Part I. Integers and Polynomials

1. A grasshopper can jump \(p \) or \(q \) inches right or left on the line. Find all points on the line the grasshopper can reach starting from the origin.

2. Prove that the minimal positive integer \(d \) of the form \(d = mp + nq \) coincides with the Greatest Common Divisor of \(p \) and \(q \), and that \(\text{GCD}(p, q) \) can be found by the following Euclidean algorithm:
 Divide \(p \) by \(q > 0 \) with the remainder \(r \):
 \[p = lq + r \]
 where \(q > r \geq 0 \).
 If \(r > 0 \), proceed with \(q, r \) instead of \(p, q \). If \(r = 0 \), stop. The last non-zero remainder \(d \) equals \(\text{GCD}(p, q) \).

3. Find \(\text{GCD}(2^{120} - 1, 2^{100} - 1) \), \(\text{GCD}(n^{30} - 1, n^4 - 1) \).

4. Polynomials. A function of the form \(a_0x^n + a_1x^{n-1} + \ldots + a_{n-1}x + a_n \) with \(a_0 \neq 0 \) is called a polynomial of degree \(n \).
 Given two polynomials \(p(x) \) and \(q(x) \neq 0 \), prove that the minimal degree polynomial of the form \(m(x)p(x) + n(x)q(x) \) is the Greatest Common Divisor of \(p(x) \) and \(q(x) \) and can be found by the following algorithm:
 Divide \(p \) by \(q \) with the remainder \(r \):
 \[p(x) = l(x)q(x) + r(x) \]
 where \(\deg r(x) < \deg q(x) \).
 If \(r \neq 0 \), proceed with \(q \) and \(r \) instead of \(p \) and \(q \).
 If \(r = 0 \), stop. The last non-zero remainder \(d(x) \) is \(\text{GCD}(p(x), q(x)) \).

Notation: \(\mathbb{Z} \) — the set of all integer numbers.
\(\mathbb{Q} \) — the set of all rational numbers.
\(\mathbb{R} \) — the set of all real numbers.
\(\mathbb{R}[x] \) — the set of all polynomials with real coefficients.
\(\mathbb{Q}[x] \) — the set of all polynomials with rational coefficients.
\(\mathbb{Z}[x] \) — the set of all polynomials with integer coefficients.

5. In \(\mathbb{Z}[x] \), find the minimal degree polynomial of the form \(m(x)(x + 2) + n(x)x \). Apply the Euclidean algorithm to \(p = x + 2, q = x \).

6. (a) An invertible element is called a unit. Find all units in \(\mathbb{Z}, \mathbb{Q}, \mathbb{R}, \mathbb{R}[x], \mathbb{Q}[x], \mathbb{Z}[x] \).
 (b) An element \(a \neq 0 \) is called composite if it can be factored as \(a = bc \) where none of \(b, c \) is a unit. Is \(x^3 - 2 \) composite in \(\mathbb{Q}[x] \)? Which polynomials of the form \(ax^3 + bx^2 + cx + d \) are composite in \(\mathbb{R}[x] \)?

\(^1\) c by Berkeley Math Circle
(c) Prove that a polynomial equation of degree \(n \) has at most \(n \) solutions.

The Fundamental Theorem of Algebra says that any polynomial in \(\mathbb{R}[x] \) of degree \(> 2 \) is composite.

Homework.

(a) Find the Greatest Common Divisor of 11...11 (100 ones), and 11...11 (60 ones).

(b) A Heffelump is a chess piece which moves like Knight but with \(p \) steps in one direction and \(q \) steps in the perpendicular direction. Determine for which \(p \) and \(q \) the Heffelump, starting from one cell on the infinite chess board, can reach any other cell.

(c) Prove that there exists an integer \(a \) such that \(a+1, a+2, \ldots, a+1998 \) are all composite.

(d) Prove that if \(ab \) is divisible by \(c \) but neither \(a \) nor \(b \) is divisible by \(c \) then \(c \) is composite. The same — for \(a, b, c \) in \(\mathbb{R}[x] \) or \(\mathbb{Q}[x] \). Can you prove the same statement for \(\mathbb{Z}[x] \)?

(e) Prove that any polynomial \(x^n + a_1x^{n-1} + \ldots + a_n \) of degree \(n > 0 \) can be factored into a product of linear and quadratic real polynomials (of the form \(x-b \) or \(x^2 + px + q \)), and the factorization is unique up to a permutation of the factors.

(f) Formulate and prove a “unique prime factorization theorem” for \(\mathbb{Q}[x] \).

(g) Prove a “unique prime factorization theorem” for \(\mathbb{Z}[x] \).

Part II. Arithmetics modulo \(m \)

1. **Find the last digit of** \(2^{1998} \).

2. **Given a positive integer** \(m \), **two integers** \(a \) and \(b \) **are called congruent modulo** \(m \) **(write:** \(a \equiv b \pmod{m} \) **if** \(a - b \) **is divisible by** \(m \) **(in other words, if** \(a \) **and** \(b \) **have the same remainder upon division by** \(m \)).**

(a) **Suppose** \(ac \equiv bc \pmod{6} \) **and** \(c \neq 0 \pmod{6} \). **Does it mean that** \(a \equiv b \pmod{6} \)? **The same — modulo** \(7 \)?

(b) **Prove that** \(c \) **is invertible modulo** \(m \) **if and only if** \(\text{GCD}(c, m) = 1 \).

(c) **Find the inverse to each remainder modulo** \(7 \).

(d) **Compute** \(5^{103} \) **modulo** \(7 \).

(e) **Find all solutions of equation** \(x^2 = 1 \) **modulo** \(7 \).

Wilson’s Theorem: For any prime integer** \(p \) **1...(p-1) \equiv -1 \pmod{p}.

_Fermat’s Little Theorem: If** \(p \) **is a prime integer then** \(a^p \equiv a \pmod{p} \) **for any** \(a \).

3. **Prove that** \(7^{120} - 1 \) **is divisible by** \(143 \).
4. Let \(p \) be prime.

(a) For any \(a \not\equiv 0 \pmod{p} \) the sequence \(a^k \pmod{p}, k = 0, 1, 2, \ldots \), is periodic. If \(r(a) \) is the minimal period then the remainders of \(a, a^2, \ldots, a^{r(a)} \) are distinct.

(b) If the minimal periods \(r(a) \) and \(r(b) \) of the sequences \(a^k \pmod{p} \) and \(b^k \pmod{p} \) are relatively prime, then the minimal period of \((ab)^k \pmod{p} \) equals \(r(a)r(b) \).

(c) Let \(r \) be the Least Common Multiple of the minimal periods \(r(a) \) and \(r(b) \). Then there exists a remainder \(c \) with the minimal period \(r(c) = r \).

(d) Let \(s \) be the Least Common Multiple of the minimal periods \(r(a) \) for all \(a = 1, 2, \ldots, p - 1 \). Then there exist \(a \) with \(r(a) = s \). Deduce that \(s < p \).

5. Let \(s \) be the same as in 4(d). Prove that \(x^s - 1 \equiv (x - 1)(x - 2)\ldots(x - (p - 1)) \pmod{p} \). Deduce that \(s = p - 1 \) and that all remainders \(1, 2, \ldots, p - 1 \) are powers \(a, \ldots, a^{p-1} \pmod{p} \) of the same \(a \).

6. For which prime numbers \(p \) the equation \(x^2 \equiv -1 \pmod{p} \) has solutions? Find such a solution when it exists.

Homework

(a) Find \(3^{100} \) modulo 7 and \(7^{77} \) modulo 11.

(b) Find \(1^2 + \ldots + 36^2 \) modulo 37.

(c) Given a polynomial \(p(x) \) with integer coefficients such that \(p(1) = 2 \). Show that \(p(7) \) is never a perfect square.

(d) Could a perfect cube end with \(0\ldots01 \) (100 zeroes)?

(e) Let \(A \) be the sum of digits of \(444444444 \), \(B \) be the sum of digits of \(A \). Find the sum of digits of \(B \).

(f) Prove that there are infinitely many prime numbers congruent to 3 modulo 4.

(g) Can you generalize Fermat’s little theorem for a composite \(p \).

(h) Prove that the equation \(x^2 + y^2 = 3 \) has no rational solutions, and \(x^2 + y^2 = 1 \) has infinitely many rational solutions.

(i) Prove that a spot of area \(> 1 \) on the lattice paper can be translated in such a way that it hits at least two points of the lattice.

(k) Prove that any convex spot of area \(> 4 \) centrally symmetric with respect to the origin of the lattice paper contains a non-zero lattice point.