A simple proof of Clairaut's theorem.

Let \(g \) be continuous on some disk \(D \subseteq \mathbb{R}^2 \), and suppose \(g_{xy} \) and \(g_{yx} \) are continuous on \(D \). We shall show \(g_{xy}(a,b) = g_{yx}(a,b) \) for all \((a,b) \in D\).

The following lemma, which comes directly from Fubini's theorem, is the key. (Fubini's theorem is proved in a note posted earlier.)

Lemma. Let \(R \) be a rectangle, with \(R \subseteq D \). Then

\[
\iiint g_{xy} \, dA = \iiint g_{yx} \, dA
\]

Proof. Let \(R = [a,b] \times [c,d] \).
Using Fubini + the fundamental thm of Calc:

\[\iiint g_{xy} \, dA = \iiint g_{xy} \, dy \, dx \]
\[= \int_{a}^{b} \int_{c}^{d} (g_{x}(x,d) - g_{x}(x,c)) \, dx \]
\[= \left[g(x,d) - g(x,c) \right]_{a}^{b} \]
\[= g(b,d) - g(b,c) - g(a,d) + g(a,c). \]

Similarly

\[\iiint g_{yx} \, dA = \iiint g_{yx} \, dx \, dy \]
\[= \int_{c}^{d} \int_{a}^{b} (g_{y}(b,y) - g_{y}(a,y)) \, dy \]
\[= \left[g(b,y) - g(a,y) \right]_{c}^{d} \]
\[= g(b,d) - g(a,d) - g(b,c) + g(a,c). \]

So \(\iiint g_{xy} \, dA = \iiiint g_{yx} \, dA \), as desired.
Lemma 2 Let \(f \) and \(h \) be continuous on \(D \), and suppose \(\int_R^{SSf} dA = \int_R^{SSh} dA \) for all rectangles \(R \subseteq D \). Then \(f = h \) on \(D \).

Proof. Suppose \(f(a, b) \neq h(a, b) \), say \(f(a, b) > h(a, b) \). Since \(f \) and \(h \) are continuous on \(D \), we can find a small rectangle \(R \subseteq D \) such that

\[
f(x, y) - h(x, y) > 0 \quad \text{for all} \quad (x, y) \in R.
\]

But then

\[
\int_R^{SSf-h} dA > 0,
\]

But

\[
\int_R^{SSf-h} dA = \int_R^{SSf} dA - \int_R^{SSH} dA = 0.
\]

This is a contradiction. \(\square \)

Clearly, lemmas 1 and 2 together show \(g_{xy} = g_{yx} \) on \(D \), as desired \(\square \)