its

generous support through grants No DMS-1565808 and DMS-1945592.

4Theorem 4.6 is also used heavily in the proof in [9] that the iteration strategy component of a mouse pair fully
normalizes well, and is therefore positional.

5Remark 2.47 of [8] shows that in fact it is preserved by Σ1 hulls, but the proof involves a phalanx comparison,
and so a lot of theory just to prove a property of mice one would like to have available at the beginning.
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2. LEAST-BRANCH HOD PREMICE

All premice used in this paper are in the pfs hierarchy, defined in [13]. We adopt for the most part

the fine structure and notation from [13, Chapter 9] concerning least-branch hod premice (lpm’s)

and lbr hod pairs. A similar, albeit simpler, fine structure for pure extender premice is discussed in

[13, Chapter 4]. Fine structural condensation is the point of this paper, so we cannot avoid going

into the details covered in these chapters. (Our main result is a fine structural refinement of [13,

Theorem 4.10.10].) We summarize some main points below. The reader can see [13, Chapters 4,9]

for more details.

2.1. Potential least branch premice

The language for lpm’s is L1 with symbols ∈, Ė, Ḟ, Σ̇, Ḃ, γ̇. L0 = L1 − {Ḃ, Σ̇} is the language of

pure extender mice. An lpm M is of the form (N, k) where N is an L1 amenable structure that is

k-sound. We write k = deg(M). We often identify M with N and suppress k. o(M) denotes the

ordinal height of M , and ô(M) denotes the α such that o(M) = ωα. l(M) = (ô(M),deg(M)) is

the index of M . For (ν, l) ≤lexl(M), M |(ν, l) is the initial segment of M with index (ν, l). We write

N �M iff N =M |(ν, l) for some (ν, l) ≤lexl(M). If ν ≤ ô(M), write M |ν for M |(ν, 0).6

ĖM codes the sequence of extenders that go into constructing M . ḞM if non-empty is the

amenable code for a new extender being added; in this case, we say that M is extender-active

(or just E-active). If ḞM = F is nonempty, then M ⊨ crt(F )+ exists and o(M) = iMF (µ), where

µ = crt(F )+. Also F must satisfy the Jensen initial segment condition (ISC), that is, whole initial

segments of F must be in ĖM (see [16] for a detailed discussion of ISC). γ̇ is the index of the

largest whole initial segment of F if exists; otherwise, γ̇ = 0. We also demand M is coherent, that

is iMF (ĖM ) ↾ o(M) + 1 = (ĖM )⌢⟨∅⟩.
Σ̇M and ḂM are used to record information about an iteration strategy Ω of M . Σ̇M codes the

strategy information added at earlier stages; Σ̇M acts on λ-separated trees.7 Σ̇M (s, b) implies that

s = ⟨ν, k, T ⟩, where (ν, k) ≤ l(M) and T is a λ-separated tree on M |(ν, k) in M of limit length

and T ⌢b is according to the strategy. We say that s is an M -tree, and write s = ⟨ν(s), k(s), T (s)⟩.
We write Σ̇Mν,k for the partial iteration strategy for M |(ν, k) determined by Σ̇. We write ΣM (s) = b

when Σ̇M (s, b), and we say that s is according to ΣM if T (s) is according to Σ̇Mν(s),k(s).

Now we discuss how to code branch information for a tree T (s) such that ΣM (s) has not yet

been defined into the ḂM predicate. Here we use the B-operator in [8]. We are correcting some

errors in the original version of [13]. These corrections have been incorporated in its latest version.

M is branch-active (or just B-active) iff

(a) there is a largest η < o(M) such that M |η ⊨ KP, and letting N =M |η,
6M |ν can be active. We write M ||ν, or M |⟨ν,−1⟩, for M |ν cut a second time by removing its last extender if it

has one.
7See [13, Chapter 4] for detailed discussions on λ-separated trees.

4



(b) there is a <N -least N -tree s such that s is by ΣN , T (s) has limit length, and ΣN (s) is

undefined.

(c) for N and s as above, o(M) ≤ o(N) + lh(T (s)).

Note that being branch-active can be expressed by a Σ2 sentence in L1 − {Ḃ}. This contrasts

with being extender-active, which is not a property of the premouse with its top extender removed.

In contrast with extenders, we know when branches must be added before we do so.

Definition 2.1. Suppose that M is branch-active. We set

ηM = the largest η such that M |η ⊨ KP,

νM = unique ν such that ηM + ν = o(M),

sM = least M |ηM -tree such that Σ̇M |ηM is undefined, and

bM = {α | η + α ∈ ḂM}.

Moreover,

(1) M is a potential lpm iff bM is a cofinal branch of T (s)↾νM .

(2) M is honest iff νM = lh(T (s)), or νM < lh(T (s)) and bM = [0, νM )T (s).

(3) M is an lpm iff M is an honest potential lpm.

(4) M is strategy active iff νM = lh(T (s)).

⊣

Note that ηM is a ΣM0 singleton, because it is the least ordinal in ḂM (because 0 is in every

branch of every iteration tree), and thus sM is also a ΣM0 singleton. We have separated honesty

from the other conditions because it is not expressible by a Q-sentence, whereas the rest is. Honesty

is expressible by a Boolean combination of Σ2 sentences. See 2.7 below.

The original version of [13] required that when o(M) < ηM + lh(T (s)), ḂM is empty, whereas

here we require that it code [0, o(M))T (s), in the same way that ḂM will have to code a new branch

when o(M) = ηM + lh(T (s)). Of course, [0, νM )T (s) ∈ M when o(M) < ηM + lh(T (s)) and M is

honest, so the current ḂM seems equivalent to the original ḂM = ∅. However, ḂM = ∅ leads to

ΣM1 being too weak, with the consequence that a Σ1 hull of M might collapse to something that is

not an lpm.8 Our current choice for ḂM solves that problem.

Remark 2.2. Suppose N is an lpm, and N ⊨ KP. It is very easy to see that Σ̇N is defined on all

N -trees s that are by Σ̇N iff there are arbitrarily large ξ < o(N) such that N |ξ ⊨ KP. Thus if M is

8The hull could satisfy o(H) = ηH + lh(T (sH)), even though o(M) < ηM + lh(T (sM )). But then being an lpm
requires ḂH ̸= ∅. See Remark 2.47 in [8] for a more detailed discussion. Basically, one can show that the LΣ[E⃗]
constructions doesn’t break down because the the models constructed are not Σ-premice; [8, Remark 2.47] outlines
an argument that cores of Σ-premice that are constructed in the LΣ[E⃗]-constructions are Σ-premice.
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branch-active, then ηM is a successor admissible; moreover, we do add branch information, related

to exactly one tree, at each successor admissible. Waiting until the next admissible to add branch

information is just a convenient way to make sure we are done coding in the branch information

for a given tree before we move on to the next one. One could go faster. ⊣

We say that an lpm M is (fully) passive if ḞM = ∅ and ḂM = ∅. It cannot be the case that

M is both E-active and B-active. In the case that M is E-active, using the terminology of [5], the

extender ḞM can be of type A, B, or C.

2.2. Solidity and soundness

We adopt the projectum-free space (pfs) fine structure in [13, Chapter 4]. We write ρn(M) for the n-

th projectum ofM and pn(M) for the n-th standard parameter ofM . We set ρ(M) = ρdeg(M)+1(M)

and p(M) = pdeg(M)+1(M), and call them the projectum and parameter of M . We say M is sound

iff it is deg(M) + 1-sound. An lpm M must be deg(M)-sound, but it need not be deg(M) + 1-

sound. There are two types of premice, type 1 and type 2, with the distinction being based on the

soundness pattern of the premice. Type 1 are the most important. All proper initial segments of

an lpm must be sound type 1 lpms. Type 2 premice can be produced by taking a k-ultrapower

that is discontinuous at ρk.

If M is type 1 and k-sound for k ≥ 1, then it is coded by its reduct Mk, where

Mk = (M ||ρk(M), AkM ),

and

AkM = {⟨φ, b⟩ | φ is Σ1 ∧ b ∈M ||ρk ∧Mk−1 ⊨ φ[b, wk]},

where ρk = ρk(M), wk = wk(M) = ⟨ρk(M), ηk(M), pk(M)⟩ and ηk(M) is the Σ1-cofinality of

ρk(M) over Mk−1. We also have the decoding function dk : Mk → M and canonical Σ1-Skolem

function h1
Mk over Mk defined as in [13, Chapter 4]. We have the k + 1-st projectum, parameter,

strong core C̄k+1, and core Ck+1 defined by (we will omit the M from the notation)

ρk+1 = ρ1(M
k),

pk+1 = p1(M
k),

C̄k+1 = transitive collapse of dk ◦ h1Mk [(ρk+1 ∪ {pk+1, wk})],

p̄k+1 = σ−1(pk+1),

Ck+1 = transitive collapse of dk ◦ h1Mk [(ρk+1 ∪ {pk+1, ρk+1, wk})].

Here, we let σ : C̄k+1 →M and π : Ck+1 →M be the uncollapse maps.

ForM of type 1,M is k+1-solid iffMk is parameter solid, projectum solid, stable (see Definition
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2.3), and M is weakly ms-solid.9 M is k + 1-sound iff M is k + 1-solid and M = Ck+1(M). M is

k + 1-strongly sound if M is k + 1-sound and M = C̄k+1(M)−10.

Let M be a pfs premouse of type 1 and deg(M) = k < ω. We set

ρ̂k+1(M) = ρ̂1(M
k) =

0 if Mk is strongly sound,

least κ s.t. κ /∈ HullM
k

1 (ρ1(M
k) ∪ p1(Mk)) otherwise.

η̂Mk+1 = η̂1(M
k) = cofM

k

1 (ρ̂k+1(M)).

We say that M is almost sound iff

(a) M is solid;

(b) Mk = HullM
k

1 (ρ1(M
k) ∪ {p1(Mk) ∪ ρ̂1(Mk)});

(c) if ρ1(M
k) ≤ ρ̂1(M

k), then letting

(H,B) = cHullM
k

1 (ρ1(M
k) ∪ p1(Mk)),

with anticollapse map π : (H,B) →Mk, we have

Mk = Ult((H,B), D),

where D is the order zero measure of H on ρ̂1(M
k) and π = iD, and

(d) if ρ1(M
k) < ρ̂1(M

k) then η̂1(M
k) < ρ1(M

k).

Now suppose M is an acceptable J structure, and for k = deg(M), either k = 0 or Mk−1 is

a pfs premouse of type 1. We say that M is a pfs premouse of type 1A iff ρk(M) = ρk−1(M)

or ρk(M) ∈ HullM
k−1

1 (ρk(M) ∪ pk(M)), equivalently iff deg(M) = 0 or deg(M) > 0 and M− is

strongly sound. M has type 1B iff deg(M) > 0 and M− is sound, but not strongly sound. M has

type 2 iff M− is almost sound, but not sound.11 So for M a pfs premouse of degree k,

• M has type 1A iff ρ̂k(M) = 0,

• M has type 1B iff ρ̂k(M) = ρk(M), and

• M has type 2 iff ρ̂k(M) > ρk(M).

9M is weakly ms-solid iff either M is passive or the last extender of C1 and C̄1 satisfies the weak ms-ISC. M
satisfies the weak ms-ISC if letting E be the top extender of M and κ be the critical point of E, then the Jensen
completion of Eκ is on the sequence of M |lh(E). For the other components of solidity, see Definition 2.3 below.

10For a pfs premouse N , N− is just N but with soundness degree deg(N)− 1.
11If M is a pfs premouse of type 1B, k = deg(M) > 0, and N = Ultk(M,E) where ηM

k = crt(E), then
sup iE“ρk(M) = ρk(N) < ρ̂k(N) = iE(ρk(M)), so N is a type 2 pfs premouse of degree k. Fine structural hulls
of type 1 premice can have type 2 as well.
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Let M be a pfs premouse of either type, with k = deg(M) > 0. We set

ŵk(M) = ⟨η̂k(M), ρ̂k(M), pk(M)⟩,

where ρ̂k(M) is the least ρ that is not in HullM
k−1

1 (ρk(M)∪ pk(M)) and η̂k(M) = cofM
k−1

1 (ρ̂k(M)).

When M is clear from the context, we write ŵk for ŵk(M) etc. Let

ÂkM = {⟨φ, b⟩ | φ is Σ1 ∧ b ∈M ||ρk ∧Mk−1 ⊨ φ[b, ŵk]},

and

M̂k = (M ||ρk, ÂkM ).

We also have the decoding function d̂k :Mk →M and canonical Σ1-Skolem function h1
M̂k

over M̂k

defined as in [13, Chapter 4]. We write ρ−(M) for ρdeg(M)−1(M) etc.12

We define solidity and soundness for type 2 premice exactly as we did for type 1 premice, but

with M̂k replacing Mk. Since M̂k =Mk when M has type 1, the type 1 and type 2 definitions can

be unified. For the record:

Definition 2.3. Let M be a premouse of degree k; then

ρk+1(M) = ρ1(M̂
k),

pk+1(M) = p1(M̂
k),

C̄k+1(M) = transitive collapse of d̂k ◦ h1
M̂k“(ρk+1 ∪ {pk+1}), and

Ck+1(M) = transitive collapse of d̂k ◦ h1
M̂k“(ρk+1 ∪ {pk+1, ρk+1}).

Let σ : C̄k+1 →M and π : Ck+1 →M be the anticollapse maps, and p̄k+1 = σ−1(pk+1); then

(a) M̂k is parameter solid iff pk+1 is solid and universal over M̂k and p̄k+1 is solid and universal

over the reduct (C̄k+1)
k of C̄k+1.

(b) M̂k is projectum solid iff ρk+1 is not measurable by the M -sequence, and either C̄k+1 = Ck+1,

or Ck+1 = Ult(C̄k+1, D) and σ = π ◦ iD, for iD the order zero measure of C̄k+1 on ρk+1.

(c) M̂k is stable iff either η̂Mk < ρk+1, or η̂
M
k is not measurable by the M -sequence.

(d) We say that M is projectum stable if ηk(M) is not measurable by the M -sequence.

12It is sometimes useful to have also a coding structure for the strong core. Let M be a pfs premouse and
k = deg(M) > 0; then

Bk = {⟨φ, b⟩ | φ is Σ1 ∧ b ∈ M ||ρk ∧Mk−1 ⊨ φ[b, pk]},

and the reduct of C̄k(M) is defined as

Mk
0 = (M ||ρk, Bk).
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(e) We say that M has stable type 1 iff M has type 1A, or M has type 1B and is projectum

stable.

We say that M is solid (or k+1-solid) iff M̂k is parameter solid, projectum solid, and stable. We

say that M is sound (or k + 1-sound) iff M is solid and M = Ck+1(M).13 ⊣

It is easy to see that M has stable type 1 iff M has type 1, and for any E on the M -sequence,

letting P �M be longest such that Ult(P,E) is defined, Ult(P,E) has type 1.

2.3. Elementarity of maps

Suppose thatM is an lpm, and π : H →M . What sort of elementarity for π do we need to conclude

that H is an lpm? In the proof of square for ordinary mice, we have to deal with embeddings that

are only weakly elementary.14 In the context of proving square in pfs premice, we need a slight

strengthening of weak elementarity, called near elementarity and defined in [13, Chapters 2,4].

Nearly elementary maps are produced by lifting constructions, and they will occur in the square

construction.

Roughly a map π : H → M with k = deg(M) = deg(H) is nearly elementary if it is weakly

elementary and maps η̂k(H) to η̂k(M). More precisely, we say that π is nearly elementary if π is

the completion of π ↾ Ĥk and π ↾ Ĥk is a Σ0-preserving and cardinal preserving map from Ĥk to

M̂k. π is elementary if it is nearly elementary and π ↾ Ĥk is Σ1-elementary.

We note in the above that

(a) If H is of type 1A, then H− is strongly sound and ŵk(H) = ⟨0, 0, pk(H)⟩. In this case, M is of

type 1A, but π may or may not preserve ρk(H).

(b) If H is of type 1B, then ρk(H) = ρ̂k(H) and hence ŵk(H) = wk(H). M may have type 1B or

type 2. M is of type 1B if and only if ŵk(M) = wk(M) if and only if π(wk(H)) = wk(M).

(c) If H is of type 2, then M is of type 1B or 2.

The existence of a nearly elementary π : H → M does not imply that H is a premouse when

deg(H) = deg(M) = 0. If M is a passive lpm, then so is H, and there is no problem. If M is

extender-active, then it could be that H is only a protomouse, in that its last extender predicate

is not total. The problem here is solved by the parts of the Schimmerling-Zeman proof related to

protomice, which work in our context. Finally, we must consider the case that M is branch-active.

Definition 2.4. A rQ-formula of L1 is a conjunction of formulae of the form

(a) ∀u∃v(u ⊆ v ∧ φ), where φ is a Σ1 formula of L1 such that u does not occur free in φ,

13Similarly, if k = deg(M), then ρ(M) = ρk+1(M), ρ̂(M) = ρ̂k+1(M), p(M) = pk+1(M), and so on for the other
k-free notations.

14See section 1.4 of [13] for a discussion of the degrees of elementarity. If deg(H) = deg(M) = 0, then π is weakly
elementary iff it is Σ0 elementary and cardinal-preserving.
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or of the form

(b) “Ḟ ̸= ∅, and for µ = crt(Ḟ )+, there are cofinally many ξ < µ such that ψ”, where ψ is Σ1.

⊣

Formulae of type (a) are usually called Q-formulae. Being a passive lpm can be expressed by

a Q-sentence, but in order to express being an extender-active lpm, we need type (b) clauses, in

order to say that the last extender is total. rQ formulae are Π2, and hence preserved downward

under Σ1-elementary maps. They are preserved upward under Σ0 maps that are strongly cofinal.

Definition 2.5. Let M and N be L0-structures and π : M → N be Σ0 and cofinal. We say that

π is strongly cofinal iff M and N are not extender active, or M and N are extender active, and

π“(crt(Ḟ )+)M is cofinal in (crt(Ḟ )+)N . ⊣

It is easy to see that

Lemma 2.6. rQ formulae are preserved downward under Σ1-elementary maps, and upward under

strongly cofinal Σ0-elementary maps.

Lemma 2.7. (a) There is a Q-sentence φ of L1 such that for all transitive L0 structures M ,

M ⊨ φ iff M is a passive lpm.

(b) There is a rQ-sentence φ of L1 such that for all transitive L0 structures M , M ⊨ φ iff M is

an extender-active lpm.

(c) There is a Q-sentence φ of L1 such that for all transitive L0 structures M , M ⊨ φ iff M is

a potential branch-active lpm.

Proof. (Sketch.) We omit the proofs of (a) and (b). For (c), note that “Ḃ ̸= ∅” is Σ1. One can go

on then to say with a Σ1 sentence that if η is least in Ḃ, then M |η is admissible, and sM exists.

One can say with a Π1 sentence that {α | Ḃ(η+α)} is a branch of T (s), perhaps of successor order

type. One can say that Ḃ is cofinal in the ordinals with a Q-sentence. Collectively, these sentences

express the conditions on potential lpm-hood related to Ḃ. That the rest of M constitutes an

extender-passive lpm can be expressed by a Π1 sentence.

Corollary 2.8. (a) If M is a passive ( resp. extender-active, potential branch-active ) lpm,

and Ult0(M,E) is wellfounded, then Ult0(M,E) is a passive (resp.extender-active, potential

branch-active ) lpm.

(b) Suppose that M is a passive (resp. extender-active, potential branch-active) lpm, and π : H →
M is Σ1-elementary; then H is a passive (resp. potential branch-active) lpm.

(c) Let deg(M) = deg(H) = 0, and π : H →M be Σ2 elementary; then H is a branch-active lpm

iff M is a branch-active lpm.

10



Proof. rQ-sentences are preserved upward by strongly cofinal Σ0 embeddings, so we have (a). They

are Π2, hence preserved downward by Σ1- elementary embeddings, so we have (b).

It is easy to see that honesty is expressible by a Boolean combination of Σ2 sentences, so we

get (c).

Remark 2.9. It could happen thatM is a branch-active lpm, π : H →M is cofinal and elementary

(with deg(M) = deg(H) = 0), and bM is not cofinal in T (sM ), but bH is cofinal in T (sH). If we

were using the branch coding in the original version of [13], then ḂM = ∅, so ḂH = ∅, so H is not

an lpm. ⊣

Part (c) of Lemma 2.7 is not particularly useful. In general, our embeddings will preserve

honesty of a potential branch active lpm M because Σ̇M and ḂM are determined by a complete

iteration strategy forM that has strong hull condensation. So the more useful preservation theorem

in the branch-active case applies to hod pairs, rather than to hod premice.

2.4. Plus trees

The iteration trees we use below are λ-separated plus trees. These notions are defined in detail in

[13, Section 4.4] and we briefly summarize the relevant concepts here. SupposeM is a pfs premouse

and E is an extender on the M -sequence, then

• E+ is the extender with generators λE ∪ {λE} that represents i
Ult(M,E)
F ◦ iME , where F is the

order zero total measure on λE in Ult(M,E).

• λ̂(E+) = λE .

• lh(E+) = lh(E).

• o(E+) = (lh(E)+)Ult(M,E+).

We say that an extender G is of plus type if G = E+ for some extender E on the sequence of a pfs

premouse M ; we let G− = E. In general, if E is an extender (of plus type or not)

• we let ε(E) = lh(E) if E is of plus type; otherwise, ε(E) = λ(E).

• if E is on the sequence of some premouse, then

(i) λ̂(E) = λ(E) = λ̂(E+),

(ii) E− = E.

The extended M -sequence consists of all E such that E− is on the M -sequence.

A plus tree T on a pfs premouse is like an ordinary normal tree, except that

(i) We only require that ET
α be on the extended MT

α sequence,
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(ii) ET
α is applied to the longest possible initial segment of MT

β , where β is least such that

crt(ET
α ) < λ̂(ET

β ), and

(iii) the length-increasing condition is weakened slightly.15

See [13, Definition 4.4.3] for the complete definition.

A λ-separated tree is a plus tree in which every extender used along the tree is of plus type. The

weakening in (iii) above does not affect λ-separated trees; that is, the lengths of the extenders used in

a λ-separated tree are strictly increasing. Moreover, quasi-normalization coincides with embedding

normalization on stacks of λ-separated plus trees. [13, Section 8.1] shows that λ-separated trees

are enough for comparisons. For these and other reasons it is convenient to restrict one’s attention

to the way an iteration strategy Σ acts on stacks of λ-separated trees. By Lemma 9.3.2 of [13], if

(P,Σ) is a mouse pair, then Σ is determined by its action on countable λ-separated trees.

2.5. Mouse pairs and Dodd-Jensen

Two of the main definitions from [13] are

Definition 2.10. (M,Ω) is a pure extender pair with scope Hδ iff

(a) M is a pure extender pfs premouse.

(b) Ω is a complete (ω, δ) iteration strategy for M16, and

• Ω is internally lift-consistent, quasi-normalizes well, and has strong hull condensation.17

⊣

Definition 2.11. (M,Ω) is a least branch hod pair (lbr hod pair) with scope Hδ iff

(a) M is an lpm.

(b) Ω is a complete (ω, δ) iteration strategy for M ,

(c) Ω is internally lift-consistent, quasi-normalizes well, and has strong hull condensation, and

(d) Ω is pushforward consistent, that is if s is by Ω with last model N , then Σ̇N ⊆ Ωs, where

Ωs(t) = Ω(s⌢t).18

⊣

Definition 2.12. (M,Ω) is a mouse pair iff it is either a pure extender pair or an lbr hod pair. ⊣
15The length-increasing condition is enough to guarantee that T -pred(α + 1) is the least β such that crt(ET

α ) <
ε(ET

β ). Thus none of the generators of a plus extender E, including the generator λ̂(E), are moved later on a branch
in which E has been used.

16See [13, 4.6.3].
17See [13, 5.4.4, 7.1.1, 7.1.9].
18See [13, 9.2.1].
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Remark 2.13. [13] required that M have type 1 in order for (M,Ω) to qualify as a mouse pair,

because that was sufficient generality for its purposes. Here we are allowing M to have type 2. ⊣

Included in 2.11(b) is the requirement that all Ω-iterates ofM be least branch premice. Because

of our honesty requirement in the branch-active case, this no longer follows automatically from the

elementarity of the iteration maps. That the iterates ofM are honest comes out of the construction

of Ω, as a consequence of pushforward consistency.

If (M,Ω) is an lbr hod pair and π : H →M is nearly elementary, then Ωπ is the pullback strategy,

given by

Ωπ(s) = Ω(πs).

We show now that, except in the protomouse case, (H,Ωπ) is an lbr hod pair.19

Lemma 2.14. Let (M,Ω) be an lbr hod pair with scope Hδ, and let π : H →M be nearly elementary.

Suppose that one of the following holds:

(a) M is passive or branch-active, or

(b) H is an lpm.

Then (H,Ωπ) is an lbr hod pair with scope Hδ.

Proof. We show first that H is an lpm. If (b) holds, this is rather easy. If M is passive, we can

apply (a) of 2.7, noting that Q sentences go down under nearly elementary embeddings. So let us

assume that M is branch-active.

By (b) of 2.7, H is a potential branch active lpm. So we just need to see that H is honest. Let

ν = νH , b = bH , and T = T (sH). If ν = lh(T ), there is nothing to show, so assume ν < lh(T ).

We must show that b = [0, ν)T . We have by induction that for N = H|ηH , (N,ΩπN ) is an lbr hod

pair. Thus T is by Ωπ, and so we just need to see that for U = T ↾ν and W = U⌢b, W is by Ωπ,

or equivalently, that πW is by Ω. But it is easy to see that πW is a psuedo-hull of π(U)⌢bM , and

Ω has strong hull condensation, so we are done.

For the proof that (H,Ωπ) is internally lift-consistent, normalizes well, and has strong hull

condensation, the reader should see [13]. We give here the proof that (H,Ωπ) is pushforward

consistent, because it extends the honesty proof given above.

Let P be an Ωπ iterate of H via the stack of trees s. Let Q be the corresponding Ω iterate of

M via πs, and let τ : P → Q be the nearly elementary copy map. Then for U ∈ P ,

U is by Σ̇P ⇒ τ(U) is by Σ̇Q

⇒ τU is by Ωπs,Q

⇒ U is by (Ωπ)s,P ,

19This is Lemma 9.2.3 of [13].
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as desired.

The basic results of inner model theory, such as the Comparison Lemma and the Dodd-Jensen

Lemma, are better stated and proved as results about mouse pairs than as results about mice, with

the notions of elementary submodel and iterate adjusted so that this is possible. For example, if

(H,Ψ) and (M,Σ) are mouse pairs, then π : (H,Ψ) → (M,Σ) is elementary (resp. nearly elemen-

tary) iff π is elementary (nearly elementary) as a map from H to M , and Ψ = Σπ. We say that

(M,Σ) is an iterate of (H,Ψ) iff there is a stack s on H such that s is by Ψ, and Σ = Ψs. It is a

non-dropping iterate iff the branch H-to-M does not drop. Assuming AD+ and that our pairs have

scope HC, [13] proves the following:

(1) If (M,Σ) is a mouse pair, H is a premouse, and π : H →M is nearly elementary, then (H,Σπ)

is a mouse pair.

(2) If (H,Ψ) is a mouse pair, and (M,Σ) is a non-dropping iterate of (H,Ψ), then the iteration

map is : (H,Ψ) → (M,Σ) is elementary in the category of pairs.

(3) (Dodd-Jensen) If (H,Ψ) is a mouse pair, (M,Σ) is an iterate of (H,Ψ) via the stack s, and

π : (H,Ψ) → (M,Σ) is nearly elementary, then

(i) the branch H-to-M of s does not drop, and

(ii) for all η < o(H), is(η) ≤ π(η), where is is the iteration map.

(4) (Mouse order) Let (H,Ψ) ≤∗ (M,Σ) iff there is a nearly elementary embedding of (H,Ψ) into

some iterate of (M,Σ); then ≤∗ is a prewellorder of the mouse pairs with scope HC in each

of the two types.

The prelinearity of the mouse pair order is the content of the Comparison Lemma for mouse

pairs. For pure extender pairs, it is proved in Theorem 8.4.5 of [13]. The proof for lbr hod pairs is

basically the same; it is Theorem 9.5.10 of [13].

3. COMPARING STRATEGIES FOR UNSOUND MICE

Let us assume AD+ throughout this section.

The comparison theorems of [13] are stated and proved for mouse pairs of stable type 1. (This

includes all mouse pairs of degree 0.) Mouse pairs that are not of stable type 1 (that is, those of

type 2, or of type 1B and not projectum stable) can arise in our fine condensation results, so we

need a comparison process that applies to them as well. In this section we generalize the process

of [13] to such pairs.

The problem is that all levels of a background construction are type 1 pairs, so a type 2 pair

(P,Σ) cannot literally iterate into a level of a background construction.20 In the end, our solution

20We shall see that a projectum stable pair of type 1B cannot do so either.
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to this problem amounts to making small adjustments to the formulation and proof of (∗)(P,Σ) in
[13]. Since there is nothing very new involved, we shall omit some details.21

A premouse M has type 2 iff M− is almost sound, but not sound. The paradigm example is

M = (Ultk+1(P,E), k + 1), where P has type 1B and degree k + 1, and the canonical embedding

iPE is discontinuous at ρk+1(P ). The point of setting deg(M) = k + 1 here, rather than k, is that

we want to take k + 1-ultrapowers of M , and deg(M) = k + 1 fits better with our definitions of

elementarity and plus trees in that context.

However, almost soundness records a number of properties of M− that are peculiar to this

particular way of producing unsound mice. If we are going to iterate almost sound type 1 premice

N at the deg(N) + 1 level, and compare their iteration strategies, then it is more natural to go all

the way, and look at deg(N) + 1-strategies for arbitrary solid N .22

So we shall consider arbitrary solid type 1 premice N , and look at deg(N) + 1-level iterations

of them.23 The solidity hypothesis is useful at several points, and we are building on the theory of

[13] rather than trying to re-do it, so there is no value in dropping solidity.

3.1. +1-iteration trees

Definition 3.1. Let N be a solid premouse and deg(N) = k, and let E be an extender over N

such that crt(E) < ρk+1(N); then

(a) Ultk+1(N,E) is the decoding of Ult1(N
k, E), where the latter ultrapower is formed using all

boldface ΣN
k

1 functions.

(b) We set deg(Ultk+1(N,E)) = k.

C) iN
k

E : Nk → Ult1(N
k, E) is the canonical embedding, and iNE : N → Ultk+1(N,E) is its com-

pletion.

⊣

Familiar calculations show

Lemma 3.2. Let N be a solid premouse and deg(N) = k, and let P = Ultk+1(N,E), where E is

an extender over N such that crt(E) < ρk+1(N). Let i = iNE and î = i ↾ Nk = iN
k

E . Suppose that

P is wellfounded; then

(1) î is Σ2-elementary as a map from Nk to P k.

(2) P is a type 1 premouse of degree k, and P k = Ult1(N
k, E).

21[13, 4.6.12] states a comparison theorem for pure extender pfs mice that are are not of stable type 1. There is no
discussion of strategy comparison in this case.

22For one thing, it can happen that (P,Σ) and (Q,Λ) are type 2 pairs, but the result of comparing them is some
(R,Ω) that is not type 2, because ρ̂−(P ) and ρ̂−(Q) are mapped to different points in R. In this case R is two order
zero ultrapowers away from its type 1 core, not just one.

23One could look at deg(N) + 2-level iterations, etc. This is done in a rudimentary way in [1], and fully and
systematically in Jensen’s Σ∗ theory. [4] proves the basic results about the deg(N) + 1 case.
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(3) If ThN
k

1 (α ∪ {q}) ∈ Nk, then i(ThN
k

1 (α ∪ {q})) = ThP
k

1 (i(α) ∪ {i(q)}).

(4) i(ρk(N)) = ρk(P ) and i(η
N
k ) = ηk).

(5) P is solid, i(p1(N
k)) = p1(P

k), and ρ1(P
k) = sup i“ρ1(N

k).

Proof. Of course, Los’s theorem holds for Ult1(N
k, E) for all Σ1 formulae, and the canonical em-

bedding î is Σ2 elementary. So we have (1). Since “z = Th1(α ∪ {q})” is Π2, we also get (3).

(2) follows from the Upward Extension of Embeddings Lemma.24

For (4): “z = ρk(N)” is equivalent to Nk−1 ⊨ θ[z], where θ is a Boolean combination of Π3

formulae.25 Since i is Σ3 elementary as a map from Nk−1 to P k−1, i(ρk(N)) = ρk(P ). By Lemma

4.3.4 of [13] we get that i(ηNk ) = ηPk as well.

For (5): We claim first that sup i“ρ1(N
k) ≤ ρP

k

1 . For if crt(E) ≤ α < ρ1(N
k) and r = [a, f ]N

k

E

where f is ΣN
k

1 in q, then ThP
k

1 (i(α) ∪ {r}) can be easily computed from ThP
k

1 (i(α) ∪ {i(q)}), and
the latter is in P k by (3). We claim next that ρ1(P

k) ≤ sup i“ρ1(N
k). For let q = p1(N

k) and

ρ = ρ1(N
k); then the fact that N is solid implies there is a ΣN

k

1 (q) map of ρ onto ρ+,N , and since

ε(E) < sup i“ρ, this yields a ΣP
k

1 (i(q)) map of sup i“ρ onto (sup i“ρ)+,P , so that ThP
k

1 (sup i“ρ ∪
{i(q)}) /∈ P k.

The calculations just done show that p1(P
k) ≤lex i(p1(N

k)), and i(p1(N
k)) ≤lex p1(P

k) follows

from the preservation of solidity witnesses given by (3).

Let us show that P is solid. We have already shown that P is parameter solid. Let ρ = ρ1(N
k);

then since N is projectum solid, ρ is not measurable in N , so i(ρ) is not measurable in P , so if i

is continuous at ρ, then P is projectum solid. So assume i is discontinuous at ρ; then we have a

boldface ΣN
k

1 function f : κE → ρ such that f is order preserving and continuous at limits. This

implies ρ is a limit cardinal in N , and f↾α ∈ N for all α < κE , so that N ⊨ “f(α) is singular” for

all α. But then sup i“ρ = [{κE}, f ]N
k

E is singular is P , and hence not measurable in P .

Finally, we must show that P is stable. But ηPk = i(ηNk ), so if ηPk is measurable in P , then ηNk
is measurable in N , so ηNk < ρk+1(N) by stability of N , so ηPk < ρk+1(P ) by (4), as desired.

Let us turn the lemma into a definition.

Definition 3.3. Let i : N → P , where deg(N) = deg(P ) = k; then we say i is +1-elementary iff N

and P are solid premice of type 1, and conclusions (1), (3), (4), and (5) of Lemma 3.2 are satisfied

by i, N , and P . ⊣

Now we look at iteration trees T in which such “soundness degree +1” ultrapowers are taken.

We record the degrees of the ultrapowers that can be taken in the degrees degT (α) of the nodes,

so now degT (α) = deg(MT
α ) + 1 is possible.

Definition 3.4. Let M be a solid premouse of degree k; then a 1-bounded plus tree on M is a

system ⟨T , ⟨ET
α | α + 1 < lh(T )⟩, degT ⟩ such that dom(degT ) = lh(T ), and there are Mα, iα,β, D

satisfying

24See [13, 4.3.7(b)].
25See [13, 2.4.5–2.4.7].
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(1) If degT (0) = deg(M), then T is a plus tree on M in the sense of [13, 4.4.3], with models,

embeddings, and dropset Mα, iα,β, D. In this case, we also put 0 ∈ D, and say that T has a

small drop at 0.

(2) If degT (0) = deg(M) + 1 = k + 1, then Mα, iα,β, D satisfy all the properties listed in [13,

4.4.3], except that clause (3)(b) is modified so that if T -pred(α+1) = β, [0, β]T ∩D = ∅, and
crt(ET

α ) < ρk(Mβ), then

(a) if crt(ET
α ) < ρk+1(Mβ), then Mα+1 = Ultk+1(Mβ, E

T
α ), and

(b) if ρk+1(Mβ) ≤ crt(ET
α ), then Mα+1 = Ultk(Mβ, E

T
α ).

(c) In case (b), we put α+ 1 ∈ DT and say that T has a small drop at α+ 1.

(3) β is a +1-node of T iff [0, β]T ∩DT = ∅. If β is a +1-node, then we set degT (β) = deg(Mβ)+1.

Otherwise, we set degT (β) = deg(Mβ).

(4) T is 1-maximal iff 0 is a +1-node of T . If T is not 1-maximal, then we say it is 0-bounded.

⊣

If T is 1-bounded, there is at most one small drop along any branch, and if there is a small

drop, it must be the first drop along that branch. We call a drop α + 1 ∈ DT large iff it is not

small.

Remark 3.5. It is easy to see that MT
α is unsound (i.e. not deg(MT

α ) sound) iff [0, α]T has a large

drop. ⊣

In a 1-bounded tree, all the drops are forced, including the small ones, except possibly a small

drop at 0. If there is such a drop, then T is 0-bounded, and therefore it is just a plus tree in the

sense of [13]. In general, a 1-maximal plus tree may not be a plus tree in the sense of [13], but

it seems better to expand the meaning of “plus tree” than to invent a new term. In a 1-bounded

tree, after a branch has dropped in any way, the later ultrapowers on the branch are always n-

ultrapowers of n-sound premice.26 If M is not just solid, but sound, then a 1-maximal plus tree on

M is essentially the same thing as a plus tree on M+ in the sense of [13].

From Lemma 3.2 we get

Lemma 3.6. Let T be a 1-bounded plus tree on the solid premouse M , α <T β, and D
T ∩ [α, β]T =

∅; then iTα,β is elementary, and if T is 1-maximal, then it is exact. If in addition β is a +1-node,

then iTα,β is +1-elementary.

Exactness uses that T is 1-maximal and M is stable, for otherwise we might take a deg(M)-

ultrapower with critical point ηMk , producing thereby an inexact canonical embedding.

Along branches that have only a small drop, the embeddings are slightly less elementary.

26We could relax clause (2) by allowing Mα+1 = Ultk(Mβ , E
T
α ) when crt(ET

α ) < ρk+1(Mβ). Only a few things
become more complicated.
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Definition 3.7. Let M and N be solid premice, k = deg(M) = deg(N), and π : M → N . We say

that π is nearly +1-elementary iff

(i) π is elementary and exact,

(ii) π“ρM
k

1 ⊆ ρN
k

1 , π(p1(M
k)) = p1(N

k), and

(iii) π is k + 1-theory preserving, in that for all α < ρM
k

1 and all q ∈ Mk, π(ThM
k

1 (α ∪ {q})) =

ThN
k

1 (π(α) ∪ {π(q)}).

⊣

Nearly +1-elementary π : M → N are called deg(M)+1-apt in [4]. That paper proves a copying

lemma and a Dodd-Jensen lemma for such maps.27 We shall use those results below.

Notice that if π is nearly elementary as a map from M to N , then it is nearly (+1)-elementary

as a map from M− to N−. M and N may have either type, but M− and N− have type 1.

Clause (i) of 3.7 implies that π(ηMk ) = ηNk .28

Lemma 3.8. Let N be a solid premouse and deg(N) = k, and let P = Ultk(N,E), where E

is an extender over N that is close to N such that ρk+1(N) ≤ crt(E) < ρk(N). Suppose P is

wellfounded; then P is solid, and the canonical embedding iNE is nearly +1-elementary. Moreover,

ρk+1(N) = ρk+1(P ).

Proof. This is proved in [13, Lemma 2.4.12], except for the assertions that P is projectum solid

and stable, and that iNE is exact.

Note that crt(E) /∈ {ρk+1(N), ηNk } because crt(E) is measurable in N by closeness, while N is

projectum solid and stable. Since ρk+1(N) < crt(E), P is projectum solid, and since ηNk ̸= crt(E),

iNE is continuous at ρk(N), and therefore exact. Since iNE is continuous at ρk(N), iNE (η
N
k ) = ηPk .

But N is stable, so P is stable.

Remark 3.9. With more work, one can weaken the hypotheses on E by dropping closeness, and

requiring of crt(E) only that crt(E) < ρk(N) and crt(E) /∈ {ρk+1(N), ηNk }. In the case that

crt(E) < ρk+1(N), one must weaken the conclusion to ρk+1(P ) = sup i“ρk+1(N), for i = iNE , but

otherwise the conclusions remain the same.29 ⊣

Note also

Lemma 3.10. Let M be solid, and let π : C(M)− → M be the anticore map; then π is nearly

+1-elementary.

Proof. Let k = deg(M); then π is cofinal and Σ0 elementary, and hence Σ1 elementary, as a map

from C(M)k to Mk. Because we are using pfs fine structure ρk(M) ∈ ran(π), so π is exact. The

rest is easy to verify.

27See [4, 2.11, 2.12].
28See [13, 4.3.4].
29That ρk+1(P ) = sup i“ρk+1(N) under these hypotheses is a result of Schlutzenberg; see [13, 9.6.1].
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From Lemma 3.8 we get

Lemma 3.11. Let T be a 1-maximal plus tree on the solid premouse M , α <T β, and suppose that

if γ ∈ DT ∩ [0, β]T , then γ is a small drop; then iTα,β is nearly (+1)-elementary.

Nearly +1-elementary embeddings suffice for copying 1-maximal trees.

Definition 3.12. Let M and N be solid premice with degree k, and E and F be extenders over

M and N respectively. We say

⟨π, φ⟩ : (M,E)
∗,1−→ (N,F )

iff π is nearly +1-elementary, and ⟨π, φ⟩ : (Mk, E)
∗−→ (Nk, F ) in the sense of [13, 2.5.17]. ⊣

Lemma 3.13. [Shift Lemma] Suppose that ⟨π, φ⟩ : (M,E)
∗,1−→ (N,F ), where M and N are solid

premice of degree k. Let m = k + 1 if crt(E) < ρk+1(M), and m = k otherwise, and let n = k + 1

if crt(F ) < ρk+1(N) and n = k otherwise. Let

σ : Ultm(M,E) → Ultn(N,F )

be the completion of the map σ0([a, f ]
Mk

E ) = [φ(a), π(f)]N
k

F . Then

(i) σ is nearly +1-elementary,

(ii) σ↾lh(E) = φ↾lh(E), and

(iii) σ ◦ iME = iNF ◦ π.

Proof. (Sketch.) Since supπ“ρk+1(M) ≤ ρk+1(N), m = k + 1 implies n = k + 1.30 Thus the

definition of σ0 makes sense, in that π can be applied to f (even if f is only ΣM
k

1 ), and π(f) is a

function that is used in the N -ultrapower. Note that both iME and iNF are exact, so σ is exact by

commutativity. The remaining calculations are the usual ones.

Definition 3.14. Let π : M → N be nearly +1-elementary, and let T be a 1-bounded plus tree on

M ; then πT is the 1-bounded copied tree on N . ⊣

Of course we stop the construction of πT if we reach an illfounded model. Letting πα : Mα → Nα

be the copy map, we prove by induction that if β = T -pred(α+ 1), then

⟨πβ↾M∗
α+1, πα⟩ : (M∗

α+1, E
T
α )

∗−→ (N∗
α+1, E

πT
α ),

and if DT ∩ [0, β]T = ∅, then πβ is nearly +1-elementary. This can be done.31

Definition 3.15. A 1-bounded stack on M is a stack s of trees such that

30It is possible that m = k and n = k + 1. We could have copied with n = k in this case, but we are not going to
do that, because we want to stay in the realm of 1-maximal trees.

31See [13, Section 4.5].
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(1) each tree Ti(s) in s is 1-bounded, and

(2) for i > 0, letting N be the base model of Ti(s), Ti(s) is 1-maximal iff M -to-N has no drops

of any kind. s is 1-maximal iff T0(s) is 1-maximal; otherwise, s is 0-bounded.

⊣

Let G1(M,λ, θ) be the variant of G(M,λ, θ) in which the output is a 1-bounded stack on M .

Definition 3.16. A (λ, θ)+-iteration strategy forM is a winning strategy for player II inG1(M,λ, θ).

Let Σ be such a strategy; then

(a) (Tail strategy.) For s a 1-bounded stack by Σ with last model N , Σs,N (t) = Σ(s⌢t). If

M -to-N does not drop in s, then Σs,N is a (λ− lh(s), θ)+-iteration strategy for N . Otherwise,

it is a (λ− lh(s), θ)-strategy.

(b) (Pullback strategy.) If π : N → M is nearly +1-elementary, then Σπ is the (λ, θ)+-strategy

for N given by: Σπ(s) = Σ(πs).

⊣

If Σ is a (λ, θ)+-strategy for M , then we obtain an ordinary (λ, θ)-strategy for M by restriction

Σ to act on 0-bounded stacks s. We call this restricted strategy Σ−.

Notation: If T is a tree on (P,Σ) and α < lh(T ), then we may write ΣT
α for the tail strategy

ΣT ↾α+1,MT
α
.

3.2. Background-induced +1-strategies

We get (λ, θ)+-iteration strategies from the same background constructions that gave us (λ, θ)-

strategies. The constructions themselves do not change at all, because the strategy predicate of an

lpm still has only information about the action of the strategy on 0-bounded, λ-separated trees.

Recall that a conversion stage is a tuple ⟨M,ψ,Q,C, R⟩ such that R is an appropriate back-

ground universe, C is a maximal hod pair construction in the sense of R, Q is a level of C, and
ψ : M → Q is nearly elementary.32

Definition 3.17. A +1-conversion stage is a conversion stage ⟨M,ψ,Q,D, R⟩ such that M and Q

are solid, and ψ is nearly +1-elementary. ⊣

Given a conversion stage c = ⟨M,ψ,Q,C, R⟩ and a 0-bounded plus tree T on M , [13, Section

4.8] defines the conversion system

lift(T , c) = ⟨T ∗, ⟨cα | α < lh(T )⟩⟩.
32See Section 4.8 and Section 9.4 of [13].
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Here c0 = c, and cα = ⟨Mα, ψα, Qα,Cα, Rα⟩ is a conversion stage such that Mα = MT
α and

Rα = MT ∗
α . The same construction applies when T is 1-bounded and c is a +1-conversion stage;

we just need to note that when α is a +1-node of T , then the conversion stage cα produced by our

construction is a +1-conversion stage.

This comes down to adding a few lines to the Shift Lemma for Conversions.33 Suppose α+1 is

a +1-node of T , T -pred(α+ 1) = β, and E = ET
α . Let

φ = σCα
Qα

[Qα|lh(ψα(E−))] ◦ ψα,

E∗ = BCα(φ(E−)),

and

ET ∗
α = E∗

So E∗ is the background extender for the resurrection of ψα(E
−). There is enough agreement

between φ and ψβ that E∗ should be applied to Rβ = MT ∗
β in a normal continuation of T ∗.

Letting k = deg(M) and i∗ = i
Rβ

E∗ , our next conversion stage is then

cα+1 = ⟨Ultk+1(Mβ, E), π, i∗(Qβ), i
∗(Cβ),Ult(Rβ, E∗)⟩.

Since α+1 is a +1 node, M∗
α+1 =Mβ. π is (the completion of) the map π : Ult1(M

k
β , E) → i∗(Qkβ)

given by

π([a, f ]
Mk

β

E ) = [φ(a), ψβ(f)]
Rβ

E∗ ,

where ψβ moves f by moving its Σ
Mk

β

1 definition. Since ψβ is Th1-preserving, π is well defined. It

is easy to check that π is Σ1-elementary and Th1-preserving as a map from Ult1(M
k
β , E) to i∗(Qkβ),

using that

π ◦ iMβ

E = i∗ ◦ ψβ.

Commutativity and the fact that i
Mβ

E , i∗↾Qβ, and ψβ are all exact also implies that π is exact.

Finally,

supπ“ρk+1(Mα+1) = supπ ◦ iMβ

E “ρk+1(Mβ)

= sup i∗ ◦ ψβ“ρk+1(Mβ)

≤ i∗(ρk+1(Qβ)) = ρk+1(i
∗(Qβ)).

Collectively, these calculations show that π is nearly +1-elementary. It agrees with φ on lh(E),

which we need to keep the conversion going.

We lift 1-bounded stacks in the natural way. For example, lift(⟨T ,U⟩, c) = ⟨lift(T , c), lift(U , d)⟩,
where d is the last conversion stage in lift(T , c). Letting T ∗ = lift(T , c)0 and U∗ = lift(U , d)0,

33[13, 3.3.2, 4.8.2].

21



⟨T ∗,U∗⟩ is the corresponding stack of nice trees on the background universe in c. Abusing notation,

we write

lift(T⃗ , c)0 = ⟨T ∗
i | i < lh(T⃗ )⟩

for the stack of lifted trees on the background universe in c.

Definition 3.18. Let ((N∗,∈, w,F ,Ψ),Ψ∗) be a coarse strategy pair,34 and let C be the maximal

least branch (w,F ,Ψ)-construction of (N∗,∈, w,F ,Ψ)35, with models Mν,k = MC
ν,k and induced

strategies Ων,k = ΩC
ν,k.

(1) Let c be a +1-conversion stage of the form ⟨M,ψ,Q,C, N∗⟩; then Ω+(c,Ψ∗) is the (ω1, ω1)
+-

iteration strategy for M given by

T⃗ is by Ω+(c,Ψ∗) iff lift(T⃗ , c)0 is by Ψ∗.

(2) (Ω+
ν,k)

C = Ω+(⟨Mν,k, id , Mν,k,C, N∗⟩,Ψ∗).

⊣

Clearly, Ων,k = (Ω+
ν,k)

−. As one would expect, Ων,k+1 is the pullback of Ω+
ν,k under the anticore

map.

Lemma 3.19. Let C be the maximal least branch (w,F ,Ψ)-construction of some coarse strategy

pair, with associated models Mν,k and strategies Ων,k and Ω+
ν,k. Let π : M−

ν,k+1 → Mν,k be the

anticore map; then π is nearly +1-elementary, and

Ων,k+1 = (Ω+
ν,k)

π.

Proof. π is nearly +1-elementary by 3.10.

Note first that the identity makes sense. Ων,k+1 is a strategy acting on 0-bounded stacks on

Mν,k+1, or equivalently, on 1-maximal stacks on M−
ν,k+1. If s is a 1-maximal stack on M−

ν,k+1, then

πs is a 1-maximal stack on Mν,k, and so Ω+
ν,k acts on it. Thus the identity makes sense.

The identity is true because, letting

c = ⟨Mν,k+1, id ,Mν,k+1,C, N∗⟩

34See [13, 9.4.14]. Roughly, the requirements are that

(a) (N∗,∈, w,F ,Ψ) is a coarse strategy premouse, i.e. N∗ is countable and transitive, N∗ ⊨ ZFC + “(w,F) is
a coherent pair” + “Ψ is a (δ∗, δ∗,F)-iteration strategy for V that quasi-normalizes well, has strong hull
condensation, and is pushforward consistent”, and

(b) Ψ∗ is a complete (ω1, ω1)-iteration strategy for (N∗,∈, w,F ,Ψ) that normalizes well and has strong hull
condensation, and

(c) if i : N∗ → S is the iteration map associated to a stack t according to Ψ∗, then i(Ψ) ⊆ Ψ∗
t,S .

(w,F) is a coherent pair iff w is a wellorder of Vδ, where δ = δ(w), and F ⊆ Vδ is a set of nice extenders such that
for E ∈ F and ν = lh(E), iE(w) ∩ Vν+1 = w ∩ Vν+1 and iE(F) ∩ Vν+1 = F ∩ Vν+1. See [13, 2.9.6].

35Cf. [13, 9.4.10].
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and

d = ⟨Mν,k, id ,Mν,k,C, N∗⟩,

and letting s be a 0-bounded stack on Mν,k+1,

lift(s, c)0 = lift(πs, d)0.

Thus letting Ψ∗ be the strategy for N∗,

s is by Ων,k iff lift(s, c)0 is by Ψ∗

iff lift(πs, d)0 is by Ψ∗

iff πs is by Ω+
ν,k.

The proof that lift(s, c)0 = lift(πs, d)0 is a routine induction, essentially identical to the proof

of [13, Lemma 5.4.2]. We omit further detail.

3.3. Regularity properties and comparison

The definitions and results of [13] go over to +1-strategies with almost no change.

For example, if T and U are 1-maximal trees on M , then Φ is a tree embedding from T to U
iff letting Φ = ⟨u, v, ⟨sα | α < lh(T )⟩, ⟨tα | α+ 1 < lh(T )⟩⟩, Φ has all the properties enumerated in

[13, Definition 6.4.1], and in addition

α is a +1-node of T ⇒ sα is +1-elementary.

A +1-strategy Σ has strong hull condensation iff whenever Φ: T → U is a tree embedding and U is

by Σ, then T is by Σ; moreover, whenever α < lh(T ), v(α) ≤U β, π = îUv(α),β ◦ sα, and Q�dom(π),

then we have ΣT ,Q = (ΣU↾β+1,π(Q))
π.

If s is a 1-maximal stack, then the quasi-normalization V (s) and embedding normalization

W (s) are defined just as before, but so that the trees they produce are 1-maximal. If the trees

in s are λ-separated, then V (s) = W (s). This is the only case we care about. A 1-strategy Σ

quasi-normalizes well iff whenever s is a 1-maximal stack by Σ, then V (s) is by Σ; moreover if

Q and R are the last models of s and V (s), and σ : Q → R is the quasi-normalization map, then

Σs,Q = (ΣV (s),R)
σ.36

The definition of internal lift consistency does not change at all.

If P is an lpm and Σ is a (λ, θ)+-strategy for P , then we say (P,Σ) is pushforward consistent

iff whenever s is a stack by Σ with last model Q, Σ̇Q ⊆ Σs,Q.

36If M -to-Q does not drop in s, then M -to-R does not drop in V (s) and σ is nearly +1-elementary, so (ΣV (s),R)
σ

is indeed a strategy for 1-maximal stacks on Q.
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Definition 3.20. (AD+) A +1-hod pair with scope Hω1 is a pair (P,Σ) such that P is a countable

lpm, Σ is an (ω, ω1)
+-iteration strategy for P , and (P,Σ) has strong hull condensation, normalizes

well, and is internally lift consistent and pushforward consistent. ⊣

Remarks 3.21. (a) If we are not assuming AD+ we may want to consider uncountable P , and

Σ that are defined on uncountable trees.

(b) If (P,Σ) is a +1-hod pair, then (P,Σ−) is an lbr hod pair in the sense of [13].

(c) If (P,Σ) is a +1-hod pair and P is sound, then (P+,Σ) is an lbr hod pair in the sense of [13].

⊣

Since nearly +1-elementary maps suffice to copy 1-maximal trees, we get a Dodd-Jensen lemma:

Lemma 3.22. [Dodd-Jensen] Let (M,Σ) be a +1-mouse pair, s a 1-maximal stack on (M,Σ) with

last pair (N,Λ), and π : (M,Σ) → (Q,Ω)� (N,Λ) be nearly +1-elementary; then (Q,Ω) = (N,Λ),

the branch M -to-N of s does not have a large drop, and is(η) ≤ π(η) for all η ∈ oM .

Lemma 3.23. Let ((N∗,∈, w,F ,Ψ),Ψ∗) be a coarse strategy pair, and let C be the maximal least

branch (w,F ,Ψ)-construction of (N∗,∈, w,F ,Ψ) with models Mν,l and induced +1-strategies Ω+
ν,l;

then for all ν, l, Ω+
ν,l has strong hull condensation, quasi-normalizes well, and is internally lift

consistent and pushforward consistent.

Proof. (Sketch.) The proof in [13] that Ων,l has these properties works also for Ω+
ν,l.

We turn now the comparison theorem for +1-hod pairs.

Definition 3.24. Let (P,Σ) be a +1-hod pair; then

(1) (P,Σ) iterates strictly past (Q,Λ) iff there is a 1-maximal, λ-separated tree T on (P,Σ) with

last pair (R,Ψ) such that either (Q,Λ) � (R,Ψ), or P -to-R has a large drop and (Q,Λ) =

(R,Ψ).

(2) (P,Σ) iterates to (Q,Λ) iff there is a 1-maximal, λ-separated tree T on (P,Σ) with last pair

(Q,Λ) and such that P -to-Q does not have a large drop.

⊣

In case (1), (Q,Λ) must be an ordinary lbr hod pair, and in case (2) it must be a 1-hod pair.

In both cases, the 1-maximal tree T is uniquely determined by (P,Σ) and (Q,Λ).

Definition 3.25. (P,Σ) be a +1-hod pair. We say that a coarse strategy pair ((N∗,∈, w,F ,Ψ),Ψ∗)

captures (P,Σ) iff there is an inductive-like pointclass Γ with the scale property such that Code(Σ) ∈
∆Γ, and for δ∗ = δ(w),

(i) N∗ ⊨ “δ∗ is Woodin”, and
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(ii) P ∈ HCN
∗
, and there is a Coll(ω, δ∗)-term τ and a universal Γ-set U such that if i : N∗ → S

is via Σ∗ and g ⊆ Col(ω, i(δ∗)) is S-generic, then i(τ)g = U ∩ S[g].

⊣

Theorem 3.26. (AD+) Let (P0,Σ0) be a +1-hod pair, let ((N∗,∈, w,F ,Ψ),Ψ∗) be a coarse strategy

pair that captures (P0,Σ0), and let C be the maximal least branch (w,F ,Ψ)-construction of (N∗,∈
, w,F ,Ψ); then there is a ⟨θ, n⟩ <lex ⟨δ∗, 0⟩ such that

(1) for all ⟨ν, k⟩ <lex ⟨θ, n⟩, (P0,Σ0) iterates strictly past (Mν,k,Ων,k), and

(2) (P0,Σ0) iterates to (Mθ,n,Ω
+
θ,n).

Proof. (Sketch.) The proof is very close to that of [13, Theorem 9.5.2], so we shall just give an

outline.

Let ⟨θ, n⟩ be lex least such that (P0,Σ0) does not iterate strictly past (Mθ,n,Ωθ,n). For ⟨ν, k⟩ <lex

⟨θ, n⟩, let

W∗
ν,k = λ-separated tree whereby (P0,Σ0) iterates strictly past (Mν,k,Ων,k).

Let

(M,Ω,Ω+) = (Mθ,n,Ωθ,n,Ω
+
θ,n),

and let T be the tree on (P0,Σ0) formed by iterating away least extender disagreements with M ,

as follows. We assume by induction

Induction hypothesis (†)α.

If the current last pair of T is (Q,Λ) = (MT
α ,Σ

T
α ), then

(1) (M is passive in extender disagreements) if E is on theM -sequence andM ||lh(E) = Q||lh(E),

then M |lh(E) = Q|lh(E).

(2) (No strategy disagreements) if S �Q and S �M , then

(a) if S �M , then S �Q and ΛS = ΩS , and

(b) if S =M , then S = Q, α is a +1-node of T , and Λ = Ω+.

Note that (2)(a) implies that Q is not a proper initial segment of M .

If (†)α is false, then we stop the construction of T , and say that T fails at α. Let us assume

that T never fails, and finish the proof.

Claim 3.27. If (†)α holds, then either

(i) α is a +1-node of T , Q =M , and Λ = Ω+, or
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(ii) there is an extender E on the Q-sequence such that (Q,Λ)||lh(E) = (M,Ω)||lh(E) butM |lh(E)

is passive.

Proof. Suppose that (ii) fails. Then by (†)α(1), Q �M or M � Q. By (2)(a) then (with S = Q),

M �Q. But then (2)(b) with S =M implies that (i) holds.

If 3.27(i) holds, then (P0,Σ0) has iterated to (M,Ω+), as desired. In this case we again stop

the construction, and say that T succeeds at α. Assume now that T neither fails nor succeeds

at α, and let E be the unique extender on the Q-sequence such that Q||lh(E) = M ||lh(E) but

Q|lh(E) ̸=M |lh(E). We set

ET
α = E+

and continue constructing T . At limit steps we use Σ0 to choose a branch, as a tree on (P0,Σ0)

must do.

The lengths of the ET
α are strictly increasing, so if T never fails, then eventually it must succeed,

that is, we must reach α such that (†)α holds and part (i) of Claim 3.27 holds. This means that

(P0,Σ0) has iterated to (M,Ω+), as desired.

For ⟨ν, k⟩ <lex ⟨θ, n⟩, let

W∗
ν,k = 1-maximal λ-separated tree whereby (P0,Σ0) iterates strictly past (Mν,k,Ων,k).

Let us check that the lemma of [13, Section 8.3] on realizing resurrection embeddings as branch

embeddings holds for the new W ∗
ν,k. Fix ⟨ν, k⟩ <lex ⟨θ, n⟩ for a while, and suppose that Mν,k is not

sound. Let ξ1 = lh(W∗
ν,k).

By definition, M
W∗

ν,k

ξ1
� Mν,k, so since Mν,k is not sound, M

W∗
ν,k

ξ1
= Mν,k. (P0,Σ0) iterates

strictly past (Mν,k,Ων,k), so [0, ξ1]W ∗
ν,k

has a large drop. Let

η0 = largest γ in [0, ξ1]W∗
ν,k

∩DW∗
ν,k ,

η =W ∗
ν,k-pred(η0),

i∗ = i
W∗

ν,k

η0,ξ1
◦ i∗η0 ,

and

R = dom(i∗) = M
∗,W∗

ν,k
η0 .

R is the proper initial segment of M
W∗

ν,k
η that lies on the branch from η to ξ1. R has degree k, and

it is sound because the drop at η0 is a large one. Thus

R+ = Ck+1(R) = Ck+1(Mν,k) =Mν,k+1,
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and i∗ is the anticore map. Let ρ = ρ(Mν,k).

Claim 3.28. ρ < lh(E
W∗

ν,k
η ), and for all τ < η, lh(E

W∗
ν,k

τ ) ≤ ρ.

Proof. We have ρ ≤ crt(i∗) < lh(E
W∗

ν,k
η ). Suppose toward contradiction that τ < η and ρ <

lh(E
W∗

ν,k
τ ). We can then find such τ with τ +1 <W ∗

ν,k
η. But this implies that whenever S�M

W∗
ν,k

η

with o(S) ≥ lh(E
W∗

ν,k
τ ), then lh(E

W∗
ν,k

τ ) ≤ ρ(S). Since ρ(R) = ρ, we have a contradiction.

Sublemma 8.3.1.1 of [13] goes over verbatim when ⟨ν, k + 1⟩ <lex ⟨θ, n⟩:

Lemma 3.29. Let ⟨ν, k+1⟩ <lex ⟨θ, n⟩, and suppose that Mν,k is not sound. Let π : M−
ν,k+1 →Mν,k

be the anticore map. Let ξ = lh(W∗
ν,k), let η, η0, R be as above, and let i∗ : R → M

W∗
ν,k

ξ = Mν,k be

the branch embedding of W∗
ν,k as above; then

(a) R+ =Mν,k+1 and i∗ = π.

(b) η is the least γ such that lh(E
W∗

ν,k
γ ) > ρ(Mν,k).

(c) W∗
ν,k+1 = W∗

ν,k↾η + 1,

Proof. We have already shown (a) and (b), and (c) follows at once.

As a result, Lemma 8.3.1 goes over verbatim for resurrections from some ⟨ν, k⟩ <lex ⟨θ, n⟩:

Corollary 3.30. Let ⟨ν, k⟩ <lex ⟨θ, n⟩, P �Mν,k,

η = least ξ such that P �M
W∗

ν,k

ξ ,

and

Mµ,j = Resν,k[P ];

then

W∗
ν,k↾(η + 1) = W∗

µ,j↾(η + 1),

W∗
µ,j has last model Mµ,j, and for ξ = lh(W∗

µ,j), we have η <W ∗
µ,j
ξ, and

σµ,j [P ] = î
W∗

µ,j

η,ξ .

Proof. The proof of [13, Lemma 8.3.1] also goes over verbatim.37

We can now finish the proof of the theorem in the case n > 0.

37The fact that W∗
ν,k is λ-separated plays a role in the proof.
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Claim 3.31. If n > 0, then T succeeds at some α.

Proof. Let n = k + 1, and suppose toward contradiction that T fails at α. Let

(Q,Λ) = (MT
α ,Σ

T
α ),

and let

(N,Ψ) = (M
W ∗

θ,k

ξ ,Σ
W∗

θ,k

ξ )

be the last pair in W ∗
θ,k.

Suppose first that Mθ,k is sound. Since

Mθ,k+1 =M+
θ,k

(i.e. they are the same as bare premice), T ↾α + 1 = W∗
ν,k↾α + 1. But W ∗

ν,k never failed, so

clearly T does not fail at α for the “bad extender disagreement” reason; i.e. (†)α(1) holds. We

verify (†)α(2), i.e. that there is no strategy disagreement between Λ and Ωθ,k+1, and in fact

(Q,Λ) = (Mθ,k+1,Ω
+
θ,k+1).

Let S �Q and S �Mθ,k+1. If S �Mθ,k+1 then S �Mθ,k and

(Ωθ,k)S = (Ωθ,k+1)S .

Since P0 iterated strictly past Mθ,k, either S �N or S = N and [0, ξ]W ∗
θ,k

has a large drop. In the

latter case Mθ,k is not sound, contradiction. So S �N , and thus

(Ωθ,k+1)S = (Ωθ,k)S

= ΨS

= (Σ
W ∗

θ,k
α )S

= (ΣT
α )S ,

which verifies (†)α(2) when S �Mθ,k+1. Line 3 holds by strategy coherence.

Suppose next that S =Mθ,k+1.

Subclaim 3.32. If S =Mθ,k+1 �Q or [0, α]T has a large drop, then Ωθ,k+1 = ΛS.

Proof. The strategy comparison proof of [13, Theorem 8.4.3] works here pretty much word-for-

word.

Subclaim 3.33. If S =Mθ,k+1, then S = Q and [0, α]T has no large drops.

Proof. Otherwise (P0,Σ0) iterates strictly past (Mθ,n,Ωθ,n) by Subclaim 3.32.
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Subclaim 3.34. If S =Mθ,k+1 = Q and [0, α]T has no large drops, then Ω+
θ,k+1 = Λ.

Proof. The strategy comparison proof of [13, Theorem 8.4.3] works pretty much word-for-word.

Putting the subclaims together, we see that (P0,Σ0) iterates to (Mθ,k+1,Ω
+
θ,k+1) in the case

that Mθ,k is sound.

So we assume that Mθ,k is not sound. We adopt our previous notation, with θ = ν. That is,

η0 = largest γ in [0, ξ1]W ∗
θ,k

∩DW ∗
θ,k ,

η =W ∗
θ,k-pred(η0),

i∗ = i
W∗

θ,k

η0,ξ1
◦ i∗η0 ,

and

R = dom(i∗) = M
∗,W ∗

θ,k
η0 .

R is the proper initial segment of M
W∗

θ,k
η that lies on the branch from η to ξ1. R has degree k, and

it is sound because the drop at η0 is a large one. Thus

R+ = Ck+1(R) = Ck+1(Mθ,k) =Mθ,k+1,

and i∗ is the anticore map.

Let ρ = ρk+1(M). By 3.28, η is least such that lh(E
W∗

θ,k
η ) > ρ, so

T ↾η + 1 = W∗
θ,k↾η + 1.

Note that

(Ωθ,k+1)R = (Ωθ,k)
i∗

(by Lemma 3.19)

= ((Σ
W∗

θ,k

ξ1
)Mθ,k

)i
∗

( because W∗
θ,k iterates (P0,Σ0) strictly past (Mθ,k,Ωθ,k))

= (Σ
W∗

θ,k
η )R

( by pullback consistency of Σ0)

= (ΣT
η )R.
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Now we proceed as we did when Mθ,k was sound.

Subclaim 3.35. If R+ �MT
η or [0, η]T has a large drop, then Ωθ,k+1 = (ΣT

η )R+.

Proof. The strategy comparison proof of [13, Theorem 8.4.3] works.

Subclaim 3.36. R+ = MT
η and [0, η]T has no large drops.

Proof. Otherwise (P0,Σ0) iterates strictly past (Mθ,k+1,Ωθ,k+1) by Subclaim 3.35.

Subclaim 3.37. If R+ = MT
η and [0, η]T has no large drops, then Ω+

θ,k+1 = ΣT
η .

Proof. The strategy comparison proof of [13, Theorem 8.4.3] works.

Putting these subclaims together, we see that (P0,Σ0) iterates to (Mθ,k+1,Ω
+
θ,k+1) in the case

that Mθ,k is unsound.

This completes the proof of Claim 3.31.

Now let us prove (†) for T in the case n = 0.

Claim 3.38. If n = 0, then T succeeds at some α.

Proof. We cannot have a strategy disagreement involving an S �Mθ,−1. For if ⟨ν, k⟩ <lex ⟨θ, 0⟩ is
sufficiently large, then S �Mν,k and (Ωθ,−1)S = (Ων,k)S , so this would mean that (P0,Σ0) did not

iterate strictly past (Mν,k,Ων,k).
38 Similarly, we cannot have a bad extender disagreement involving

some E on the Mθ,0-sequence other than its last extender.

Thus we can fix η least such thatMθ,−1�MT
η , and we have (Ωθ,−1)S = (ΣT

η )S for all S�Mθ,−1.

Subclaim 3.39. Ωθ,−1 = (ΣT
η )Mθ,−1

.

Proof. By the proof of [13, 8.4.3].

Subclaim 3.40. If the last extender E of Mθ,0 is nonempty, then E is on the sequence of MT
η .

Proof. Let E∗ be the background extender BC(E). The usual proof39 shows that E is an initial

segment of the branch extender of [κE , iE∗(κE)) in iE∗(T ), so E+ is used in iE∗(T ), so E is on the

MT
η -sequence, a contradiction.40

By 3.39 and 3.40, Mθ,0 �MT
η .

Subclaim 3.41. If Mθ,0 �MT
η or [0, η]T has a large drop, then Ωθ,0 = (ΣT

η )Mθ,0
.

Proof. The strategy comparison proof of [13, Theorem 8.4.3] works.

38Mθ,−1 is Mθ,0 with its last extender, if nonempty, being removed. It is the “lim inf” of the Mν,k for ⟨ν, k⟩ <lex

⟨θ, 0⟩. Its strategy provided by C is Ωθ,−1.
39Cf. [13, 8.1.12].
40This argument gives a different proof that if Mθ,0 is active, then Ωθ,−1 = (ΣT

η )Mθ,−1 . We simply go to iE∗(V ),
use the strategy agreement we have there, and then pull it back to V by strategy coherence.
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Subclaim 3.42. Mθ,0 = MT
η and [0, η]T has no large drops.

Proof. Otherwise (P0,Σ0) iterates strictly past (Mθ,0,Ωθ,0) by Subclaim 3.41.

Subclaim 3.43. If Mθ,0 = MT
η and [0, η]T has no large drops, then Ω+

θ,0 = ΣT
η .

Proof. The strategy comparison proof of [13, Theorem 8.4.3] works.

These subclaims complete the proof of Claim 3.38.

This in turn completes the proof of Theorem 3.26.

3.4. The sound case

In the case that deg(P ) > 0, Theorem 3.26 implies the statement of (∗)(P,Σ) that was proved in

[13] in the case that P has stable type 1.

For suppose (P,Σ) has stable type 1 and deg(P ) = k + 1. Then (P−,Σ) is a +1-hod pair of

degree k. Letting N∗,C, etc. be as in the statement of (∗)(P,Σ) in [13], Theorem 3.26 gives us a

pair (Mν,k,Ων,k) such that

(i) (P−,Σ) iterates to (Mν,k,Ω
+
ν,k), and

(ii) (P−,Σ) iterates strictly past (Mη,j ,Ωη,j) whenever ⟨η, j⟩ <lex ⟨ν, k⟩.

The iterations here are by 1-maximal trees on (P−,Σ), which are the same as ordinary (“0-

maximal”) trees on (P,Σ). The iterations in (ii) witness that (P,Σ) iterates strictly past (Mη,j ,Ωη,j)

whenever ⟨η, j⟩ <lex ⟨ν, k⟩.
Let T be the 1-maximal tree that witnesses that (P−,Σ) iterates to (Mν,k,Ω

+
ν,k), ξ + 1 be its

length. If Mν,k is sound, then (Mν,k+1,Ων,k+1) = (M+
ν,k,Ω

+
ν,k), so T (regarded as 0-maximal on

(P,Σ)) witnesses that (P,Σ) iterates to (Mν,k+1,Ων,k+1).

So suppose that Mν,k is not sound. Let β <T ξ be largest such that MT
β is k + 1-sound. Since

P has stable type 1, β is the largest +1-node on [0, ξ]T .(This is where we use that fact.) Letting

β0 ≤T ξ be such that T -pred(β0) = β, T must have a small drop at β0, and no further drops in

(β0, ξ]T . So setting

i∗ = iTβ0,ξ ◦ i
T
0,β0

and

R = dom(i∗)

we get that R+ =Mν,k+1 and i∗ is the anticore map. Moreover

R+ = MT
β
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because the drop at β0 was small. We then have

Ων,k+1 = (Ω+
ν,k)

i∗

= (ΣT
ξ )

i∗

= (ΣT
β ),

by Lemma 3.19 and pullback consistency. This means that (P,Σ) iterates to (Mν,k+1,Ων,k+1) in

the sense required by (∗)(P,Σ).

3.5. The almost sound case

Now suppose (P,Σ) is not of stable type 1, i.e., it is either of type 2, or of type 1B and not projectum

stable. This implies deg(P ) > 0; so say deg(P ) = k + 1. Again (P−,Σ) is a +1-hod pair. Let

N∗,C, etc. be as in (∗)(P,Σ). Let (P−,Σ) iterate to (Mν,k,Ων,k) via the 1-maximal tree T with

length ξ + 1, as above.

If P has type 2, then P− is not sound, so Mν,k is not sound. If P has type 1B and ηPκ+1 is

measurable in P , then some total measure on the image of ηPk+1 is used in [0, ξ)T , producing a type

2 ultrapower. So again Mν,k is unsound. In both cases, Mν,k has a measurable cardinal κ such that

ρk+1(Mν,k) < κ < ρk(Mν,k). Preimages of κ were hit in [0, ξ]T , so [0, ξ]T has a small drop.

Thus, letting β be the largest +1-node of T in [0, ξ]T , we have β < ξ. Let

i = iT0,β,

R = MT
β ,

and

i∗ = îTβ,ξ.

Here deg(R) = k. Since R = cHullR
k

1 (sup i“ρ1(P
k) ∪ {p1(R), ρ̂1(R)}) and sup i“ρ1(P

k) = ρ1(R
k),

R+ is of type 2. ΣT
β is a +1-iteration strategy for R, or equivalently an ordinary strategy for R+,

moreover

ΣT
β = (Ω+

ν,k)
i∗ .

(Mν,k+1,Ων,k+1) is the type 1 core of the type 2 pair (R+,ΣT
β ), in the following sense.

Definition 3.44. If Q is a pfs premouse, then we set

C(Q) =

Q if Q has type 1

Cdeg(Q)(Q) if Q has type 2.

We call C(Q) the type 1 core of Q. Q and C(Q) have the same degree. If Q has type 2, then C(Q)
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has type 1A, and we let D(Q) be the unique order zero measure on ρ̂(Q−) such that

Q− = Ult(C(Q)−, D(Q)).

The type 1 core of (Q,Λ) is (C(Q),Λi), where i = id if C(Q) = Q, and i = iD(Q) otherwise. ⊣

Remark 3.45. Notice that if (Q,Λ) is a type 2 lbr hod pair of degree k, then for i = iD(Q),

(C(Q),Λi) is a type 1 pair of degree k. Λi is defined on “level k” stacks because i is nearly

+1-elementary as a map from C(Q)− to Q−. ⊣

Claim 3.46. (Mν,k+1,Ων,k+1) is the type 1 core of (R+,ΣT
β ).

Proof. We have that k = deg(R), and i∗ is nearly +1-elementary as a map from R to Mν,k. It

follows that

Ck+1(R) = Ck+1(Mν,k) =Mν,k+1.

Moreover, letting D = D(R) and π : Mν,k+1 →Mν,k be the anticore map, we have the diagram

R+ Mν,k

Mν,k+1

i∗

iD π

But then

Ων,k+1 = (Ω+
ν,k)

π

= (Ω+
ν,k)

i∗◦iD

= (ΣT
β )

iD ,

as required.

We extend the mouse order to type 2 pairs by regarding (Q,Λ) as being equivalent to its type

1 core. That is,

Definition 3.47. Let (Q,Λ) and (R,Ω) be mouse pairs with type 1 cores (Q0,Λ0) and (R0,Ω0)

respectively; then (Q,Λ) ≤∗ (R,Ω) iff (Q0,Λ0) ≤∗ (R0,Λ0). ⊣

3.6. Generating type 2 pairs

We show that any type 2 pair (Q,Λ) can be recovered from its type 1 core (C(Q),Ω). Of course,

Q can be recovered from C(Q) by taking an ultrapower, the question is how to recover Λ from Ω.

The tail strategy Ω⟨D(Q)⟩ is a strategy for Q−, not Q. But we can apply the strategy extension

method41 to Ω to obtain a strategy for Q, and this strategy works out to be Λ.

We aren’t going to use the result in this subsection later, so we shall omit some details.

41See [9] and [13, 7.3.11].
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Definition 3.48. Suppose that (M,Ω) is an lbr hod pair of type 1A and degree k + 1, and D is

the order zero measure of M on κ, where ρk+1(M) < κ < ρk(M). Suppose also that cofMk+1(κ) <

ρk+1(M). Let

Q+ = (Ult(M−, D), k + 1),

and for U a λ-separated tree on Q+ of limit length, let

Ω+
⟨D⟩(U) = b iff V (⟨D⟩,U⌢b) is by Ω;

then we call (Q+,Ω+
⟨D⟩) the type 2 pair generated by (M,Ω) and D. ⊣

Lemma 3.49. Let (Q,Λ) be a type 2 pair, and let (M,Ω) be its type 1 core; then (Q,Λ) is the type

2 pair generated by (M,Ω) and D(Q).

Proof. Let k + 1 = deg(Q), and let Qk = Ult0(M
k, D) where D = D(Q) is the order zero measure

of Mk on ρ̂k(Q). Let

π = iM
−

D .

In order to see that (Q,Λ) is the type 2 pair generated by (M,Ω) and D, we must show that

Λ = Ω+
⟨D⟩. Letting U be a plus tree on Q, the relevant diagram is

Q R S

M Q N

τUτ

π τ

π U

Here τ is the copy map, or what is the same, the canonical embedding from Q to Ult(Q−, π(D)).

Since τ is nearly +1-elementary as a map on Q it can be used to lift U . We then calculate

U is by Ω+
⟨D⟩(U) iff V (⟨D⟩,U) is by Ω

iff πV (⟨D⟩,U) is by Λ

iff V (⟨π(D)⟩, τU) is by Λ

iff ⟨π(D)⟩, τU⟩ is by Λ

iff U is by Λ.

Line 3 holds because quasi-normalizing commutes with lifting, line 4 holds because Λ quasi-

normalizes well, and line 5 holds because Λ is pullback consistent.

4. CONDENSATION LEMMA

The main theorem of this section is Theorem 4.6. This theorem will be used in the □-construction,

but it is more general than is necessary for that application. Its full generality is used in [9].
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Our theorem extends Theorem 9.3.2 of [16], which deals with condensation under π : H → M

for pure extender mice H andM . That theorem breaks naturally into two cases: either (1) H /∈M ,

in which case H is the crt(π)-core of M , or (2) H ∈M , in which case H is a proper initial segment

of either M or an ultrapower of M . The proof in case (1) works for least branch hod mice without

much change, so we begin with that case.

Definition 4.1. Let M be an lpm or a pure extender premouse, and n ≤ deg(M); then

(a) h̃n+1
M is the completion of h1

M̂n
, the Σ1-Skolem function of M̂n. We write h̃M for h̃

deg(M)+1
M .

So dom(h̃M ) ⊆M .42

(b) Let ρ(M) ≤ α and r = p(M) − α, and suppose that r is solid. Let π : H → M with H

transitive be such that ran(π) = h̃M“(α ∪ r), and suppose that π−1(r) is solid over H. Then

we call H the α-core of M , and write H = coreα(M). In addition, if (M,Σ) is a mouse pair,

then the α-core of (M,Σ) is (H,Λ), where H = coreα(M) and Λ = Σπ and π is the anticore

map.

(c) M is α-sound iff M = coreα(M).

⊣

We note that core(M) = Cdeg(M)+1(M) is the ρ(M)+1-core of M . According to this definition,

if M is α-sound, then ρ(M) ≤ α. So M could be sound, but not α-sound because α < ρ(M), which

might be confusing at first.

Remark 4.2. Let H be the α-core of M , as witnessed by π. We have p(M) ⊆ ran(π), so the new

Σdeg(M)+1 subset of ρ(M) is Σdeg(M)+1 over H. Thus ρ(H) = ρ(M) and π(p(H)) = p(M), and

H /∈M .

One also gets that if both H,M are of type 1, then H is of type 1A iff M is of type 1A.

One might guess that P (α)M ⊆ H, but this need not be the case, as the following example

shows. Let N be sound, and let M = Ult(N,E), where ρ(N) ≤ κ = crt(E), and E has one

additional generator α. Let H = Ult(N,E↾α), and let π : H → M be the factor map. Clearly, π

witnesses that H is the α-core of M . But α = (κ++)H < (κ++)M , so H doesn’t even have all the

bounded subsets of α that are in M . ⊣

Theorem 4.3 (AD+). Suppose (M,Σ) is a lbr hod pair with scope HC. Suppose H and M are both

type 1 premice, π : H → M is nontrivial43, and letting n = deg(M) = deg(H) and α = crt(π),44

α < ρn(M). Suppose also

(1) H is α-sound,

(2) π is nearly elementary, and

42See [13, Definition 2.3.9].
43π is trivial iff H = M and π is the identity.
44Here we allow α to be o(H) and π to be the identity.
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(3) H is an lpm of the same kind as M45, and

(4) H /∈M .

Then H is the α-core of M .

Proof. Let r = p(H)− α.

T = ThH
n

1 (α ∪ r),

so that T codes H. T is sometimes denoted by ThHn+1(α ∪ r).
Suppose first that π ↾ Hn is not cofinal. We have that T is Σ1 over Hn, and hence T is Σ1

over some proper initial segment of Mn, so that T ∈ Mn. If n > 0, then M |ρn(M) ⊨ KP and

T ∈ M |ρn(M), so H ∈ M . If n = 0 and H is fully passive, then we have π : H → M |η for some

η < o(M), and ran(π) in M . Any premouse is closed under transitive collapse, so we again get

H ∈ M . If n = 0 and H is extender-active, then letting H− = H||o(H), we get H− ∈ M by the

argument just given. However, ḞH can be computed from the fragment ḞM ↾ supπ“o(H) and π

inside M , so H ∈M . The case that n = 0 and H is branch-active can be handled similarly, noting

that the proper initial segments of bM are in M .

So we may assume π ↾ Hn is cofinal Σ0, and hence Σ1 elementary. We then get that π(ηHn ) = ηMn .

We claim that ρ(M) ≤ α. For if not, T is a bounded subset of ρ(M) that is Σ1 over Mn. Thus

T ∈M |ρ(M), so H ∈M .

Suppose r = ∅. If γ ∈ (p(M) − α), then T can be computed easily from the solidity witness

WM
r,γ ,

46 so T in M , and with a bit more work, H ∈ M . So we have p(M) − α = ∅, which implies

that H is the α-core of M , as witnessed by π.

Suppose next that r = ⟨β0, ..., βl⟩, and p(M)− α = ⟨γ0, ..., γm⟩, where βi > βi+1 and γi > γi+1

for all i. We show by induction on i ≤ l that i ≤ m and π(βi) = γi. Suppose we know it for

i ≤ k < l. Let W = WH
r,βk+1

be the solidity witness for βk+1 in H. Since π ↾ Hn is Σ1 elementary,

π(W ) can be used to compute ThMn+1(π(βk+1)∪{γ0, ..., γk}) inside M . But ρ(M) < π(βk+1), so we

must have k < m. Similarly, γk+1 < π(βk+1) is impossible, as otherwise π(W ) could be used in M

to compute the Σn+1 theory of p(M) ∪ ρ(M). On the other hand, if π(βk+1) < γk+1, then using

the solidity witness WM
p(M),γk+1

for γk+1 in M , we get H ∈M .

It follows that π(r) = p(M)− α, and thus H is the α0-core of M .

Remark 4.4. In the case H is the core of M , we can also get agreement of Σ and Σπ up to

(ρ+)H = (ρ+)M . See [13, Corollary 9.6.6]. It may be possible to prove strategy condensation in

the other cases, but we have not tried to do that.

An analog of the above theorem can be stated and proved for type 2 premice. ⊣
45This means: H is passive if and only if M is passive; H is B-active if and only if M is B-active; and H is

E-active if and only if M is E-active; in the third case, ḞH is of type A (B, C) if and only if ḞM is of type A (B, C
respectively). All but the last clause are implicit in (2).

46Here recall that Wr,γ is the transitive collapse of HullM
n

1 (γ ∪ {r − {γ}}).
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Next we deal with condensation under π : H →M in the case H ∈M .47 We shall actually prove

a stronger result, one that includes condensation for iteration strategies as well as condensation for

the mice themselves.

The following is an easy case of condensation for pairs.

Lemma 4.5 (AD+). Let (M,Σ) be a mouse pair with scope HC, and let π : (H,Ψ) → (M,Σ) be

elementary, with π = identity; then either (H,Ψ) � (M,Σ), or (H,Ψ) � Ult((M,Σ), EMα ), where

α = o(H).

Proof. Suppose first H is extender-active. Let F = ḞH and G = ḞM , and let κ = crt(F ). So

κ+,H = κ+,M < o(H), and iHF “κ
+,H = iMG “κ+,M . Thus ran(π) is cofinal in o(M), which implies

(H,Ψ) = (M,Σ).

Next, suppose thatH is branch active.48 Since π is the identity, η = ηH = ηM and s = sH = sM .

Let T = T (s), and let ν = νH , so that o(H) = η + ν. Because π preserves ḂH , bH = bM ∩ ν.
But bM ∩ ν = bM |o(H) because M is an lpm, so H = M . We get Σπ = Σl(H) from the internal-lift

consistency of (M,Σ), so (H,Ψ)� (M,Σ).

Finally, suppose thatH is fully passive. Clearly,M ||ô(H) is branch-passive, and thusM ||ô(H) =

H. Using internal-lift consistency for (M,Σ), we get (H,Ψ)� (M,Σ), unless M |ô(H) is extender-

active. In that case we get (H,Ψ) � Ult(M,EMα ), where α = ô(H), using internal-lift consistency

and strategy coherence.

Our main condensation theorem for mouse pairs is:

Theorem 4.6 (AD+). Suppose (M,Σ) is a mouse pair with scope HC. Suppose π : (H,Ψ) → (M,Σ)

is nearly elementary, and not the identity. Let α = crt(π), and suppose

(1) ρ(H) ≤ α < ρ−(H), and H is α-sound, and

(2) H is a premouse of the same kind as M , deg(H) = deg(M), both H and M are solid pfs

premice, and

(3) H ∈M .

Let (H0,Ψ0) be the type 1 core of (H,Ψ); then exactly one of the following holds.

(a) (H0,Ψ0)� (M,Σ),

(b) (H0,Ψ0)�Ult0((M,Σ), ĖMα ).

See Footnote 45 for the definition of “same kind”. It does not mean “same type”; we are leaving

open the possibility that one of H and M has type 1, while the other has type 2. Note that if

ρ(H) < α, then conclusion (b) is impossible.

47If π : H → M is elementary, α = crt(π), H is α-sound, and α < ρ(M), then H ∈ M . This is the case with the
coarser condensation results of [13, 5.55] and [1, 8.2], where α = ρ(H) and π(α) = ρ(M).

48Of course, this only applies when M is an lpm. In general, our proofs for pure extender pairs are special cases of
the proofs for lbr hod pairs, so it doesn’t hurt to assume our mouse pair is an lbr hod pair.
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When one applies Theorem 4.6 in the proof of □κ in pfs mice, then M has type 1, and one can

arrange that H has type 1 as well, so that (H0,Ψ0) = (H,Ψ). One also has that H ∈ M . In that

proof, ρ(H) = ρ(M) = κ, and α = (κ+)H , and both H and M are sound. Since ρ(H) < α, (b)

does not hold. So one gets conclusion (a), that (H,Ψ)� (M,Σ). In the square proof, what matters

then is just that H �M ; the full external strategy agreement given by Σπ = ΣH is not used.

In the applications of 4.6 to full normalization and positionality in [9], one must consider the

case that H and M have different types, and both alternatives in the conclusion are needed.

Remark 4.7. It follows from the theorem that the hypothesis α < ρdeg(H)(H) can be dropped, if

one omits condensation of the external strategy from its conclusion. See 4.14 below. ⊣

By condition (3) and Theorem 4.3 (and the remark after), H is not an α-core of M . If H is

α-sound and is not the α-core of M , then by 4.3, H ∈M .

Notice that one of the alternatives in the conclusion of [16, Theorem 9.3.2] does not occur here.

The alternative that (H,Ψ) � Ult0((M |ξ,Σ), E) where ρ(M |ξ) = µ is the predecessor of α in M

and E is an extender on the sequence of M with critical point µ cannot occur here because M is

projectum solid.

A relatively coarse special case of Theorem 4.6 is sketched in [13, Theorem 5.55]. In that case,

π is assumed to be fully elementary and crt(π) = ρ(H).

Proof of Theorem 4.6. Let π : (H,Ψ) → (M,Σ) be nearly elementary, and let α0 = α = crt(π) and

deg(H) = deg(M) = k0. For definiteness, let us assume that H and M are least branch premice.

The proof in the case that they are pure extender mice is similar.4950

Definition 4.8. A tuple ⟨(N,Φ), (G,Λ), σ, ν⟩ is problematic iff

(1) (N,Φ) and (G,Λ) are of the same kind, with scope HC, and G ∈ N ,

(2) σ : (G,Λ) → (N,Φ) is nearly elementary, with crt(σ) = ν,

(3) ρ(G) ≤ ν < ρdeg(G)(G) and G is ν-sound, deg(N) = deg(G), G,N are both solid pfs premice,

and

(4) letting (G0,Λ0) be the type 1 core of (G,Λ), both conclusions (a) and (b) of 4.6 fail for the

pair (G0,Λ0), (N,Φ); that is, it is not the case that (G0,Λ0)� (N,Φ), and it is not the case

that (G0,Λ0)�Ult0((N,Φ), Ė
N
ν ).

⊣
49Even in the pure extender case, one cannot simply quote 9.3.2 of [16], because we are demanding strategy

condensation.
50Under AD+, every countable ω1-iterable pure extender mouse M has an complete iteration strategy Σ such (M,Σ)

is a pure extender pair. Thus our theorems 4.3,4.5, and 4.6 together imply the version of 9.3.2 of [16] for pfs mice,
modulo some details about where the strategies live, and how elementary π is. See also Remark 4.7.
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Claim 1. Let ⟨(N,Φ), (G,Λ), σ, ν⟩ be a problematic tuple, and k = deg(G); then σ(ν) is a cardinal

of N , σ(ν) < ρk(N), and G ∈ N ||σ(ν).

Proof. By (3), ρk+1(G) ≤ ν < ρk(G), so σ(ν) < ρk(N). Since ν = crt(σ), it is a cardinal of G, so

σ(ν) is a cardinal of N . But G is ν-sound, so it is coded by a subset of ν in N , so G ∈ N ||σ(ν).
□

We must show that ⟨(M,Σ), (H,Ψ), π, α0⟩ is not problematic. Assume toward contradiction

that it is, and that (M,Σ) is minimal in the mouse order such that (M,Σ) is the first term in some

problematic tuple, and let k0 = deg(M).

We obtain a contradiction by comparing the phalanx (M,H,α0) with M , as usual. However,

since we are comparing strategies, this must be done indirectly, by iterating both into some suffi-

ciently strong background construction C. It can happen that at some point, the two sides agree

with each other (but not with C). This leads to a problem in the argument that the end model on

the phalanx side can’t be above M . The solution employed in [13] is to modify how the phalanx is

iterated, moving the whole phalanx (including its exchange ordinal) up at certain stages. Our main

new problem here is that because of the restricted elementarity of our maps, if we move up naively,

the new phalanx and associated embedding may not be problematic. This forces us to drop to a

new problematic phalanx on occasion.

Claim 2. Let ⟨(N,Φ), (G,Λ), σ, ν⟩ be a problematic tuple, and k = deg(G); then we can decompose

σ ↾ Ĝk as

σ ↾ Ĝk =
⋃

η<ρk(G)

ση,

where each ση belongs to N̂k.

Proof. Assume first k = 0 (so G,N are of type 1), and that ô(G) is a limit ordinal. For η < ô(G),

let Gη be G||η, expanded by Iη, where Iη is the appropriate fragment of ḞG if G is extender active,

the appropriate initial segment of ḂG if G is branch active, and Iη = ∅ otherwise . Let Nη be

N ||σ(η), expanded by σ(Iη). Let s = p1(G)\ν and ση be the fragment of σ given by

dom(ση) = h1Gη“(ν ∪ s),

and

ση(h1Gη(δ, s)) = h1
Nσ(η)(δ, σ(s)),

for δ < ν. We have that ση ∈ N , and σ =
⋃
η<ô(G) σ

η. If ô(G) is a successor ordinal, we can ramify

using the S-hierarchy.

The case k > 0 is similar. We have Ĝk = (G||ρk(G), A) where A = ÂkG. For η ≤ ρk(G), let

Gη = (G||η,A ∩G||η) = Ĝk||η.
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Let s = p1(Ĝ
k)\ν, and let h1

Ĝk
be the Σ1 Skolem function, so that Ĝk = h1

Ĝk
“(ν∪s). For η < ρk(G),

dom(ση) = h1Gη“(ν ∪ s),

and for γ < ν in dom(ση),

ση(h1Gη(γ, s)) = h1
N̂k||σ(η)(γ, σ(s)).

It is easy to see that this works. □

We call ⟨(ση, Gη) | ν ≤ η < ρk(G)⟩ as above the natural decomposition of σ ↾ Ĝk.

Using claim 2, we can move a problematic tuple ⟨(N,Φ), (G,Λ), σ, ν⟩ up via an iteration map

that is continuous at ρk(G). When the iteration map is discontinuous at ρk(G), we may have to

drop.

Definition 4.9. Let Φ = ⟨(N,Φ), (G,Λ), σ, ν⟩ be a problematic tuple; then Φ is extender-active iff

ENν ̸= ∅. ⊣

When we move up extender-active tuples, the new exchange ordinal is always the image of the

old one, so the new tuple is still extender-active.

Claim 3. Let ⟨(N,Φ), (G,Λ), σ, ν⟩ be problematic, and suppose that (N,Φ) ≤∗ (M,Σ); then there

is no proper initial segment (Q,Ω) of (G,Λ) such that ν = ρ(Q) and either

(i) ENν = ∅, and (Q,Ω) is not an initial segment of (N,Φ), or

(ii) ENν ̸= ∅, and (Q,Ω) is not a proper initial segment of Ult((N,Φ), ENν ).

Proof. This follows from the minimality of (M,Σ) in the mouse order. For if (Q,Ω) is a coun-

terexample, then letting (R,Γ) � (N,Φ) be such that R = σ(Q), we have that (R,Γ) <∗ (M,Σ),

and ⟨(R,Γ), (Q,ΛQ), σ ↾ Q, ν⟩ is problematic. We note that since Q�G, Q is of type 1 and hence

C(Q) = Q.

□

So under the hypotheses of claim 3, (N,Φ) agrees with (G,Λ) strictly below ν+,G.

We are ready now to enter the phalanx comparison argument of [13]. Fix a coarse strategy pair

((N∗,∈, w,F ,Ψ),Ψ∗) that captures Σ, and let C be the maximal (w,F) construction, with models

Mν,l and induced strategies Ων,l. Let δ
∗ = δ(w). By Theorem 3.26, (∗)(M,Σ) holds, so we can fix

⟨η0, k0⟩ lex least such that either

(i) (M,Σ) iterates to (Mη0,k0 ,Ωη0,k0), or

(ii) (M,Σ) iterates to some type 2 pair generated by (Mη0,k0 ,Ωη0,k0).

As we showed in §3, alternative (i) occurs if M has stable type 1, and alternative (ii) occurs

otherwise. Let Uη0,k0 be the λ-separated tree on (P0,Σ0) that witnesses this. For ⟨ν, l⟩ <lex ⟨ν0, k0⟩
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let Uν,l be the unique λ-separated tree onM witnessing that (M,Σ) iterates strictly past (Mµ,l,Ων,l).
51

We define λ-separated trees Sν,l on (M,H,α0) for certain (ν, l) ≤ (η0, k0). Fix (ν, l) ≤ (η0, k0)

for now, and assume Sν′,l′ is defined whenever (ν ′, l′) < (ν, l). Let U = Uν,l, and for τ < lh(U), let

ΣU
τ = ΣU↾(τ+1)

be the tail strategy for MU
τ induced by Σ. We proceed to define S = Sν,l, by comparing the phalanx

(M,H,α0) with Mν,l. As we define S, we lift S to a padded tree T on M, by copying. Let us write

ΣT
θ = ΣT ↾(θ+1)

for the tail strategy for MT
θ induced by Σ. For θ < lh(S), we will have copy map

πθ : MS
θ → MT

θ .

The map πθ is nearly elementary. We attach the complete strategy

Λθ = (ΣT
θ )

πθ

to MS
θ . We also define a non-decreasing sequence of ordinals λθ = λSθ that measure agreement

between models of S, and tell us which model we should apply the next extender to.

The following claim will be useful in pushing up problematic tuples.

Claim 4. Suppose ξ <S θ and (ξ, θ]S does not drop; then Λξ = Λ
iSξ,θ
θ .

Proof. Because Σ is pullback consistent, we have ΣT
ξ = (ΣT

θ )
iTξ,θ . But then

Λξ = (ΣT
ξ )

πξ

= (ΣT
θ )

iTξ,θ◦πξ

= (ΣT
θ )

πθ◦iSξ,θ

= Λ
iSξ,θ
θ ,

as desired. □

We start with

MS
0 =M,MS

1 = H,λ0 = α0,

and

MT
0 = MT

1 =M,π0 = id, π1 = π,

51We can work in N∗ from now on, and interpret these statements there. But in fact, the strategies Ων,l are induced
by Σ∗ in a way that guarantees they extend to Σ∗-induced strategies Ω∗

ν,l defined on all of HC. Uν,l iterates (M,Σ)
past (Mν,l,Ω

∗
ν,l) in V .
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and

Λ0 = Σ, Λ1 = Σπ1 .

We say that 0, 1 are distinct roots of S. We say that 0 is unstable, and 1 is stable52. As we

proceed, we shall declare additional nodes θ of S to be unstable. We do so because (MS
θ ,Λθ) =

(MU
γ ,Σ

U
γ ) for some γ53, and when we do so, we shall immediately define MS

θ+1, as well as σθ and

αθ such that

Φθ =df ⟨(M
S
θ ,Λθ), (MS

θ+1,Λθ+1), σθ, αθ⟩

is a problematic tuple. Here Λθ+1 = Λσθθ . In this case, [0, θ]S does not drop, and all ξ ≤S θ are also

unstable. We regard θ + 1 as a new root of S. This is the only way new roots are constructed.

Let us also write

Φ−
θ =df ⟨M

S
θ ,MS

θ+1, σθ, αθ⟩

for the part of Φθ that is definable over MS
θ . We say Φ−

θ is problematic iff Φθ is problematic for

reason that do not involve the external strategies; that is, iff both statements “C(MS
θ+1) �MS

θ ”

and “C(MS
θ+1)�Ult0(MS

θ , E
MS

θ
αθ )” are false.

If θ is unstable, then we define

βθ = (α+
θ )

MS
θ+1 .

If ξ <S , θ, then we shall have βθ ≤ iSξ,θ(βξ), and

βθ = iSξ,θ(βξ) ⇒ Φθ = iSξ,θ(Φξ),

in the appropriate sense. In this connection: it will turn out that iξ,θ(βξ) = βθ implies iSξ,θ is

continuous at ρk(MS
ξ+1), where k = k0 = deg(MS

ξ+1). So we can set

iSξ,θ(σξ) = upward extension of
⋃

η<ρk(MS
ξ+1)

iSξ,θ(σ
η
ξ ),

where ⟨σηξ | η < ρk(MS
ξ+1)⟩ is the natural decomposition of σξ. This enables us to make sense of

iSξ,θ(Φ
−
ξ ).

The construction of S takes place in rounds in which we either add one stable θ, or one unstable

θ and its stable successor θ + 1. Thus the current last model is always stable, and all extenders

used in S are plus extenders taken from stable models. If γ is stable, then

λγ = λ̂(ES
γ ).

52This is different from the notion of “stable pfs premice”. We shall let context dictate the meaning of the term.
53In the first version of [13] the external strategy agreement was not required for θ to be declared unstable, but it

is important to do so here.
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In the case γ is unstable and γ + 1 < lh(S), we first define λγ+1 and set

λγ = inf(λγ+1, αγ).

See below for more detail.

In sum, we are maintaining by induction that the last node γ of our current § is stable, and

Induction hypotheses (†)γ. If θ < γ and θ is unstable, then

(1) 0 ≤S θ and [0, θ]S does not drop (in model or degree), and every ξ ≤S θ is unstable,

(2) there is a γ such that (MS
θ ,Λθ) = (MU

γ ,Σ
U
γ ),

(3) Φθ = ⟨(MS
θ ,Λθ), (M

S
θ+1,Λθ+1), σθ, αθ⟩ is a problematic tuple,

(4) Φθ is extender-active iff Φ0 is extender-active, and if Φθ is extender-active, then i
S
0,θ(α0) = αθ,

(5) if ξ <S θ, then αθ ≤ iSξ,θ(αξ) and βθ ≤ iSξ,θ(βξ),

(6) if ⟨αθ, βθ⟩ = iSξ,θ(⟨αξ, βξ⟩), then

(a) Φ−
θ = iSξ,θ(Φ

−
ξ ), and

(b) iSξ,θ is continuous at ρk0(MS
ξ+1), where k0 = deg(MS

ξ+1),

(7) MT
θ+1 = MT

θ , and πθ+1 = πθ ◦ σθ.

Setting σ0 = π̄, we have (†)1.
For a node γ of S, we write S-pred(γ) for the immediate ≤S-predecessor of γ. For γ a node in

S, we set

st(γ) = the least stable θ such that θ ≤S γ,

and

rt(γ) =

S-pred(st(γ)) if S-pred(st(γ)) exists

st(γ) otherwise.

The construction of S ends when we reach a stable θ such that

(I) (Mν,l,Ων,l)� (MS
θ ,Λθ), or (Mν,l,Ων,l) = (MS

θ ,Λθ) and [rt(θ), θ]S drops, or

(II) [rt(θ), θ]S does not drop in model or degree and either (MS
θ ,Λθ)� (Mν,l,Ων,l), or (Mν,l,Ων,l)

is the type 1 core of (MS
θ ,Λθ).

We need the second alternative in (II) because models on the phalanx side might have type 2.

The comparison arguments of §3 and [13] show that if ⟨ν, l⟩ is least such that (II) holds, and

(MS
θ ,Λθ)� (Mν,l,Ων,l), then (MS

θ ,Λθ) = (Mν,l,Ων,l),
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If case (I) occurs, then we go on to define Sν,l+1. If case (II) occurs, we stop the construction.

We will sometimes write “case (II)(a)” for the first case of (II) and “case (II)(b)” for the second

case.

We now describe how to extend S one more step. First we assume S has successor length γ+1

and let MS
γ be the current last model, so that γ is stable. Suppose (†)γ holds. Suppose (I) and

(II) above do not hold for γ, so that we have a least disagreement between MS
γ and Mν,l. By the

results of §3, i.e. essentially the proof of [13, Lemma 9.6.5], the least disagreement involves only an

extender E on the sequence of MS
γ as long as crt(E) < ρl(Mν,l).

54 In this case, letting τ = lh(E),

we have

• Mν,l|(τ, 0) = MS
γ |(τ,−1),55 and

• (Ων,l)(τ,0) = (Λγ)(τ,−1).

Set

λSγ = λE ,

and let ξ be least such that crt(E) < λSξ . We let S-pred(γ + 1) = ξ. Let (β, k) be lex least such

that either ρ(MS
ξ |(β, k)) ≤ crt(E) or (β, k) = (ô(MS

ξ ),deg(MS
ξ )). Set R = MS

ξ |(β, k) and set

MS
γ+1 = Ult(R,E+),

and let îSξ,γ+1 be the canonical embedding. Let

MT
γ+1 =Ult(MT

ξ |(πξ(β), k), πγ(E+)),

and let πγ+1 be given by the Shift Lemma . This determines Λγ+1. We write ES
γ for E+ and

similarly we write ET
γ for πγ(E

+). Similar notations apply to extenders EU
γ on the tree U .

If ξ is stable or (β, k) < (ô(MS
ξ ), deg(MS

ξ )), then we declare γ + 1 to be stable. (†)γ+1 follows

vacuously from (†)γ .56

If ξ is unstable, (β, k) = (ô(MS
ξ ),deg(MS

ξ )), and (MS
γ+1,Λγ+1) is not a model of U , then again

we declare γ + 1 stable. Again, (†)γ+1 follows vacuously from (†)γ .
Finally, suppose ξ is unstable, (β, k) = (ô(MS

ξ ),deg(MS
ξ )), and for some τ ,

(MS
γ+1,Λγ+1) = (MU

τ ,Σ
U
τ ).

54The only extender that has critical point ≥ ρl(Mν,l), if exists, is the order zero measure F = D(MS
γ ) witnessing

case (II)(b). This happens precisely when some model on the main branch [rt(θ), θ]S has type 2. In this case, F is
the last extender used in the comparison and is the only extender on the Mν,l-sequence used.

55Recall MS
γ |(τ,−1) is the structure obtained from MS

γ |τ by removing E.
56It is possible that ξ is unstable, λξ = αξ, S-pred(γ + 1) = ξ, and crt(ES

γ ) = λF where F is the last extender of
MS

ξ |αξ. In this case, (β, k) = (lh(F ), 0). The problem then is that MS
γ+1 is not an lpm, because its last extender

iξ,γ+1(F ) has a missing whole initial segment, namely F . Schindler and Zeman found a way to deal with this anomaly
in [7]. Their method works in the hod mouse context as well. Here we shall not go into the details of this case. The
anomaly cannot occur when ξ is stable, because then λξ = λ̂(ES

ξ ) is inaccessible in MS
γ .
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We then we declare γ + 1 to be unstable and γ + 2 stable. We must define the problematic tuple

needed for (†)γ+2. Let i = iSξ,γ+1, and

⟨(N,Ψ), (G,Φ), σ, α⟩ = ⟨(MS
ξ ,Λξ), (MS

ξ+1,Λξ+1), σξ, αξ⟩.

We have that ⟨(N,Ψ), (G,Φ), σ, α⟩ is problematic. We must define Φγ+1 and verify (†)γ+2. We

break into 2 cases. Let k = deg(G). (So k = k0 = deg(N) = deg(M).)

Case 1. i is continuous at ρk(G).

In this case, we simply let

⟨MS
γ+2, αγ+1⟩ = ⟨i(G), i(α)⟩.

We must define σγ+1. Note that by our case hypothesis,

i(Ĝk) = ˆi(G)k.

Let ⟨ση | η < ρk(G)⟩ be the natural decomposition of σ ↾ Ĝk, and set

i(σ ↾ Ĝk) =
⋃

η<ρk(G)

i(ση).

Using the continuity of i at ρk(G), it is easy to see that i(σ ↾ Ĝk) is Σ0-elementary and cardinal

preserving from ˆi(G)k to ˆi(N)k. We set

σγ+1 = completion of i(σ ↾ Ĝk) via upward extension of embeddings,

and

Λγ+2 = Λ
σγ+1

γ+1 .

This defines Φγ+1, that is

Φγ+1 = ⟨(i(N),Λγ+1), (i(G),Λγ+2, i(σ), i(α)⟩.

Abusing notation a bit, let us write

Φ−
γ+1 = ⟨i(N), i(G), i(σ), i(α)⟩.

We must see that Φγ+1 is problematic. First, it satisfies the hypotheses of the Condensation

Theorem 4.6. For G is α-sound, so i(G) is i(α)-sound. (Note G ∈ N , so i↾G is Σω-elementary.) By

downward extension of embeddings (cf. [6, Lemma 3.3]), i(σ ↾ Ĝk) extends to a unique embedding

from some K into i(N), and it is easy to see that K = i(G), because i(G) is k-sound, and that the

embedding in question is what we have called i(σ). i(σ) is nearly elementary: it maps parameters

correctly, and i(σ) ↾ ˆi(G)k is Σ0-elementary and cardinal preserving by construction.

Finally, crt(i(σ)) = i(α), because for all sufficiently large η < ρk(G), α + 1 ⊆ dom(ση) and

crt(ση) = α, so crt(i(ση)) = i(α).
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So we must see that one of the conclusions of 4.6 fails. We show that the conclusion that failed

for Φξ fails for Φγ+1.

Suppose first that Φ−
ξ is problematic. We break into cases. If ENα = ∅ and G is of type 1, then

¬G � N . But then E
i(N)
i(α) = ∅, i(G) is of type 1, and ¬i(G) � i(N), so Φ−

γ+1 is problematic. If

G is of type 1 and ENα ̸= ∅, then ¬G � Ult(N,ENα ). But then i(G) is of type 1, E
i(N)
i(α) ̸= ∅, and

¬i(G)� Ult(i(N), E
i(N)
i(α) ), so Φ−

γ+1 is problematic.57 If G is of type 2, since Φ−
ξ is problematic, no

L�N (or if ENα ̸= ∅, no L� Ult0(N,E
N
α )) is such that L = C(G). By elementarity of i the same

fact holds for i(G) and therefore, Φ−
γ+1 is problematic.

So we may assume Φ−
ξ is not problematic, and hence also Φ−

γ+1 is not problematic. Suppose

first G�N , so i(G)� i(N). We must show Λ
i(σ)
γ+1 ̸= (Λγ+1)i(G), so suppose otherwise. Using Claim

4 we get Λξ = Λiγ+1, so

Λσξ = (Λγ+1)
i◦σ

= (Λγ+1)
i(σ)◦i

= (Λ
i(σ)
γ+1)

i

= ((Λγ+1)i(G))
i

= (Λξ)G,

a contradiction. Equation 2 holds because i ◦ σ = i(σ) ◦ i, and equation 5 comes from equation 4

using claim 4 again. Thus Φξ is not problematic, contradiction.

Suppose next G�Ult(N,Eα). We want to show (Λξ)⟨Eα,G⟩ = Λσξ . This comes from the following

calculations (see Figure 1).

Λσξ = (Λγ+1)
i◦σ

= (Λγ+1)
i(σ)◦i

= ((Λγ+1)⟨i(Eα),i(G)⟩)
i

= (Λξ)⟨Eα,G⟩.

This first equality follows from Claim 4. The third equality follows from the assumption that Φγ+1

is not problematic. The last equality follows from the fact that Λξ = (Λγ+1)
i, so the tail strategy

(Λγ+1)⟨i(Eα),i(N)⟩ is pulled back by the Shift lemma map from Ult(N,Eα) to Ult(i(N), i(Eα)), which

is just i.

57In both cases, i has enough elementarity to preserve these facts. For instance, if ¬(G�Ult(N,EN
α )), then this is

equivalent to ¬(G�Ult(N |(α+)N , EN
α )), and i preserves this fact.
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G�Ult(N,Eα)

i(G)�Ult(i(N), i(Eα))

N

i(N)

ii i

σ

i(σ)

Figure 1: Diagram illustrating that (Λξ)⟨Eα,G⟩ = Λσξ .

GL N

i(G)i(L) i(N)

ii i

j

l

σ

i(σ)

Figure 2: Diagram illustrating that Λσ◦jξ = (Λξ)L.

Suppose next that G is of type 2. Suppose L �N is such that C(G) = L. (Then case that L

is an ultrapower away from N is similar.) Let j : L → G be the ultrapower map, and let l = i(j),

so that l : i(L) → i(G) = Ult0(i(L), i(D)). i(G) has type 2, so since Φγ+1 is not problematic,

i(L)� i(N) and (Λγ+1)i(L) = Λ
i(σ)◦l
γ+1 . We wish to show that (Λξ)L = Λσ◦jξ .58 But we can calculate

Λσ◦jξ = Λi◦σ◦jγ+1

= Λ
i(σ)◦l◦i
γ+1 = (Λ

i(σ)◦l
γ+1 )i

= ((Λγ+1)i(L))
i

= (Λξ)L.

Line 1 uses Claim 4, as does the step from line 3 to line 4. Line 2 uses the commutativity of the

diagram in Figure 2. As we noted, line 3 holds because Φγ+1 is not problematic.

Thus ⟨MS
γ+1,MS

γ+2, σγ+1, αγ+1⟩ is problematic. Setting

MT
γ+2 = MT

γ+1 and πγ+2 = πγ+1 ◦ σγ+1,

the rest of (†)γ+2 is clear.

Case 2. i is discontinuous at ρk(G).

Set κ = crt(ES
γ ). In case 2, ρk(G) has cofinality κ in N . Since ρ(G) ≤ α and G is α-sound, we

have a Σ1 over Ĝk map of α onto (α+)G. Ramifying this map, we see that (α+)G also has cofinality

κ in N . Here recall that ρ(G) = ρ1(Ĝ
k) and p(G) = p1(Ĝ

k).

58As we remarked in 3.45, Λ
i(σ)◦l
γ+1 and Λσ◦j

ξ are indeed level k strategies.
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Figure 3: Lift up of (N,G, σ, α) in the case i is discontinuous at ρk(G)

Let ⟨(ση, Gη) | α ≤ η < ρk(G)⟩ be the natural decomposition of σ ↾ Ĝk.59 Let s = p(G)− α, so

that

dom(ση) = h1Gη“(α ∪ s).

Let

τ̄ =
⋃

η<ρk(G)

i(ση).

The domain of τ̄ is no longer all of i(Ĝk), instead

dom(τ̄) =
⋃

η<ρk(G)

h1i(Gη)“(i(α) ∪ i(s)).

But set

J = Ult(G,Ei ↾ sup i“α),

and let t : G → J be the canonical embedding, and v : J → i(G) be the factor map. This is a Σk

ultrapower, by what may be a long extender. That is, J is the decoding of Ĵk = Ult0(Ĝ
k, Ei ↾

sup i“α). Note that t is continuous at α, because α is regular in G (because α = crt(σ)), and

α < ρk(G).

We claim that ran(v ↾ Ĵk) ⊆ dom(τ̄). For let f ∈ Ĝk and b ⊆ sup i“α be finite, so that t(f)(b) is

a typical element of Ĵk, and v(t(f)(b)) = i(f)(b). We can find η < ρk(G) such that f ∈ dom(ση) and

η > α, so that i(f) ∈ dom(i(ση)) and b ⊆ i(η). Since f“(α) ⊆ dom(ση), i(f)“i(α) ⊆ dom(i(ση)),

so i(f)(b) ∈ dom(τ̄), as desired.

Let τ be the extension of τ̄ given by: for a ⊆ sup i“ρk(G) finite,

τ(h̃k+1
i(G)(a, p(i(G))) = h̃k+1

i(N)(τ̄(a), p(i(N))).

It is easy to check that ran(v) ⊆ dom(τ).

This gives us the diagram in Figure 3.

The map τ here is only partial on i(G), but τ ◦ v : J → i(N) is total. Also, i“G ⊆ dom(τ), so

τ ◦ i is total on G. For each η < ρk(G), and x ∈ dom(ση),

i ◦ ση(x) = i(ση)(i(x)),

59We encourage the reader to focus on the case k = 0, which has the main ideas.
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so τ ◦ i agrees on Ĝk with i ◦ σ. Since both map pk(G) to pk(i(N)),

τ ◦ i = i ◦ σ.

Clearly i ↾ G = v ◦ t, so the diagram commutes.

Since Ei ↾ sup i“α is a long extender, we need some care to show that J is a premouse. The

worry is that it could be a protomouse, in the the case that G is extender active and k = 0. So

suppose k = 0 and µ = crt(ḞG); it is enough to see that t is continuous at µ+,G. If not, we have

f ∈ G and b ⊆ sup i“α finite such that

sup i“µ+,G < t(f)(b) < i(µ+,G).

We may assume dom(f) = γ|b|, where γ < α, and by Los, ran(f) is unbounded in µ+,G. It follows

that µ+,G < α, so µ+,G = σ(µ+,G) = µ+,N . But cof(µ+,G) = cof(ô(G)) = κ in N , so µ+,G is not a

cardinal in N , contradiction.

Thus J is a premouse. We claim that τ ◦ v is nearly elementary. First, τ is a partial Σ0 map

from i(Ĝk) to i(N̂k), so τ ◦ v ↾ Ĵk is Σ0 from Ĵk to i(N̂k). It is also easy to see that τ ◦ v ↾ Ĵk is

cardinal preserving.

For η < ρk(G), we have that ση is the identity on α ∩ η, so

sup i“α = sup t“α ≤ crt(τ ◦ v).

But α < σ(α), so i(α) < i ◦ σ(α) = τ ◦ v ◦ t(α). Also, t(α) ≤ i(α), so t(α) < τ ◦ v(t(α)). Thus

crt(τ ◦ v) ≤ t(α), and since t(α) = sup t“α, we get

crt(τ ◦ v) = sup i“α = t(α).

Remark 4.10. It is possible that i is continuous at α, even though it is discontinuous at ρk(G)

and hence J ̸= i(G). In this case crt(v) > i(α) = sup i“α and crt(τ) = i(α) = t(α). ⊣

We set

MS
γ+1 = i(N),

MS
γ+2 = J,

σγ+1 = τ ◦ v, and

αγ+1 = crt(τ ◦ v).

We define then

Φγ+1 = ⟨(i(N),Λγ+1), (J,Λ
σγ+1

γ+1 ), σγ+1, αγ+1⟩.

Claim 5. Φγ+1 is problematic.
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Proof. We begin with proving a subclaim.

Subclaim 5a.

(a) If Φ−
ξ is problematic, then Φ−

γ+1 is problematic.

(b) Φξ is extender-active iff Φγ+1 is extender-active; moreover, if Φξ is extender-active, then

iSξ,γ+1(αξ) = αγ+1.

Proof. Recall that we write

Φ−
γ+1 = ⟨i(N), J, τ ◦ v, crt(τ ◦ v)⟩.

It is easy to see that the tuple obeys the hypotheses of 4.6: clearly J is Σk+1 generated by sup i“α∪
t(s), and as we showed above, crt(τ ◦ v) = sup i“α. t preserves the solidity of s, so t(s) = p(J) −
sup i“α. We have shown that τ ◦ v is nearly elementary. Since i(G) ∈ i(N), we have J ∈ i(N), so

J is not the crt(τ ◦ v)-core of i(N).

So what we need to see is that neither of the conclusions (a)-(b) of 4.6 hold for ⟨i(N), J, τ ◦
v, crt(τ ◦ v)⟩, and that Φ−

γ+1 is extender-active iff Φ−
ξ is extender-active. We break into two cases.

Case A. Φξ is not extender-active.

Let us show that Φ−
γ+1 is not extender active. For this, we must see that crt(τ ◦ v) is not an

index in i(N). There are two cases. If i is continuous at α, then crt(v) > i(α) and crt(τ) = i(α),

so crt(τ ◦ v) = i(α), which is not an index in i(N). Otherwise, crt(τ ◦ v) = crt(v) = sup i“α. But

then sup i“α has cofinality κ in i(N), and since κ is a limit cardinal in i(N), it is not the cofinality

of the index of a total extender in i(N).

Now we show that Φ−
γ+1 is problematic. Suppose toward contradiction that it is not; that is,

that

C(J)� i(N).

We have ENα = ∅. Since (N,Ψ) ≤∗ (MT
ξ ,Σ

T
ξ ) ≤∗ (M,Σ), Claim 3 gives

G|(α+)G = N ||(α+)G.

Since G ∈ N , there is a first level P of N such that P ||(α+)G = G|(α+)G and ρ(P ) ≤ α. Because

Φ−
ξ is problematic, P ̸= G and if G is of type 2, G ̸= Ult(P,D) where D is the Mitchell order 0

measure on ρ̂−(G). Letting n = deg(P ), we get by the argument above that in N , ρn(P ) has the

same cofinality as (α+)P = (α+)G, namely κ.

We set

Q = Ult(P,Ei ↾ sup i“α),

and let t0 : P → Q be the canonical embedding, and v0 : Q → i(P ) be the factor map.60 We wish

to show that C(Q)� i(N). Let us assume that Q ̸= i(P ), as otherwise this is trivial. This implies

that v0 ̸= id and crt(v0) < ρn(Q).

60More precisely, Q is decoded from Ult0(P̂
n, Ei ↾ supi“α).
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Again, we must see that Q is not a protomouse, in the case P is extender active with crt(ḞP ) =

µ, and n = 0. The proof is the same as it was for J . Namely, if α ≤ µ+,P then t0 is continuous at

µ+,P because any f ∈ P such that f : [γ]|b| → µ+,P for γ < α has bounded range. If µ+,P < α, then

because P |α+,P = G|α+,G, µ+,P is a cardinal of G, and hence of N , so i is continuous at µ+,P , so

t0 is continuous at µ+,P .

It is easy to check that the hypotheses of 4.6 hold for ⟨(i(P ),Ω), (Q,Ωv0), v0, crt(v0)⟩, where
Ω = (Λγ+1)i(P ). Note here that

sup i“α = t0(α) ≤ crt(v0).

t0 is continuous at α and α+,P , and i is discontinuous at α+,P because cfN (α+,P ) = κ. Thus

crt(v0) =

t0(α) if i is discontinuous at α,

t0(α)
+,Q otherwise.

Let s0 = p(P ) \ α; then P = hn+1
P “α ∪ s0 because P is sound and ρ(P ) ≤ α. Thus

Q = hn+1
Q “(sup i“α ∪ t0(s0)).

Moreover, t0 maps the solidity witnesses for s0 to solidity witnesses for t0(s0), so

Q is crt(v0)-sound,

with parameter t0(s) \ crt(v0). Also,

ρ(Q) ≤ t0(α) ≤ crt(v0) ≤ t0(α
+,P ) ≤ ρn(Q),

where the last inequality comes from ρn(Q) = sup t0“ρn(P ) and the fact that t0 is continuous at

α+,P . It is easy to verify that v0 is nearly elementary. Finally, i(P ) is sound, so Q cannot be its

crt(v0)-core.

Thus the hypotheses of 4.6 hold for ⟨(i(P ),Ω), (Q,Ωv0), v0, crt(v0)⟩. But note

(i(P ),Ω))� (i(N),Λγ+1) ≤∗ (MT
γ+1,Σ

T
γ+1) ≤∗ (M,Σ).

So because (M,Σ) is minimal, one of the conclusions of 4.6 holds for Q, i(P ). However, t0(α) is not

an index in i(N) because α is not an index in N , and t0(α)
+,Q is not an index in i(N) because it

has cofinality κ in i(N), and κ is a limit cardinal in i(N). So

C(Q)� i(P )� i(N).

So C(J) and C(Q) are each the first level of i(N) collapsing t(α)+,J = t0(α)
+,Q to t(α) = t0(α),

so

C(J) = C(Q).
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It follows that n = k. We get a contradiction by pulling back to G and P .

Case (i). J,Q are both of type 1.

Then J = Q, t↾α = t0↾α, and t(s) = t0(s0) = p(J) − t(α). It follows that G = P , so G � N ,

contradicting our assumption that Φ−
ξ is problematic.

There are some bothersome details in the remaining cases. Some arise from the possibility that t

and t0 do not preserve ρk. In that connection, the following lemma is useful. It is implicit (very

nearly explicit) in the proof of solidity and universality for pfs mice in [13, Section 4.10].

Lemma 4.11. (AD+) Let (R,Σ) be a sound lbr hod pair of degree k, and suppose that either R

has type 1A, or R has type 1B and is not projectum stable; then Rk0 is sound, in the sense that

Rk0 = Hull
Rk

0
1 (ρ1(R

k
0) + 1 ∪ p1(Rk0)).

Proof. (Sketch.) This is implicit in the proof of Theorem 4.10.9 in [13], and in fact it is pointed

out in the last 3 lines of that proof. The problem is that Rk0 does not have a name for ρk(R) in its

language, whereas Rk does.

Let ρk = ρk(R), ρ = ρk+1(R), and if R has type 1B, let C̄k(R) be its strong core and i : C̄k(R) →
R = Ult(C̄k(R), D) be the canonical embedding. Let

ε =

least γ s.t. ρk = h1
Rk−1(γ, pk(R)) if R has type 1A,

least γ s.t. i(D) = h1
Rk−1(γ, pk(R)) if R has type 1B.

Our hypotheses on R imply that ε exists61, and ε ∈ Hull1(ρ ∪ r), where r = p1(R
k
0).

62 Letting

p = p1(R
k), this enables us to show that p ⊆ r, and to translate ΣR

k

1 definitions using parameters

in ρ+ 1 ∪ p into Σ
Rk

0
1 definitions using parameters in ρ+ 1 ∪ r.63 It follows that

Hull
Rk

0
1 (ρ+ 1 ∪ r) = HullR

k

1 (ρ+ 1 ∪ p).

Since we have assumed that Rk is 1-sound, this is what we need.

Let us return to Subclaim 5a.

Case (ii). Q has type 1 and J has type 2.

In this case, G must have type 1B or type 2. Suppose first it has type 1B. The relevant diagram is

61See [13, 4.10.8].
62See [13, 4.10.9, Claim 1].
63See Claims 2 and 3 in the proof of [13, 4.10.9].
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J C(J)
t1(iD)

= Q

G C̄k(G) P

t t1

iD

t0

Here iD : C̄k(G) → G is the ultrapower by the order zero measure D, and t1 is the canonical

embedding associated to Ult(C̄k(G), Ei↾ sup i“α). t1 agrees with t and t0 on α+,P .

Since C(J) is type 1A, Q is type 1A, so P is type 1A. Thus P k0 is sound by Lemma 4.11. Since

G is type 1B and J is type 2, G is not projectum stable, so Gk0 is α-sound by the lemma. Letting

r = p1(G
k
0)− α and w = p1(P

k
0 )− α, we get that t1(r) is the top part of p1(C(J)

k
0), hence the top

part of p1(Q
k
0) = t0(w), so t1(r) = t0(w). Since t0 and t1 agree on α+,P , we get that C̄k(G) = P .

This is a contradiction, because ρk(C̄k(G)) is measurable in C̄k(G) , so C̄k(G) is not a pfs premouse.

Suppose next that G has type 2. Now the relevant diagram is

J C(J)
t1(iD)

= Q

G C(G) P

t t1

iD

t0

The proof in the type 1B case now tells us that C(G) = P . That means that Φ−
ξ is not

problematic, again a contradiction.

Case (iii). Q has type 2.

In this case, P has type 1B and is not projectum stable. By the Lemma, P k0 is sound. We take

subcases on the type of G.

If G has type 1A, the relevant diagram is

J = C(Q) Q
t0(iD)

G C̄k(P ) P

t t1 t0

iD

As above, the agreement between t and t0 and the fact that J = C(Q) implies that G = C̄k(P ).

This is impossible because C̄k(P ) is not a pfs premouse.

If G has type 1B, then J must have type 2, since otherwise J = C(J) = C(Q), so J has type

1A, so G has type 1A. So our diagram is

53



J C(J)
t1(iU )

= C(Q) Q
t0(iD)

G C̄k(G) C̄k(P ) P

t

iU

t1

iD

t2 t0

G is not projectum stable, so Gk0 is α-sound. The agreement of t1 and t2 on α+,P then implies

that Gk0 = P k0 , hence C̄k(G) = C̄k(P ), and hence G = P . So Φ−
ξ is not problematic, contradiction.

If G has type 2, the argument above shows that C(G) = C̄k(P ). But this is impossible, because

C(G) is a pfs premouse and C̄k(P ) is not.

Cases (i)-(iii) exhaust the possibilities, so we have proved Subclaim 5a in the case that Φξ is

not extender active.

Case B. Φξ is extender-active.

In this case sup i“α = i(α), because α has cofinality crt(ENα )+,N in N . So i(α) is an index in i(N),

say of F . Moreover, i(α) = crt(τ ◦ v), so we have (b) of the subclaim.

Let R = Ult(N,ENα ). G|α+,G is an initial segment of R by (∗)(N). If α+,R = α+,G, then

i(α)+,J = i(α)+,Ult(i(N),F ), where F = i(ENα ), so ⟨i(N), J, τ ◦v, i(α)⟩ is problematic. (Since crt(v) >

i(α), i(α) = crt(τ).) Otherwise, we have a first initial segment P of R past α+,G that projects to

or below α. We can now use P just as we did in Case A, thereby proving (a) of the subclaim.

This finishes the proof of Subclaim 5a. □

We are trying to show Φγ+1 is problematic, so by Subclaim 5a, we may assume that Φ−
ξ and

Φ−
γ+1 are not problematic. Suppose for example that G �N and that J � i(N) (so both G, J are

of type 1). The relevant diagram is

J i(G) i(N)

G N

v τ

t i i

σ

Since Φξ is problematic, Λσξ ̸= (Λξ)G. If Φγ+1 is not problematic, then

(Λγ+1)J = Λτ◦vγ+1. (4.1)

Because (i(G), (Λγ+1)i(G)) <
∗ (M,Σ), we can apply our induction hypothesis that Theorem 4.6 is

true to v : J → i(G). Let

Ψ = (Λγ+1)i(G).

Since v is nearly elementary and J is a premouse, Lemma 9.2.3 of [13] implies that (J,Ψv) is an lbr

hod pair and v is a nearly elementary map of it into (i(G),Ψ) with crt(v) ≥ ρ(J). The arguments
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above show that the other hypotheses of 4.6 are satisfied, so we have

ΨJ = Ψv,

in other words

((Λγ+1)i(G))
v = ((Λγ+1)i(G))J = (Λγ+1)J . (4.2)

The second line here follows from the fact that Λγ+1 is mildly positional.64

We now have:

Λσξ = (Λγ+1)
i◦σ

= (Λγ+1)
τ◦v◦t

= (Λτ◦vγ+1)
t

= ((Λγ+1)J)
t

= ((Λγ+1)
v
i(G))

t

= (Λγ+1)
i
i(G)

= (Λξ)G.

The first equality follows from Claim 4. The second equality follows from the fact that i◦σ = τ ◦v◦t.
The fourth equality follows from Equation 4.1. The fifth equality follows from Equation 4.2. We

have shown Λσξ = (Λξ)G. This contradicts our assumption that Φξ is problematic, and finishes the

proof of Claim 5 in the case that G�N and J � i(N).

The following subclaim will help deal with the type 2 case.

Subclaim 5b. Suppose ⟨(N,Φ), (G,Λ), σ, ν⟩ is a tuple satisfying (1)–(3) of Definition 4.8. Suppose

G is of type 2. Let n = deg(G), D be the measure of Mitchell order 0 on ρ̂n(G) such that

G = Ult(C(G), D), and let iD be the ultrapower map. Suppose C(G) � N and ΦC(G) = Φσ◦iD .

Then

(ΦC(G))⟨D⟩,G = Λ.

Proof. Consider the diagram in Figure 4, where we let H be Ult(G, iD(D)) and j be the correspond-

ing ultrapower map, and Y be the image of H under the copy construction. We let k : N → Y be

the ultrapower map by σ(iD(D)).

64See [13, Definition 3.6.1] for the definition of mild positionality. [13, Lemma 4.6.10] shows that background-
induced strategies are mildy positional.
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C(G) G
iD

G

iD

H
j

j

N Y
k

σσ

Figure 4: Diagram illustrating that (ΦC(G))⟨D⟩,G = Λ.

Let Σ = Φ⟨σ(iD(D))⟩,Y be the tail of Σ on Y . We have

(ΦC(G))⟨D⟩,G = (Σ)σ◦j

= Σk◦σ

= Λ

The first equality follows from the definition of pullback strategies on stacks. The second equality

follows from commutativity, i.e. σ ◦ j = k ◦σ. The third equality follows from our assumption that

Λ = Φσ and the definition of Σ.

□

Returning to the proof of Claim 5, i.e. that Φγ+1 is problematic, let us consider the case that

G�N and J has type 2, so that J = Ult(J̄, D), where J̄ = C(J)� i(N) and D is the measure of

Mitchell order 0 on ρ̂kJ . The relevant diagram is

J̄ J i(G) i(N)

G N

iD v τ

t i i

σ

Again we assume toward contradiction that Φγ+1 is not problematic, so that (Λγ+1)J̄ = Λτ◦v◦iDγ+1 .

Combined with Subclaim 5b, applied with Φ = Λγ+1 and σ = τ ◦ v, this yields

((Λγ+1)J̄)⟨D,J⟩ = Λτ◦vγ+1. (4.3)

Since (i(G), (Λγ+1)i(G)) <
∗ (M,Σ) and v : (J, ((Λγ+1)i(G))

v) → (i(G), (Λγ+1)i(G)) satisfies the

hypotheses of Theorem 4.6, we get from 5b and the mild positionality of Λγ+1:

((Λγ+1)J̄)⟨D,J⟩ = (Λγ+1)i(G))
v. (4.4)

56



G N
σ

Ḡ
j

JH

i(G) i(N)i(Ḡ)

t

v

τ

i

l

m

t∗

v∗

Figure 5: Diagram for the case G is of type 2.

Now we calculate

Λσξ = (Λγ+1)
i◦σ

= (Λγ+1)
τ◦v◦t

= ((Λγ+1)
τ◦v)t

= (((Λγ+1)J̄)⟨D,J⟩)
t

= ((Λγ+1)i(G))
v)t

= (Λγ+1)i(G))
i

= (Λξ)G.

Line 1 uses Claim 4. Line 2 uses commutativity. Line 4 uses equation 4.3 and line 5 uses equation

4.4. Line 7 uses Claim 4 again. Since Λσξ = (Λξ)G, Φξ is not problematic, contradiction.

Let us consider the case that G is of type 2. Let (Ḡ,Λj◦σξ ) be the type 1 core of (G,Λσξ ), where

j = iḠD for D the order zero measure on ρ̂k(G). Since Φ
−
ξ is not problematic, Ḡ�N and i(Ḡ)�i(N).

J is also of type 2, and setting

H = Ult(Ḡ, Ei↾ sup i“α)

and letting t∗ : Ḡ→ H be the canonical embedding, we have

J = Ult(H, t∗(D)).

So J has type 2, and H = C(J), and t∗(D) = D(J). Let m : H → J be the t∗(D)-ultrapower map,

and l : i(Ḡ) → i(G) be the i(D)-ultrapower map. Let v∗ be the factor map from H to i(Ḡ), so that

v∗ ◦ t∗ = i ↾ Ḡ. See Figure 5 for a diagram of the situation.

Assuming toward contradiction that Φγ+1 is not problematic, we have

(Λγ+1)H = (Λγ+1)
τ◦v◦m. (4.5)

As above, the fact that (i(Ḡ), (Λγ+1)i(Ḡ)) is strictly below (M,Σ) in the mouse order gives

(Λγ+1)H = ((Λγ+1)i(Ḡ))H = ((Λγ+1)i(Ḡ))
v∗ . (4.6)
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We then calculate

Λσ◦jξ = Λτ◦l◦v
∗◦t∗

γ+1

= Λτ◦v◦m◦t∗
γ+1

= (Λγ+1)
t∗
H

(by equation 4.5)

= (Λγ+1)
v∗◦t∗
i(Ḡ)

(by equation 4.6)

= (Λγ+1)
i
i(Ḡ)

= (Λξ)Ḡ.

This shows that Φξ is not problematic, contradiction.

The cases where G�Ult(N,ENα ) or C(G)�Ult(N,ENα ) are handled similarly. For example, let

E = ENα , and suppose G� Ult(N,E) and J is of type 1. In this case, note that i is continuous at

α, so crt(τ ◦ v) = i(α). The relevant diagram is

J i(G)
v

i(N) Q � i(G)
τ i(E)

G N P � G

t
i

σ E

i i i

Here P = Ult(N,E) and Q = Ult(i(N), i(E)).

We assume toward contradiction that Φγ+1 is not problematic. This implies

((Λγ+1)⟨i(E)⟩)J = (Λγ+1)
τ◦v. (4.7)

As above, the fact that (i(G), ((Λγ+1)⟨i(E)⟩)i(G)) is strictly below (M,Σ) in the mouse order gives

((Λγ+1)⟨i(E)⟩)J = (((Λγ+1)⟨i(E)⟩)i(G))J = ((Λγ+1)⟨i(E)⟩)
v
i(G). (4.8)

We then calculate

58



Λσξ = (Λτ◦vγ+1)
t

= (((Λγ+1)⟨i(E)⟩)J)
t

= (((Λγ+1)⟨i(E)⟩)
v
i(G))

t

= ((Λγ+1)⟨i(E)⟩)
i
i(G)

= ((Λξ)⟨E⟩)G.

Thus Φξ is not problematic, contradiction.

So we conclude that Φγ+1 is problematic in all cases. This finishes the proof of Claim 5. □

Claim 5 finishes the definition of Φγ+1, and the proof that it is a problematic tuple. We have

also proved (4) of (†)γ+2. We now verify the rest of (†)γ+2. For the first part of (5), note that if i

is discontinuous at α, then sup i“α = crt(v) = crt(τ ◦ v) < i(α), and if i is continuous at α, then

crt(τ) = i(α) = crt(τ ◦ v). Thus in either case, αγ+1 ≤ iSξ,γ+1(αξ).

For the rest of (5) and (6), it is enough to see that βγ+1 < i(β), where β = βξ = (α+)G. (Recall

that we are in the case that i is discontinuous at ρk(G).) If i is discontinuous at α, then α is a

limit cardinal of G, and βγ+1 = (sup i“α)+,J < i(α) < i(β), as desired. If i is continuous at α, then

since (α+)G has cofinality κ in N , we get

(αγ+1)
+,J = i(α)+,J = sup i“β < i(β),

as desired.

(7) of (†)γ+2 is obvious from our definitions.

Remark 4.12. If Case 2 occurs in the passage from Φ−
ξ = ⟨N,G, σ, α⟩ to to Φ−

γ+1 = ⟨i(N), J, τ ◦
v, crt(τ ◦v)⟩, then ρk(J) = sup t“ρk(G) has cofinality κ in i(N), where κ = crt(ES

γ ). Along branches

of S containing γ + 1, κ can no longer be a critical point. It follows that along any given branch,

Case 2 can occur at most once. ⊣

If (I) or (II) hold at γ + 2, then the construction of S is over. Otherwise, we let ES
γ+2 be the

least disagreement between MS
γ+2 and Mν,l, and we set

λγ+1 = inf(αγ+1, λ̂(E
S
γ+2)).

This completes the successor step in the construction of S.
Now suppose we are given S ↾ θ, where θ is a limit ordinal. Let b = Σ(T ↾ θ).

Case 1. There is a largest η ∈ b such that η is unstable.

Fix η. There are two subcases.
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(A) for all γ ∈ b− (η + 1), rt(γ) = η + 1. In this case, b− (η + 1) is a branch of S. Let S choose

this branch,

[η + 1, θ)S = b− (η + 1),

and let MS
θ be the direct limit of the MS

γ for sufficiently large γ ∈ b− (η + 1). We define the

branch embedding iSγ,θ a usual and πθ : MS
θ → MT

θ is given by the fact that the copy maps

commute with the branch embeddings. We declare θ to be stable.

(B) for all γ ∈ b− (η + 1), rt(γ) = η. Let S choose

[0, θ)S = (b− η) ∪ [0, η]S ,

and let MS
θ be the direct limit of the MS

γ for sufficiently large γ ∈ b. Branch embeddings iSγ,θ
for γ ≥ η are defined as usual. πθ : MS

θ → MT
θ is given by the fact that copy maps commute

with branch embeddings. We declare θ to be stable.

Since θ is stable, (†)θ follows at once from ∀γ < θ(†)γ .
Case 2. There are boundedly many unstable ordinals in b but no largest one.

We let η be the sup of the unstable ordinals in b. Let S choose

[0, θ)S = (b− η) ∪ [0, η]S ,

and define the corresponding objects as in case 1(B). We declare θ stable, and again (†)θ is imme-

diate.

Case 3. There are arbitrarily large unstable ordinals in b. In this case, b is a disjoint union of

pairs {γ, γ + 1} such that γ is unstable and γ + 1 is stable. We set

[0, θ)S = {ξ ∈ b | ξ is unstable},

and let MS
θ be the direct limit of the MS

ξ ’s for ξ ∈ b unstable. There is no dropping in model

or degree along [0, θ)S . We define maps iSξ,θ, πθ as usual. If (MS
θ ,Λθ) is not a pair of the form

(MU
τ ,Σ

U
τ ), then we declare θ stable and (†)θ is immediate.

Suppose that (MS
θ ,Λθ) is a pair of U . We declare θ unstable. Note that by clauses (4) and (5)

of (†), there is a ξ <S θ such that for all γ with ξ <S γ <S θ, i
S
ξ,γ(⟨αξ, βξ⟩) = ⟨αγ , βγ⟩. So we can

set

αθ = common value of iSγ,θ(αγ), for γ <S θ sufficiently large.

By clause (5), we can set

MS
θ+1 = common value of iSγ,θ(MS

γ+1), for γ <S θ sufficiently large.

We also let

σθ = common value of iSγ,θ(σγ), for γ <S θ sufficiently large.
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Here

iSγ,θ(σγ) = upward extension of
⋃
η<ρ

iSγ,θ(σ
η
γ),

where ρ = ρk(MS
γ+1) for k = deg(MS

γ+1), and the σηγ are the terms in the natural decomposition

of σγ . By (6) of (†) and Remark 4.12, iSγ,θ is continuous at ρk(Mγ+1) for γ <S θ sufficiently large,

so σθ is defined on all of MS
θ+1. It is easy then to see that Φθ = ⟨(MS

θ ,Λθ), (MS
θ+1,Λθ+1), σθ, αθ⟩

is a problematic tuple.

If (I) holds, then we stop the construction of S = Sν,l and move on to Sν,l+1. If (II) holds, we

stop the construction of S and do not move on. If neither holds, we let ES
θ+1 be the extender on

the MS
θ+1 sequence that represents its first disagreement with Mν,l, and set

λθ+1 = λ̂(ES
θ+1),

and

λθ = inf(λθ+1, αθ).

It then is routine to verify (†)θ+1.

This finishes our construction of S = Sν,l and T . Note that every extender used in S is taken

from a stable node, and every stable node except the last model of S contributes exactly one

extender to S. The last model of S is stable.

Claim 6. The construction of Sν,l stops for one of the reasons (I) and (II).

Proof sketch. This comes from the proof of Theorem 3.26 and the analysis of the type 2 case in

subsection 3.5, together with the method for adapting such results to the comparison of phalanxes

with background constructions used in [13]. □

Claim 7. For some (ν, l) ≤ (η0, k0), the construction of Sν,l stops for reason (II).

Proof. If not, then the construction of S = Sη0,k0 must reach some stable θ such that (Mη0,k0 ,Ωη0,k0)�

(MS
θ ,Λθ), and either (Mη0,k0 ,Ωη0,k0)� (MS

θ ,Λθ) or the branch of S leading to θ has a drop. Let

Q = πθ(Mη0,k0);

then either (Q, (ΣT
θ )Q)� (MT

θ ,Σ
T
θ ) or the branch [0, θ]T has a drop.

Suppose first that Mη0,k0 is a nondropping iterate of M and let j :M →Mη0,k0 be the iteration

map given by Uη0,k0 . Letting T = Tη0,k0 , we have πθ : MS
θ → MT

θ from the copying construction.

Note that

πθ ◦ j : (M,Σ) → (Q, (ΣT
θ )Q)

is an elementary map, because

Σ = Ωjη0,k0 = ((Λθ)Mη0,k0
)j = ((ΣT

θ )Q)
πθ◦j .
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Thus πθ ◦ j maps (M,Σ) into an initial segment of (MT
θ ,Σ

T
θ ) which is either proper or reached

along a branch that drops. This is contrary to the Dodd-Jensen Theorem.

Suppose next that j : M → N = Ult(Mη0,k0 , F ) is the iteration map from Uη0,k0 . Let R =

Ult(Q, πθ(F )). We have the diagram

M Q R

Mη0,k0 N

M

iT0,θ πθ(F )

F

πθ σ

j

Here we have drawn the case Q = MT
θ for simplicity. σ is the copy map.

We need to replace M by M− in calibrating elementarity, because iπθ(F ) ◦ iT0,θ is not elementary

as a map on M , because of the drop at the end. But iπθ(F ) ◦ iT0,θ is an iteration map associated

to a +1-iteration tree on M−, and σ ◦ j is +1-elementary as a map on M−. Thus we can apply

Dodd-Jensen in the category of +1-iteration maps, and we have a contradiction as above.65

□

By Claim 7, we may fix (ν, l) ≤ (η0, k0) such that the construction of Sν,l terminates for reason

(II). Let S = Sν,l and lh(S) = θ + 1. Thus θ is stable, [rt(θ), θ]S does not drop in model or degree

(so l = k0), and either

(a) (MS
θ ,Λθ) = (Mν,l,Ων,l), or

66

(b) (MS
θ ,Λθ) has type 2, and (Mν,l,Ων,l) is its type 1 core.

Let U = Uν,l, and γ + 1 = lh(U). The result of comparison via U is that either

(a’) (Mν,l,Ων,l)� (MU
γ ,Σ

U
γ ), or

(b’) (MU
γ ,Σ

U
γ ) has type 2, and (Mν,l,Ων,l) is its type 1 core.

In the usual (M,H,α) vs. M comparisons, one shows that the phalanx side does not terminate

on a branch above M . The next claim adapts that argument to our current situation, in which the

phalanx has been lifted along various branches of S.

Claim 8. For some unstable ξ, rt(θ) = ξ + 1.

Proof. If not, then 0 ≤S θ and the branch [0, θ]S does not drop in model or degree. We take cases

on how S and U end. Let i = iS0,θ and i∗ = iT0,θ. Let lh(U) = γ + 1 and j = iU0,γ .

65Dodd-Jensen applies because we can copy +1 trees on using nearly +1-elementary copy maps. See §3. The more
general statement of this fact belongs to Jensen’s Σ∗ theory.

66The comparison arguments of §3 and [13] show that if ⟨ν, l⟩ is least such that (II) holds, and (MS
θ ,Λθ)�(Mν,l,Ων,l),

then (MS
θ ,Λθ) = (Mν,l,Ων,l),
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Case 1. MS
θ =Mν,l and Mν,l �MU

γ .

Proof. We claim that (MS
θ ,Λθ) = (MU

γ ,Σ
U
γ ). For otherwise i maps (M,Σ) to a proper initial

segment of a Σ-iterate of (M,Σ), contrary to the Dodd-Jensen Theorem. (Note here that Σ is

the pullback of Λθ under i, by Claim 4.) For the same reason, [0, γ]U does not drop, and thus

(ν, l) = (η0, k0). The relevant diagram is now

MT
θ Mν,l Mν,l

M M M

πθ id

i∗ ji

Using Dodd-Jensen we get that

i = j.

To see this, note that both are elementary maps from (M,Σ) to (MS
θ ,Λθ) = (MU

γ ,Σ
U
γ ) = (Mν,l,Ων,l).

Since j is an iteration map, for all ξ

j(ξ) ≤ i(ξ).

Since i∗ is also an iteration map, for all ξ

i∗(ξ) = πθ ◦ i(ξ) ≤ πθ ◦ j(ξ).

Multiplying by π−1
θ , we get that i(ξ) ≤ j(ξ) for all ξ. So i = j.

Since we can recover branch extenders from branch embeddings, we get then that

eSθ = eUγ .
67

Let η ≤S θ be least such that η is stable. Then eSη = eSθ ↾ δ = eUγ ↾ δ for some δ. But there is τ

such that eUτ = eUγ ↾ δ. Thus MS
η = MU

τ . We have also

Λη = Λ
iSη,θ
θ = (ΣU

γ )
iUτ,γ = ΣU

τ ,

by pullback consistency, since iSη,θ = iUτ,γ .

If η is a limit ordinal, then by the rules at limit stages of S above, we declare η unstable. This

contradicts our assumption. If S-pred(η) = µ, then µ is unstable by our minimality assumption on

η; but then we declare η unstable by our rules at successor stages. Again, we reach a contradiction.

This finishes Case 1. □

Case 2. MS
θ has type 2, and Mν,l �MU

γ .

Proof. Let (MS
θ ,Λθ) = Ult((Mν,l,Ων,l), F ), where F is the order zero measure on ρ̂l(MS

θ ).

67eSθ is the sequence of extenders used along the branch [0, θ]S and similarly for eUγ .
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We claim that MU
γ = Mν,l and [0, γ]U does not drop. For if Mν,l �MU

γ or [0, γ]U drops, then

U⌢⟨F ⟩ is a +1-iteration tree on (M−,Σ) whose last model is (MS
θ ,Λθ) and whose main branch

has a large drop, while i is a +1-elementary map from (M−,Σ) to (MS
θ ,Λθ). This contradicts

Dodd-Jensen, in the form of Lemma 3.22. The relevant diagram is now

MT
θ MS

θ Mν,l

M M M

πθ iF

i∗ i j

From the claim, we have that iF ◦ j is defined (and total on M). Dodd-Jensen yields i = iF ◦ j.
For iF ◦ j is a +1-iteration map on (M−,Σ), so iF ◦ j(η) ≤ i(η) for all η. But i∗ is a +1-iteration

map on (M−,Σ), so i∗(η) = πθ ◦ i(η) ≤ πθ ◦ iF ◦ j(η), so i(η) ≤ iF ◦ j(η). Thus i = iF ◦ j.
On the other hand, the generators of the extender of i are contained in sup i“ρl(M) = ρl(Mν,l),

while iF ◦ j has the generator crt(F ) > ρl(Mν,l). So i ̸= iF ◦ j, contradiction. □

Case 3. MS
θ =Mν,l and MU

γ has type 2.

Proof. Let (MU
γ ,Σ

U
γ ) = Ult((Mν,l,Ων,l), F ), where F is the order zero measure on ρ̂l(MU

γ ). The

relevant diagram is now

Q

MT
θ Mν,l MU

γ

M M M

πθ iF

i∗ i j

πθ(F ) σ

Here Q = Ult(MT
θ , πθ(F )) and σ : Ult(Mν,l, F ) → Ult(MT

θ , πθ(F )) is the copy map.

We shall use Dodd-Jensen to show that i↾ρl(M) = j↾ρl(M).

First, j is a +1-iteration map on (M−,Σ), and iF ◦ i : (M−,Σ) → (Ult(Mν,l, F ),Σ
U
γ ) is +1-

elementary, so j(η) ≤ iF ◦ i(η) for all η. But crt(F ) > ρl(Mν,l), so

∀η < ρl(M)(j(η) ≤ i(η)).

On the other hand, iπθ(F ) ◦ i∗ is a +1-iteration map from (M−,Σ) to (Q,Ω), where Ω =

ΣT ⌢⟨πθ(F )⟩. Here Ω is a level l strategy, so (Q,Ω) is a type 2 pair generated by (MT
θ ,Σ

T
θ ). Ω is a

+1-strategy for Q−. Since

Ων,l = Ωiπθ(F )◦πθ

= Ωσ◦iF
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we have

ΣU
γ = Ωσ.

So σ ◦ j is elementary in the category of mouse pairs. By Dodd-Jensen,

iπθ(F ) ◦ i∗(η) = iπθ(F ) ◦ πθ ◦ i(η) ≤ σ ◦ iF ◦ i(η) = σ ◦ j(η)

for all η. But iπθ(F ) and iF are the identity on ρl(Mν,l), and σ agrees with πθ on ρl(Mν,l). Thus

∀η < ρl(M)(i(η) ≤ j(η)).

Thus i↾ρl(M) = j↾ρl(M). But the generators of i and j are all below ρl(Mν,l) = sup i“ρl(M) =

sup j“ρl(M). It follows that MS
θ = MU

γ , contrary to our case hypothesis. □.

Case 4. MS
θ and MU

γ are both of type 2.

Proof. We shall show that i = j. This then leads to the same contradiction we arrived at in case 1.

Let F and G be the order zero measures on the Mν,l sequence such that MS
θ = Ult(Mν,l, F )

and MU
γ = Ult(Mν,l, G) respectively. Let F0 = iF (F ) and G0 = iG(G), and

P = Ult(MS
θ , F0) = Ult(Mν,l, F

+),

Q = Ult(MU
γ , G0) = Ult(Mν,l, G

+),

R = Ult(P, iF+(G+)) = Ult(Q, iG+(F+)),

and

Ω = (Ων,l)⟨F+⟩,⟨iF+ (G+)⟩ = (Ων,l)⟨G+⟩,⟨iG+ (F+)⟩.

Ων,l quasi-normalizes well when considered as a +1-strategy for M−
ν,l, and ⟨F+, iF+(G+)⟩ is a stack

of λ-separated trees, so the identity on the last displayed line is justified. Ω is a level l strategy for

R, that is, a +1-strategy for R−. The following diagram describes our situation:
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(R∗,Ω∗) (R,Ω)

P ∗ P Q

MT
θ MS

θ Mν,l MU
γ

M M M

σ

i∗1

ψ

i1 j1

i∗0 i0
F+ G+

F G

πθ

j0

i∗ i j

Here i0, i1, j0, and j1 are the ultrapower maps. i∗0 and i∗1 come from copying the ultrapowers giving

rise to i0 and i1. The copy maps are ψ and σ. We claim that i1 ◦ i0 ◦ i = j1 ◦ j0 ◦ j. For

j1 ◦ j0 ◦ j(η) ≤ i1 ◦ i0 ◦ i(η) for all η, because j1 ◦ j0 ◦ j is an iteration map and Σ = Ωi1◦i0◦i, so that

i1 ◦ i0 ◦ i is +1-elementary as a map from (M−,Σ) to (R,Ω). On the other hand,

i∗1 ◦ i∗0 ◦ i∗(η) = σ ◦ i1 ◦ i0 ◦ i(η)

≤ σ ◦ j1 ◦ j0 ◦ j(η)

because i∗1 ◦ i∗0 ◦ i∗ is a +1-iteration map on (M−,Σ) and σ ◦ j1 ◦ j0 ◦ j is nearly +1-elementary on

(M−,Σ).

Thus i1 ◦ i0 ◦ i = j1 ◦ j0 ◦ j. Let

ρ = ρl(Mν,l);

then the generators of i and j are contained in ρ, while the generators of i0, i1, j0, and j1 are all

strictly above ρ. So

Ei ↾ ρ = Ei1◦i0◦i ↾ ρ

= Ej1◦j0◦j ↾ ρ

= Ej ↾ ρ.

Thus i = j and MS
θ = MU

γ . The stability of θ then leads to a contradiction, as in case 1. □

This completes the proof of Claim 8. □

Let ξ be as in Claim 8, and let τ be such that (MS
ξ ,Λξ) = (MU

τ ,Σ
U
τ ). We have eSξ = eUτ by the

proof in claim 8.

Claim 9. τ < γ, and αξ ≤ lh(EU
τ ) < α

+,MU
τ

ξ .
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Proof. Suppose τ = γ. Let B code MS
ξ+1 as a subset of αξ, namely for Q = MS

ξ+1,

B = ThQ̂
l

1 (αξ ∪ p1(Q̂l)).

Then B ∈ MS
ξ because Φξ is problematic, so B ∈ MU

τ . But B /∈ MS
ξ+1, so B /∈ MS

θ , so B /∈Mν,l.

Suppose θ > ξ + 1, then MS
θ = Mν,l or Mν,l is a type 1 core of MS

θ ; in either case, Mν,l is not

l+1-sound. This means eitherMν,l = MU
τ orMν,l is a type 1 core of MU

τ . In both cases, MS
θ ,Mν,l,

and MU
γ agree to their common value for ρl > αξ, so B ∈MS

θ . Contradiction.

So θ = ξ + 1 and therefore, (MS
ξ+1,Λξ+1) = (Mν,l,Ων,l) � (MU

τ ,Στ ) (the possibility that

(MS
ξ+1,Λξ+1) is a type 1 core of (MU

τ ,Στ ) cannot occur because MS
ξ+1 ∈ MU

τ ). This contradicts

the problematicity of Φξ. So we must have τ < γ.

Note that (MS
ξ ,Λξ), (MS

ξ+1,Λξ+1), and (MU
τ ,Σ

U
τ ) all agree with Mν,l below αξ. (Possibly

not at αξ.) This is because otherwise λξ < αξ, and ξ + 1 is a dead node in S. It follows that

αξ ≤ lh(EU
τ ).

If αξ < lh(EU
τ ), then MU

τ+1 agrees with MU
γ up to their common value η for α+

ξ . Suppose for

contradiction that lh(EU
τ ) > α

+,MU
τ

ξ . So η = α
+,MU

τ
ξ . Suppose Mν,l is MU

γ or its type 1 core, then

note that B ∈ MU
τ −MU

γ , so η < α
+,MU

τ
ξ . Contradiction. Now suppose Mν,l �MU

γ . Then by the

way our comparison works, o(Mν,l) ≥ lh(EU
τ ) ≥ α

++,MU
γ

ξ . But ρ(Mν,l) = ρ(MS
ξ+1) = ρ(MS

θ ) ≤ αξ

and Mν,l is sound. Contradiction.

Thus lh(EU
τ ) < α

+,MU
τ

ξ as desired. □

Now let

ρ = ρ(MS
ξ+1) = ρl+1(MS

ξ+1).

Thus ρ = ρ(MS
θ ) = ρ(Mν,l) as well.

Claim 10. Either ρ = αξ, or ρ
+,MS

ξ+1 = αξ. Moreover, lh(ET
β ) ≤ ρ for all β < τ .

Proof. ρ ≤ αξ because MS
ξ+1 is αξ-sound, so we are done unless ρ < αξ.

Suppose ρ < αξ. Since ρ is a cardinal in MS
ξ+1 and σξ↾αξ = id, ρ is a cardinal in MS

ξ . But

|αξ| ≤ ρ in MS
ξ , so |αξ| = ρ in MS

ξ . Since αξ is a cardinal in MS
ξ+1, αξ = ρ+,M

S
ξ+1 . □

The following elementary fact will help:

Proposition 4.13. Let W be a λ-separated tree, let µ+1 ≤W η, and let MW
η |lh(EW

µ )�N �MW
η ;

then

(a) lh(EW
µ ) ≤ ρ−(N), and

(b) ρ(N) is not in the open interval (crt(EW
µ ), lh(EW

µ )).

Proof. Let Eα = EW
α and Mα = MW

α . If ρ(M∗
µ+1) ≤ crt(Eµ) then ρ(Mµ+1) = ρ(M∗

µ+1). If

crt(Eµ) < ρ(M∗
µ+1), then

lh(Eµ) < sup i∗µ+1“ρ(M
∗
µ+1) = ρ(Mµ+1).
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We use here that Eµ has plus type; otherwise lh(Eµ) = ρ(Mµ+1) is possible.68 Note also that

lh(Eµ) < ρ−(Mµ+1) in both cases. So the proposition holds when η = µ + 1 and N = Mµ+1.

If Mµ+1|lh(EW
µ ) � N � MW

η , then lh(Eµ) ≤ ρ(N) because lh(Eµ) is a cardinal in Mµ+1 and

lh(Eµ) ≤ ρ−(N). Thus the proposition holds when η = µ+ 1.

We now proceed by induction on η. Let µ+1 <W β+1 and W -pred(β+1) = α. By induction,

(a) and (b) hold at η = α. We claim that they hold at η = β+1. For sinceMα|lh(Eµ)�M∗
β+1�Mα,

we have lh(Eµ) < ρ−(M∗
β+1) and ρ(M

∗
β+1) is not in the open interval (crt(Eµ), lh(Eµ)).

69 But then,

taking the Eβ ultrapower, we see that lh(Eµ) ≤ lh(Eβ) ≤ ρ−(Mβ+1) and ρ(Mβ+1) is not in the

open interval (crt(Eµ), lh(Eµ)). The same is true for N �Mβ+1 such that lh(Eβ) ≤ o(N) because

lh(Eβ) is a cardinal in Mβ+1, and hence for N �Mβ+1 such that lh(Eµ) ≤ o(N) by coherence.

The induction hypotheses (a) and (b) clearly pass through limits.

Claim 11. E
MS

ξ
αξ ̸= ∅.

Proof. Suppose E
MS

ξ
αξ = ∅. Thus

ρ ≤ αξ ≤ λ̂(EU
τ ) < lh(EU

τ ).

Let F = EU
µ be the first extender used in [0, γ]U such that lh(F ) ≥ αξ. (Thus lh(F ) > αξ.) We

must have crt(F ) < λ̂(EU
τ ), since otherwise U -pred(µ + 1) ≥ τ + 1, so some extender used in

[0, U -pred(µ+ 1)]U has length ≥ αξ.

We claim that ρ ≤ crt(F ). First notice that there is an N � MU
γ such that lh(F ) ≤ o(N)

and ρ(N) = ρ; namely, N = MU
γ if MU

γ has type 2 with Mν,l as its type 1 core, and N = Mν,l

otherwise. So by Proposition 4.13, ρ is not in the open interval (crt(F ), lh(F )). But ρ < lh(F )

because αξ < lh(F ), so

ρ ≤ crt(F ).

By Claim 10, lh(ET
β ) ≤ ρ for all β < τ , so we get

U -pred(µ+ 1) = τ.

By Claim 9, α
+,MU

γ

ξ = α
+,MU

τ+1

ξ < α
+,MU

τ
ξ . It follows that M∗,U

µ+1 � MU
τ |α

+,MU
τ

ξ , so U drops

at µ + 1. This implies that MU
γ has type 1 and is unsound, so Mν,l � MU

γ . If Mν,l � MU
γ , then

lh(F ) ≤ ρ(Mν,l) = ρ by 4.13. Thus

MU
γ =Mν,l.

68But even in the λ-separated case, it is possible that ρ(Mη) = lh(Eµ) for µ+ 1 <W η.
69But ρ(M∗

β+1) = lh(Eν) is possible, which is why the proposition allows ρ(MW
η ) = lh(Eµ).
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Moreover ρ = ρ(Mν,l), so there can be no further dropping along [µ+ 1, γ]U , and thus

ρ = ρl+1(M∗,U
µ+1),

M∗,U
µ+1 = Cl+1(Mν,l),

and

i0 =df iµ+1,γ ◦ i∗,Uµ+1

is the anticore map.70

Taking the type 1 core of a type 2 premouse of degree l commutes with taking its standard l+1

core, so

C(MS
ξ+1) = C(Cl+1(MS

θ ))

= Cl+1(C(MS
θ ))

= Cl+1(Mν,l)

= M∗,U
µ+1.

So C(MS
ξ+1) � MU

τ = MS
ξ , which means that Φ−

ξ is not problematic. To see that Φξ is not

problematic, consider the diagram

MS
θ

Mν,l
iD

= MU
γ

MS
ξ+1 C(MS

ξ+1) = M∗,U
η+1iD̄

i0iSξ+1,θ i0

Here D̄ = D(MS
ξ+1) if MS

ξ+1 has type 2, and D̄ is principal otherwise. D = iSξ+1,θ(D̄). Note

MS
θ has type 2 iff MS

ξ+1 has type 2, because MS
ξ+1 is stable and ρ(MS

ξ+1) ≤ crt(iSξ+1,θ). We now

calculate

(Λξ)C(MS
ξ+1)

= (ΣU
τ )M∗,U

µ+1

= Ωi0ν,l

= ΛiD◦i0
θ

= Λ
iSξ+1,θ◦iD̄
θ

= Λ
iD̄
ξ+1.

70At this point we know that MU
γ = Mν,l is not αξ-sound, so ξ + 1 <S θ.
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Line 1 holds because (MS
ξ ,Λξ) = (MU

τ ,Σ
U
τ ). Line 3 holds by pullback consistency for Σ and the

fact that ΣU
τ = Ων,l. Line 3 holds because ΛiDθ = Ων,l. The last line holds by Claim 4. Thus Φξ is

not problematic, contradiction. □

The final claim completes our proof by contradiction.

Claim 12. E
MS

ξ
αξ = ∅.

Proof. Otherwise E
MS

ξ
αξ = (EU

τ )
−, so lh((EU

τ )
−) = αξ. By Claim 10,

λ̂(EU
τ ) ≤ ρ.

Let F = EU
µ be the first extender used in [0, γ]U such that lh(F ) ≥ αξ. We claim that µ = τ .

For if not,

αξ < lh(F ),

and F is incompatible with EU
τ , so that

crt(F ) < λ̂(EU
τ ) ≤ ρ ≤ αξ.

But this means that there is an N �MU
γ such that lh(F ) ≤ o(N) and ρ(N) is in the open interval

(crt(F ), lh(F )), contrary to Proposition 4.13.71

Thus F = EU
τ and τ + 1 ≤U γ. But

ρ(Mτ+1) /∈ (crt(F ), lh(F )],

and

ρ−(MU
τ+1) > lh(F ).

(Here we use that F has plus type to rule out ρ(MU
τ+1) = lh(F ). This implies that whenever

N�MU
τ+1, lh(F ) ≤ o(N), and ρ(N) = lh(F ), then N ∈MU

τ+1. That in turn implies that τ+1 ̸= γ.72

Now let G = EU
η , where η + 1 ≤U γ and U -pred(η + 1) = τ + 1. crt(G) > λ̂(F ), so crt(G) >

αξ ≥ ρ. Since ρ = ρ(N) where either N = MU
γ or N = Mν,l � MU

γ , we get ρ = ρ(MU
τ+1), from

4.13. Moreover, U must drop at η + 1, with ρ(M∗,U
η+1) = ρ, and have no further drops. It follows

that MU
γ has type 1 and is not l + 1-sound, MU

γ =Mν,l, and

M∗,U
η+1 = Cl+1(Mν,l)

= Cl+1(C(MS
θ ))

= C(MS
ξ+1).

71Namely, N = Mν,l if Mν,l �MU
γ , and N = MU

γ otherwise.
72Otherwise N = Mν,l or N = MU

γ is a counterexample.
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Moreover the anticore map from M∗,U
η+1 to Mν,l is

i0 = iUη+1,γ ◦ i
∗,U
η+1.

There is enough agreement between MU
τ+1 and Ult0(MU

τ , F ) that M∗,U
η+1 � Ult(MU

τ , F ). This

implies that Φ−
ξ is not problematic, because the “ultrapower away” conclusion holds. To see that

Φξ is not problematic, consider first the diagram

MS
θ

Mν,l
iD

= MU
γ

MS
ξ+1 C(MS

ξ+1) = M∗,U
η+1iD̄

i0iSξ+1,θ i0

(Again, D̄ = D(MS
ξ+1) if MS

ξ+1 has type 2 and D̄ is principal otherwise, and D = iSξ+1,θ(D̄).)

Calculating as above, we get

(ΣU
τ+1)M∗,U

η+1
= Ωi0ν,l

= ΛiD◦i0
θ

= Λ
iSξ+1,θ◦iD̄
θ

= Λ
iD̄
ξ+1.

Since Λξ = ΣU
τ , what we must see is that

((ΣU
τ )⟨F ⟩)M∗,U

η+1
= (ΣU

τ+1)M∗,U
η+1

. (4.9)

That is, the tail of Σ after the length 2 stack ⟨U↾τ+1, ⟨F ⟩⟩ agrees with the tail of Σ after the length

1 stack U↾τ + 2, as far as trees based on M∗,U
η+1 goes. This follows from the fact that Σ normalizes

well. For let W =W (U↾τ + 1, F ) and consider the embedding normalization diagram

M MU
τ Ult(MU

τ , F )

MW
β

iU0,τ iF

iW0,β

σ

EW
τ = F = EU

τ , so W↾τ + 2 = U↾τ + 2. Let

α = α
+,Ult(MU

τ ,F )
ξ .
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It is not hard to see that α < lh(EW
τ+1), so since Σ is strategy coherent,

(ΣU
τ+1)M∗,U

η+1
= (ΣW

β )M∗,U
η+1

.

Because Σ normalizes well,

(ΣU
τ )⟨F ⟩ = (ΣW

β )σ.

But σ↾α = id by the elementary properties of embedding normalization, so

((ΣU
τ )⟨F ⟩)M∗,U

η+1
= (ΣW

β )M∗,U
η+1

.

Putting these equalities together, we get equation 4.9.

Thus Φξ is not problematic, a contradiction. □

Claims 11 and 12 are the contradiction that finishes our proof of the Condensation Theorem,

4.6.

We can drop the hypothesis that crt(π) < ρdeg(H)(H) from Theorem 4.6, at the cost of omitting

its conclusions concerning condensation of the external strategies. This will be useful in the proof

of square and full normalization.

Theorem 4.14. Assume AD+, and let (M,Λ) be a mouse pair with scope HC. Let H be a sound

premouse, π : H →M be nearly elementary, and suppose that

(1) ρ(H) ≤ crt(π), and

(2) H ∈M .

Then either

(a) C(H)�M , or

(b) C(H)�Ult(M,EMα ), where α = crt(π).

Proof. Let α = crt(π), n be largest such that α < ρn(H), and n ≤ deg(H). Let G and N be the

same as H and M , except that deg(G) = n = deg(N). Let Ψ = ΣπN . The hypotheses of 4.6 hold of

(G,Ψ), (N,ΣN ), and π. (We have H ∈ M by 4.3, hence G ∈ N , hence G is not the α-core of N .)

Hence one of the conclusions of 4.6 holds of them.

If it is conclusion (a), then C(G) � N , which easily implies C(H) � M . If it is (b), then

C(G)� Ult0(N, Ė
M
α ) yields C(H)� Ult0(M, ĖMα ).
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