Problem 1. Consider the graph of \(f(t) \) in #2, p.402. Let \(g(x) = \int_0^x f(t) \, dt \).

(a) On what intervals is \(g(x) \) increasing? Why?
(b) On what intervals is \(g(x) \) concave up? Why?
(c) Calculate the 7th midpoint approximation \(M_7 \) of \(g(7) \).
(d) Calculate the exact value of \(g(5) \).

Problem 2. Let \(y(x) = \int_{x^2 - \frac{\pi^2}{4} + 1}^{\tan x} \frac{1}{\sqrt{2 + t^4}} \, dt \). Find

(a) \(\lim_{x \to \frac{\pi}{4}} y(x) \). Explain.
(b) \(y'(\frac{\pi}{4}) \). Explain.

Problem 3. A body moves along a straight line with acceleration \(a(t) = 2t + 3 \, m/sec^2 \). The velocity at time \(t = 0 \) is \(v(0) = -4 \, m/sec \).

(a) Find the velocity and the speed functions for the time period \(-3 \leq t \leq 10\). Draw their graphs.
(b) Find the average speed for the time period \([-3 \, sec, 10 \, sec]\).
(c) Find the displacement of the body at time \(t = 10 \, sec \) relative to the position at \(t = -3 \, sec \).
(d) Find the total distance travelled for the time interval \([-3 \, sec, 10 \, sec]\).

Problem 4. Consider the following integrals:

\[
A = \int_1^4 2x \ln x \, dx, \quad B = \int_0^3 2x \ln(x + 1) \, dx, \quad C = \int_1^4 2(x - 1) \ln x \, dx, \quad D = \int_0^9 \ln(\sqrt{x} + 1) \, dx.
\]

Which of these integrals are equal to each other? Explain. (Substitution Rule will be helpful here.)

Problem 5. Find the numbers \(a \) such that the average value of the function \(f(x) = (x^2 + 3) \) on the interval \([a, 1]\) equals 4. Find all \(c \in [a, 1] \) for which \(f(c) = 4 \).

Problem 6. Let \(f(x) = x^4 + 1 \) and \(g(x) = \sqrt[4]{x} + 1 \).

(a) Draw the region \(R \) determined by the two curves \(f(x) \) and \(g(x) \), and bound on the left by \(x = 0 \) and on the right by \(x = 2 \).
(b) Find the area of the region \(R \).
(c) Set up a formula for the volume of the solid defined by rotating the region \(R \) about the \(x \)-axis.
(d) Set up a formula for the volume of the solid defined by rotating the region \(R \) about \(x = -3 \).

Problem 7. Calculate \(\int \tan x \ln(\cos x) \, dx \). (Use Substitution twice.)

Problem 8. If \(f'(x) \) is continuous on \([a, b]\), show that \(2 \int_a^b f(x)f'(x) \, dx = [f(b)]^2 - [f(a)]^2 \). (Hint: Substitute.)

Problem 9. Calculate the volume of a solid whose base is the region between the curves \(y = x^2 \) and \(y = 1 \), and whose cross-sections perpendicular to the \(y \)-axis are squares.

Problem 10. Find \(\lim_{h \to 0} \frac{1}{h} \int_2^{2+h} \sqrt{1 + t^3} \, dt \). (Use LH and FTC.)