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FiXx a < wi. R* denotes NW'¢, Let C C R® be
given. Gq(C) is played as follows:

I ‘no no SR (7%

I1 ‘ niq nNy+1
I and II alternate playing natural numbers ng
for £ < w - a. I plays first at limits.

I wins if (ng | <w-a) € C. Otherwise II wins.

Ga(C) is determined if one of the players has
a winning strategy.

Aim to show (using roughly o Woodin cardi-
nals) that for II sets C, Go(C) is determined.

This continues a line of results of Martin, Steel,
and Woodin. There are more results along
these lines, on games of variable countable
length.



An iteration tree 7 of length w consists of
e a tree order 1" on w,
e a sequence of models (M, | k < w), and

e embeddings jj ;: My, — M, for kT'I.

Each model M;4, for I+ 1 > 0 is an ultra-
power of a preceeding model. More precisely:
MH‘]- = U|t(Mk,El), where E; an extender
picked from M;, and k is the T predecessor
of Il + 1. jr 41 IS the ultrapower embedding.

M4

Ik 1+1
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My,

An iteration tree on M is a tree with Mg = M.
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Our trees will always
have an even branch,
Mo, Mo, Mg, ..., giving
rise to the direct limit
Meven-

The tree structure on
the odd models will
usually be some permu-
tation of w<¥. With
each odd branch b
we associate the direct
limit M.

(In this example, 0T'1, 0T 2, 1T 3, etc.)



In the iteration game™ on M, players ‘“‘good”
and “bad” collaborate to produce:

“Bad" plays iteration trees 7'7' on M?. “Good”
plays branches b’ through 7°. We let M't1 be
the direct limit model determined by b°.

Once the game ends, we let M“ be the direct
limit of the models M?*.

“Good"” wins if all models created (including
M%) are wellfounded. Otherwise “bad” wins.

M is iterable if the good player has a winning
strategy. An iteration strategy for M is a
winning strategy for the good player.

Elementary substructures of V are iterable in
this sense (Martin—Steel).

*The definition given here is specialized to our context.
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Suppose M = "4 is a Woodin cardinal,” and
in V there are M—generics for col(w,d). Let A
name a set of reals in M2 (w:%) Define a game
G(M, 6, A) as follows:

I and II collaborate playing a real z as usual. In
addition I plays an iteration tree 7 on M, and
ordinals witnessing Meyern, IS illfounded.

I wins if for every odd branch b, there exists g
SO that

1. g is col(w, j,(8))—9eneric/ My, and
2. z € jp(A)[g].

Otherwise II wins.

Lemma I. Either I wins Gu(A) in Mol (w:d);
or else I wins G(M, 6, A) in V.



The Lemma is proved by methods similar to
those introduced by Martin and Steel in “A
proof of projective determinacy.” (More on
this later.) It can be used to prove the deter-
minacy of Gu.(C), for II7 sets C.

Let A(xn) denote the “auxiliary” part of the
game in Martin’'s proof of II determinacy. (I
plays ordinals witnessing the linear order asso-
ciated to (xy) is wellfounded; II plays descend-
ing ordinals.)

The determinacy proof for Gu..(C) breaks into
parts as follows:
e Round 1 in A, followed by
e An application of Lemma I, followed by
e Round 2 in A, followed by
e An application of Lemmas I, followed by
e Round 3 in A, etc.



Fix C C R¥, II]. Fix a continuous embedding
(zn) — L(xyn), SO that

e L(xy) is a linear order on w and

o (zn) € C iff L(xy) is wellfounded.

Continuous means that L(xzy)[k 4+ 1 depends
only on acO[k, e ,wk_lfk. L(aco ce ,a:k_l) stands
for L(xn)k+ 1.

Fix M and {4 | k < w) so that

e M is a class model.

e Each o, is a Woodin cardinal in M, and
countable in V.

e M is iterable.

e [ he continuous embedding L belongs to
M.



Fix some u € M, an ordinal much greater than
sup{d,}. For expository simplicity, fix

e gog Which is col(w, §g)—generic/ M,

e g1 Which is col(w, §1)—generic/M]|gp];

e g> which is col(w, d»)—generic/M|gg * g1];

etc.

Work to specify definable predicates Py, Qg over
M; P1,Q1 over Mlgol, P2,Q> over Mlgg * g1];
etc.

P and @ will be predicates on tuples of the
form (xo,...,Tp_1,QQ0,...,Qr_1,7) Where
e Each x; is a real in M|[gg * --- * g;],

e The «o;-s are ordinals below p, matching
the order given by L(zg,...,zr_1)[k, and

e v is an ordinal greater than u.

(Let us call tuples of this form k-sequences.)
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To define P, and @, consider the following
game Fj:*

e I plays ap < pu so that aq,...ar_1,a match
the order given by L(xzqg,...,x_1).

e II plays v* > u so that ~* < ~.

e [ he two players then collaborate as usual
to play xp € M[go * -+ * gi].

The game is played in M|[gg *...gxl.

Observe that a run of Fj produces a k + 1-
sequence

(TQy e e ey Tl 1y Ty QO+ + + 5y Q15 Ay Y )

*Defined with respect to a k-sequence
LOy oy Lh—1,00y -y Of—1,7-



Put a k-sequence (xg, ..., Tr_1,00, -, Xk_1,7)
in P iff (in M[gg,*---*g]) II has a strategy in
F;. to produce a k4 1-sequence which belongs
to Pryi.

Note that this can be decided in

M[QO)* T *gk—1]7

since g, is added by a homogenous forcing. So
P, is indeed a predicate over M[gg*---* gr_1].

Put a k-sequence (zg,...,Tp_1,00, -+, 0k_1,7)
in Qg iIff I has a strategy in Fj to produce a
k + 1-sequence which belongs to Qp41.

(Note the change from “II has a strategy” to
“I has a strategy.”)

Again this can be decided in M[gg*---* gr_1].
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T he predicates P, Q. are defined by induction,
not on k but on ~: To determine whether

of membership of P41, but only for k£ + 1-
sequences (---,---,7") with v* < ~.
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Claim 1. For any «, either (0,0,v) € Py, or
(0,0,7) ¢ Qo-

Proof. Assume for contradiction (0,0,~) be-
longs to both Py and Qq.

Then in M{[gp] we have two strategies in Fy: A
strategy for II to enter P, and a strategy for I
to enter Q1.

Letting the strategies play each other we ob-
tain ap,yp, o SO that

1. (ap,z0,v0) belongs to both P; and Qq; and
2. v0 < 7.

Using 2 we may now repeat the process. We
obtain «i,v1,z1 so that (ag,a1,z0,21,71)
belongs to both P; and @Q1; and 1 < 7p.

Continuing this way get an infinite descending
sequence of ~;-s, a contradiction. []
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WIlog, M has nothing but L above the Woodin
cardinals. Precisely, M = L(VM) where 7 =
sup{d, | k < w}. We can talk about Silver
indiscernibles for M.

Claim 2. Suppose that for all v, (0,0,~) € Po.
Then (in V) I wins Gy.,(C).

Proof. Let v be an indiscernible for M. We
have (@,@,7) Z Py.

Let A > ~+ be another indiscernible. Observe
that

(ag, -+ Qk—1,%0,---,Tk—1,7) € P, <
(@, s O 1,XQy -+, Tl_1,\) € Py
for k-sequences (ag,...,Qk_1,L0s -+ Lh_1,7)-

This will allow us to play the move ~* in Fj:
Instead of playing the game F} associated to
G ,7v), we will switch to the game associ-
ated to (...... ,A) and play v* =~ < A.

13



Let us play against some imaginary opponent
in Gu.w(C). We describe how to play for I and
win.

By assumption (0,0,~) € Py. By indiscernibil-

So, in Mc°lwd0): FJay (a valid move in Fp)
vV (valid) ~*, II does not have a strategy to

produce xg so that (xqg, ag,vy*) € Py.

FiX ag witnessing this, and apply the statement
with v* = ~.

In Mol (wd0) I does not have a strategy to
produce zg € R so that (zg,ag,v) € P;.

Using Lemma I we have a strategy > for Iin
the corresponding game g.
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Let the imaginary opponent play against 2.
We obtain:

e g € R,

e An iteration tree as follows:

b
M O My
To

e go SO that

1. gg is col(w, dp®)—generic/ My, and

2. (zo,0%,7°) &€ P1°.

(ap® denotes ag “shifted” to My, i.e., jo.1(a0).
Similarly with P;° etc.)

(bg is given by the iteration strategy for M.)

So far we covered the first w moves in Gy.(C).
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(g, ap®, %) € P1° by 2 and indiscernibility.

So, in Ml[go]CO|(w’5ls)Z day (valid in Fl)
VvV (valid) ~*, II does not have a strategy to
produce z1 so that (zg,x1,a0°%,a1,7*) € P>°.

Fix a1 withessing this, and apply the statement
with ~* = ~3.

In M[go]°(«91°) II does not have a strategy
to produce z1 € R so that

(3307:617040570‘17’78) S PQS'

Using Lemma I we have a strategy > 1 for 1 in
the corresponding game G over Mq[go].
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Let the imaginary opponent play against 2 1.
We obtain:

o 1 € R,

e A second iteration tree as follows:

b b
M QM4 L Mo
To T1

e g1 SO that

1. g1 is col(w, §1°°)—generic/M»>, and

2. (zo,z1,00°%, 17 °,7%%) & Po3°5.

(A second ° denotes shifting from My to M>.
b1 is again obtained using the iteration strategy

for M.)

So far we covered the first w-2 moves in Gu.(C).
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Continuing this way we obtain:

1. xg"x1 x> - -+, covering all moves in Gy,.,(C).
2. Iteration trees, branches, and models as
follows:

3. Ordinals a; € M;. At each stage £ we know
that

SSS.-.S —SS.-.S ——S-.-S ———————

a0 , (1 , XD y ", O
(a tuple of ordinals in M,;) matches the
order given by L(xg,...,Tp_1)-

Let M be the direct limit of the models M,.
Note that M®° is wellfounded, because of our
use of an iteration strategy in picking b;.

the order given by L(xy). So this order is well-
founded, and (z,) € C.

O(Claim 2)
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Recall that u was a fixed parameter in the defi-
nitions of P,. Let us in retrospect fix a u which
IS an indiscernible for M.

Claim 3. Suppose that there exists a v so that
(0,0,v) € Py. Then (in V) II wins Gu..(C).

Proof. By Claim 1, (0,0,v) € Qo.- We can now
mirror the argument of the previous Claim,
showing that II wins Gu.o(C). O

Corollary. G,.(C) is determined. ]
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Recall the structure of the proof:

e Round 1 in A, followed by
e An application of Lemma I, followed by
e Round 2 in A, followed by
e An application of Lemma I, followed by

e Round 3 in A, etc.

where A includes the auxiliary moves in the
proof of II{ determinacy.

If the proof of determinacy for G,.,(C) gave us
auxiliary moves (A* say) with properties similar
enough to those in A, we could replace A by
A* in the scheme above, and get determinacy
for games of length w - w + w - w.
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In fact, by “breaking into parts and compos-
ing” we could prove determinacy for games of
any fixed countable length. (This process of
“preaking and composing” is similar in flavor
to the one used by Martin to propagate the
scale property under game quantifiers of fixed
countable length.)

So, does the determinacy proof for Gu.(C)
give auxiliary moves, with properties similar to
those in A7

Does Lemma I give such moves?

Note: A includes the auxiliary moves in the
proof of H% determinacy. The auxiliary moves
in the proof of determinacy for homogeneously
Suslin sets are just as good.

So if Lemma I gave us a homogeneously Suslin
representation, that would be enough.
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Lemma I draws on the following result of
Martin and Steel:

Work in M, assuming ¢ is a Woodin cardinal.

Suppose B C RxR is §T homogeneously Suslin.
Let 1T' be a tree witnessing this. We have
plT] = B.

Let A {z e R| 3y (z,y) € B}

{r e R|3Jy3f (2,9, f) € [T]}.

Let B* = —A.

Let T* be the Martin—Solovay tree obtained
from T. We have p[T*] = B*.

Theorem. (Martin—Steel) B* is homogeneously
Suslin. This is witnessed by T*.
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How to get from the Theorem to Lemma I?

Fix a name A € Mcol(w,d).

In M, let T' be the tree of attempts to con-
struct:

° :B=<$O,CU1...>ER,

e » = (po,p1,.---) @ sequence of conditions in
col(w,d), increasing in strength,

e © (Or a sequence (x,0,0,0,...)), a name in
Agcol(w,d)

so that

1. po forces “z € A,” and

2. for each n < w, pn forces “z(n) = x,."
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Apply methods similar to the ones used by
Marin and Steel to this tree. There are two
main differences.

First, T is not homogeneously Suslin.

Secondly, what we need is not

A={x cR|dp 3z, (z,p,z) € [T]},
but

A = {z € R | dgeneric p,3z, (x,p,z) € [T]}.

The second difference is the most serious.

Because of these differences we don’t get a
tree T which projects to the complement of
A; we get a game.

Think of a tree as a game with just one player.
Here we have to add a second player, to keep
the first one honest about p.
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At any rate, what we get is close enough to a
homogeneously Suslin representation, and can
be used in the determinacy proof in place of
the II7 auxiliary moves.
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