
RICCI CURVATURE IN KÄHLER GEOMETRY

SONG SUN

Abstract. These are the notes for lectures given at the Sanya winter
school in complex analysis and geometry in January 2016. In the first
lecture we review the meaning of Ricci curvature of Kähler metrics and
introduce the problem of finding Kähler-Einstein metrics. In the second
lecture we describe the formal picture that leads to the notion of K-
stability of Fano manifolds, which is an algebro-geometric criterion for
the existence of a Kähler-Einstein metric, by the recent result of Chen-
Donaldson-Sun. In the third lecture we discuss algebraic structure on
Gromov-Hausdorff limits, which is a key ingredient in the proof of the
Kähler-Einstein result. In the fourth lecture we give a brief survey of the
more recent work on tangent cones of singular Kähler-Einstein metrics
arising from Gromov-Haudorff limits, and the connections with algebraic
geometry.

1. Introduction

Let (X, g) be a Riemannian manifold of dimension m. Given a point p in
X, we can choose local geodesic normal co-ordinates {x1, · · · , xm} centered
at p. Then we have a Taylor expansion of the metric tensor

gij(x) = δij −
1

3

∑
i,j,k,l

Rikjl(p)x
kxl +O(|x|3),

where Rm(p) :=
∑

i,j,k,lRikjl(p)dx
i ⊗ dxj ⊗ dxk ⊗ dxl is the Riemann cur-

vature tensor at p. Roughly speaking, the formula says that Riemannian
curvature is the second derivative of the Riemannian metric. We also have√

det(gij(x)) = 1− 1

6

∑
i,j

Rij(p)x
ixj +O(|x|3),

where Ric(p) :=
∑

i,j Rij(p)dx
i ⊗ dxj is the Ricci tensor at p, and Rij(p) =∑

k Rikjk. Thus Ricci curvature is the second derivative of the volume form.
It follows immediately that the sign of Ricci curvature is closely related to
the infinitesimal growth of volume of geodesic balls. Globally we have the
classical Bishop-Gromov volume comparison theorem (see for example [45]),
a special case of which is the following

Theorem 1. Suppose X is complete and Ric(g) ≥ 0, then for all r > 0, we
have

V ol(B(p, r)) ≤ V ol(Br),
where B(p, r) is the geodesic ball of radius r centered at p, and Br is a ball
of radius r in the Euclidean space Rm. Moreover, if V ol(B(p, s)) = V ol(Bs)
for some s > 0, then B(p, s) is isometric to Bs.

1
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Analytically Ricci curvature often appears in Bochner-type formulae. Given
a one-form α, we have

∆Hα = ∇∗∇α+Ric.α,

where ∆H = dd∗ + d∗d is the Hodge Laplacian operator, and ∇∗∇ is the
rough Laplacian operator. Dually given a vector field V , the following holds

S∗S(V ) = ∇∗∇V −Ric.V −∇(Tr(S(V )),

where S(V ) is the symmetrization of ∇V ∈ Ω1(TX) ' TX ⊗ TX. Note
S(V ) = 0 if and only if V is a Killing vector field, i.e. LV g = 0. The space
of all Killing vector fields on X is the Lie algebra of the isometry group of
(X, g). It follows from these the well-known results

Theorem 2. Suppose X is compact

• If Ric(g) ≥ 0, then any harmonic one-form α on X (i.e. ∆Hα = 0)
is parallel, in particular b1(X) ≤ m. If furthermore Ric(g) > 0 at
one point, then there is no nonzero harmonic one-form on X, and
b1(X) = 0 (indeed, if Ric(g) > 0 everywhere on X then Myers’s
theorem implies π1(X) is finite);
• If Ric(g) ≤ 0, then any Killing vector field on X is parallel. If

furthermore Ric(g) < 0 at one point, then there is no non-trivial
Killing vector field on X.

So roughly speaking, positive Ricci curvature restricts topology, and neg-
ative Ricci curvature restricts symmetry.

A Riemannian metric g is called Einstein if it satisfies the equation

(1) Ric(g) = λg

for some Einstein constant λ. If X is compact, then this is the Euler-
Lagrange equation of the Einstein-Hilbert functional

EH : g 7→ V ol(g)−(2−m)/m

∫
X
S(g)dV olg.,

where S(g) is the scalar curvature function of g, which at a point p is given
by

∑
iRii(p).

Now we assume (X, g) is Kähler. This means that the holonomy group of
g is contained in U(m/2) (in particular m is even), or in other words, there
is a parallel almost complex structure J , i.e.,

(2) ∇gJ = 0.

We will denote by n = m/2 the complex dimension of X.

Equation (2) implies two facts

• J is integrable. This means locally one can choose holomorphic co-
ordinates {z1, · · · , zn} so that X is naturally a complex manifold.
There are natural ∂ and ∂̄ operators on differential forms on X.
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• The Kähler form ω = g(J ·, ·) is closed. Locally in holomorphic co-
ordinates we may write

(3) ω =

√
−1

2
gαβ̄dz

α ∧ dz̄β,

where gαβ̄ = g(∂zα , ∂z̄β ) in terms of the natural complexification

of the Riemannian metric g. On the complex manifold (X,J), ω
is a positive (1, 1) form, i.e., (gαβ̄) is a positive definite Hermitian
matrix. For simplicity we may also refer to ω as the Kähler metric
if the underlying complex structure J is fixed in the context.

From now on we assume X is compact. Then ω defines a de-Rham coho-
mology class [ω] ∈ H2(X; R). Since the volume form of g is given by

dVolg = ωn/n!,

the volume of (X,ω) depends only on [ω].

Now we shift point of view, and fix the underlying complex structure J of
X. Let Kω be the space of all Kähler forms on (X,J) that is cohomologous
to ω in H2(X; R). By the ∂∂̄-lemma, we have

Kω = {ω + i∂∂̄φ|φ ∈ C∞(X; R), ω + i∂∂̄φ > 0}.

This is called the Kähler class of ω.

Fix a point p ∈ X, using the fact that ω is closed, by a local transformation
of holomorphic co-ordinates we may assume

gαβ̄(z) = δαβ −
1

2

∑
γ,δ̄

Rαβ̄γδ̄(p)z
az̄b +O(|z|3),

where Rαβ̄γδ̄(p) := Rm(p)(∂zα , ∂z̄β , ∂zγ , ∂z̄δ) is the complexified Riemannian
sectional curvature. Then we have

det(gαβ̄) = 1− 1

2
Rαβ̄(p)zαz̄β +O(|z|3),

where Rαβ(p) := Ric(p)(∂zα , ∂z̄β ). We define the Ricci form as a real-valued
(1, 1) form given by

Ric(ω) := Ric(g)(J ·, ·) =

√
−1

2
Rαβ̄dz

α ∧ dz̄β.

Then we have

(4) Ric(ω) = −
√
−1∂∂̄ log det(gαβ̄).

It follows immediately that Ric(ω) is closed, so it defines a cohomology class
in H2(X; R) ∩H1,1(X; C).

From another perspective, the volume form ωn/n! can be viewed as a
hermitian metric h on the anti-canonical line bundle K−1

X , using the fact

that a 2n form on X is equivalently a section of KX ⊗KX . Then (4) simply
means that the Ricci form is the curvature form of h. It also follows that
Ric(ω) ∈ 2πc1(X) ∈ H2(X; R) ∩ H1,1(X; C), where c1(X) := c1(K−1

X ) ∈
H2(X; Z) is the first Chern class of the complex manifold X.
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We say a cohomology class γ ∈ H2(X; R)∩H1,1(X; C) is positive (nega-
tive, zero, correspondingly) if there is a representative real-valued (1, 1) form
η ∈ [γ] that is positive (negative, zero, respectively) everywhere, i.e., locally
the corresponding matrix of functions (ηαβ̄) is positive definite. Using the

∂∂̄-Lemma and maximum principle it is easy to see that these three notions
are mutually exclusive. When γ = 2πc1(L) for some holomorphic line bun-
dle L, the positivity of γ is equivalent to algebro-geometrically that L being
ample; namely, for sufficiently large integer m, holomorphic sections of Lm

define an embedding of X into a complex projective space.
In particular, it makes sense to talk about the “sign” of c1(X) if it has

one. When dimCX = 1, the sign of c1(X) coincides with the sign of the
Euler characteristic of X.

When X is projective, i.e., when X can be embedded as a complex sub-
manifold of PN , the positivity of c1(X) can be numerically checked via the
Nakai-Moishezon criterion. This says that, for example, c1(X) is positive if
and only if

∫
Y c1(X)dimC Y > 0 for all non-trivial complex subvarieties Y .

In a sense, the sign of c1(X), as a purely complex geometric invariant, is a
numerical analogue of the sign of Ricci curvature. A much deeper relation-
ship between the two is given by Yau’s resolution of the Calabi conjecture.

Theorem 3 ([67]). Given any compact Kähler manifold X, the natural map
Ric : ω 7→ Ric(ω) from Kω to the space of all closed real-valued (1, 1) forms
in the cohomology class of 2πc1(X) is bijective.

This implies that if c1(X) has a sign, say c1(X) = λ[ω] for some λ ∈ R
and Kähler form ω, then we can find a Kähler form ω′ ∈ Kω such that
Ric(ω′) has the same sign as λ.

We have similar results to Theorem 2, with somewhat stronger conclusions

Theorem 4. Suppose X is compact

• If c1(X) > 0 (X is called Fano in this case), then X is simply-
connected.
• If c1(X) < 0 (X is called a smooth canonical model in this case),

then X does not admit any non-trivial holomorphic vector field.

Proof. (1) If c1(X) > 0 then by Theorem 3 we know X admits a Kähler
metric ω with positive Ricci curvature, so by Myers’s theorem π1(X)
is finite. Denote by χ(X,C) =

∑
q≥0(−1)qh0,q(X) the holomorphic

Euler characteristic of X, then by Hirzerbruch-Riemann-Roch theo-
rem we have

χ(X,C) =

∫
X
Td(ω),

where Td(ω) is the Todd form of ω. On the other hand, since
c1(X) > 0, it follows easily from Kodaira vanishing theorem (whose
proof involves a generalized Bochner formula) and Serre duality that
h0,q(X) = 0 for all q > 0. Hence χ(X,C) = 1.

Now let π : X̂ → X be a finite cover of degree d, then X̂ admits
a natural complex structure so that π is holomorphic, and π∗ω is
a Kähler metric on X̂ with positive Ricci curvature. So c1(X̂) is
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also positive, hence as above we know χ(X̂,C) = 1. Since Td(ω) is
determined by the curvature form of ω, we have Td(π∗ω) = π∗Td(ω),

so by Hirzebruch-Riemann-Roch again it follows that χ(X̂,C) =
χ(X,C)d. Therefore d = 1.

(2) If c1(X) < 0, then it is a direct consequence of Kodaira vanishing
theorem that H0(X,TX) ' H1,n(X,KX) = 0.

�

When c1(X) is positive, there are indeed many more constraints, for exam-
ple, there are only finite many deformation families in each dimension [40].
The philosophy here is that positive first Chern class restricts the complex
structure moduli, and negative first Chern class restricts the holomorphic
symmetry.

For testing examples, let X be a smooth hypersurface of degree d in
CPn+1 (n ≥ 2), then c1(X) > 0/ = 0/ < 0 if and only if d− (n+ 1) < 0/ =
0/ > 0. There are only finitely many d such that d < n + 1, and for d ≥ 3
there is no non-zero holomorphic vector field on X [41].

A Kähler metric g is called Kähler-Einstein if g is also Einstein, i.e.,
Ric(g) = λg for some λ ∈ R; or equivalently,

(5) Ric(ω) = λω

Clearly if such a metric exists on X then c1(X) must have a sign. The
converse is the famous

Conjecture 5 (Calabi 1954 [10]). Let X be a compact Kähler manifold. If
c1(X) has a sign then X admits a unique Kähler-Einstein metric.

The problem can be formulated in terms of solving a complex Monge-
Ampère equation. Suppose c1(X) has a sign, by scaling the Kähler class
we may assume 2πc1(X) = λ[ω] where λ ∈ {+1, 0,−1}. So ω determines
a hermitian metric on K−1

X , and thus a volume form Ω. If ω′ = ω + i∂∂̄φ,

then Ω′ = e−λφΩ, the Kähler-Einstein equation is equivalent to the volume
form equation

(6) (ω + i∂∂̄φ)n = Ce−λφΩ,

where C is a constant. Then we have the following fundamental existence
results

• Aubin [1], Yau [67] 1976: If c1(X) < 0, then there is a unique Kähler
metric ω on X with Ric(ω) = −ω.
• Yau 1976 [67]: If c1(X) = 0, then there is a unique Kähler metric ω

with Ric(ω) = 0 in each Kähler class of X. Such a metric is called
a Calabi-Yau metric.

In the Fano case, the problem is much more difficult. From the PDE point
of view the sign of λ is crucial in obtaining a priori estimates via maximum
principle argument. For example, at the maximum of φ we get from the
equation that Ce−λφΩ ≤ ωn. If λ < 0 then we get from this an upper bound
on φ; but if λ > 0 then we get the wrong sign in terms of obtaining a useful
bound. On the other hand, the strict uniqueness fails when c1(X) > 0,
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since in this case there could be nontrivial holomorphic vector fields on X
with zeroes, and pulling back by the holomorphic automorphisms generated
by these will yield genuinely different Kähler forms ω satisfying the same
equation. Notice by Theorem 4 there are no non-zero holomorphic vector
fields when c1(X) < 0, so the group Aut(X) of holomorphic transformations
of X is discrete and by the uniqueness statement in the Aubin-Yau theorem
it preserves the Kähler-Einstein metric, so must indeed be finite. Similarly
when c1(X) = 0 it can be shown that Aut(X) is compact and acts by
isometries with respect to the Calabi-Yau metric; it can be non-discrete
though (for example, when X is a complex torus). But when c1(X) > 0,
the group Aut(X) can be non-compact (for example, when X = CP1), so
can not preserve a Kähler-Einstein metric (assuming there is one).

Bando-Mabuchi [2] proved the above is the only way to cause non-uniqueness.
Let Aut0(X) be the identity component of Aut(X). For a Kähler metric ω
we denote by Iso(X,ω) the group of holomorphic transformations that pre-
serve ω. It is a compact subgroup of Aut(X). Taking the complexified
Lie algebra of the identity component Iso0(X,ω) inside the Lie algebra of
Aut(X), we obtain a complex Lie group Iso0(X,ω)C ⊂ Aut0(X). If X is

Fano, then Aut(X) acts naturally on K−1
X so on H0(X,K−kX ) for all k. Hence

for k large we can view Aut(X) as a subgroup of the group of projective

linear transformations of P(H0(X,K−kX )), and Iso(X,ω) as a subgroup of
the corresponding projective unitary group (with respect to the natural L2

hermitian inner product on H0(X,K−kX ) defined by ω). In this case it follows

that Iso0(X,ω)C is indeed the complexification of Iso0(X,ω), in particular,
the complex dimension of the former equals the real dimension of the latter.

Theorem 6 (Bando-Mabuchi). Suppose X is Fano, and ω1, ω2 are Kähler-
Einstein metrics in 2πc1(X), then there is an element f ∈ Iso0(X,ω1)C ⊂
Aut0(X) such that ω2 = f∗ω1.

So in any case if a Kähler-Einstein metric exists, then it is canonical in
the sense the geometry is uniquely determined.

It is known that not every Fano manifold admits a Kähler-Einstein metric.
The following is proved by Matsushima in 1957 [53].

Theorem 7 (Matsushima). Suppose X is Fano, ω is a Kähler metric with
Ric(ω) = ω, then the group Aut(X) is reductive.

More precisely speaking, the Lie algebra of Aut(X) is naturally the com-
plexification of the Lie algebra of the compact subgroup of holomorphic
isometries of (X,ω). The original proof uses Bochner formula. We now
explain briefly that this also follows from the uniqueness Theorem 6. Note
indeed the original proof of Theorem 6 actually uses Theorem 7. However
we will explain later that there is a more geometric proof of Theorem 6 and
more importantly, its extension to singular varieties, without using Theorem
7.

Let F ∈ Aut(X), then F ∗ω is also Kähler-Einstein, so by Theorem 6, we
can find G ∈ Iso0(X,ω)C, such that F ∗ω = G∗ω, so F ◦ G−1 ∈ Iso(X,ω),
and F ∈ Iso(X,ω)IsoC0 (X,ω). If F ∈ Aut0(X), then it follows that F ∈
Iso0(X,ω)C. Notice we actually proved that Aut(X) = Iso(X,ω)IsoC0 (X,ω).
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Theorem 7 provides an algebro-geometric obstruction to the existence of
Kähler-Einstein metric on a Fano manifold X. One can use this to obtain
examples of Fano manifolds not admitting any Kähler-Einstein metric. For
example, let X be the blown up of CP2 at one point. Then

Aut(X) = {

∗ ∗ ∗0 ∗ ∗
0 ∗ ∗

}/C∗
Its maximal compact subgroup is

K = {

∗ 0 0
0 ∗ ∗
0 ∗ ∗

}/S1

It is easy to see this is not reductive, since K has real dimension 4, while
Aut(X) has complex dimension 6. So by Theorem 7 we know X does not
not admit any Kähler-Einstein metric. Similar arguments also apply to the
blown up of CP2 at two points.

We end this introduction by giving a heuristic reason why not every Fano
manifold can admit a Kähler-Einstein metric. This has to do with the
possibility of jumping of complex structures. Namely, there could exist a
family of Fano manifolds π : X → ∆ over the unit disc in C, such that
Xt := π−1(t) are all isomorphic for t 6= 0, but X0 is genuinely different.
If this happens then X0 necessarily admits non-trivial holomorphic vector
fields, which is possible when c1(X) > 0 but not possible when c1(X) < 0
(by Theorem 4).

Fix the underlying smooth manifold X, let J be the space of all integrable
complex structures on X with positive first Chern class. There is a natural
action of the group Diff(X) on J . Then the existence of the above family
implies the quotient space J /Diff(X) is not Haudorff.

Let K be the space of all Kähler structures (J, ω) on X such that Ric(ω) =
ω. Then there is a natural continuous map

K/Diff(X)→ J /Diff(X).

Suppose every Fano manifold admits a Kähler-Einstein metric, then this
map is surjective. By Theorem 6, the map is injective as well, and the fact
that the Kähler-Einstein metric is canonical would suggest that the inverse
map should be continuous (this is why the argument is only “heuristic”).
Now the contradiction follows since the space K/Diff(X) is always Hausdorff.
This is easy to see, using the fact that the space of isometries between two
compact Riemannian manifolds is always compact.

As we will see in the next section, the above jumping phenomenon is
indeed related to the obstructions to the existence of Kähler-Einstein metrics
on Fano manifolds.
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2. Formal picture and K-stability

We first give two variational interpretations of Kähler-Einstein metrics.
These lead to a formal picture concerning the existence problem, which
motivates the definition of K-stability. Even though this picture also holds
in the more general setting of constant scalar curvature Kähler metrics,
we will here restrict ourselves to the case that X is a Fano manifold and
ω ∈ 2πc1(X). Consider the space of all Kähler potentials in the Kähler class
Kω

H = {φ ∈ C∞(X; R)|ωφ := ω + i∂∂̄φ > 0}.
This is an infinite dimensional Fréchet manifold modelled on C∞(X; R).
There is a Riemannian metric, usually referred to as the Mabuchi-Semmes-
Donaldson metric, or MSD metric in short, on H, given by

〈φ1, φ2〉φ :=

∫
X
φ1φ2ω

n
φ ,

where φ1, φ2 ∈ TφH = C∞(X; R).
By a formal calculation (without putting rigorous topology) one gets

Lemma 8. The Levi-Civita connection on H is given by

∇φ1φ2 = −1

2
〈∇φ1,∇φ2〉φ,

where φ1, φ2 ∈ C∞(X,R) are viewed naturally as local vector fields on H
around φ.

Proof. First by definition the Levi-Civita connection is determined by the
formula

〈∇φ1φ2, φ3〉 =
1

2
(δφ1〈φ2, φ3〉φ + δφ2〈φ1, φ3〉φ − δφ3〈φ1, φ2〉φ),

where φ1, φ2, φ3 ∈ C∞(X; R) are viewed as local vector field in a neigh-
borhood of φ, and δ· is the variation along the · direction. It is easy to
see

δφ1〈φ2, φ3〉φ =

∫
X
φ2φ3∆φ1ω

n
φ

So we obtain

∇φ1φ2 = −1

2
〈∇φ1,∇φ2〉

�

It then follows from a direct calculation that the curvature operator is
given by

Kφ(φ1, φ2)φ3 = −1

4
{{φ1, φ2}φ, φ3}φ,

where {·, ·}φ is the Poisson bracket defined with respect to the symplec-
tic form ωφ. A convenient way to check this is to use local holomorphic
coordinates.

In particular, the sectional curvature is

Kφ(φ1, φ2) = −1

4

‖{φ1, φ2}‖2φ
‖φ1‖2φ‖φ2‖2φ

≤ 0.

Moreover, the curvature tensor is co-variantly constant.
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So formally H is an infinite dimensional negatively curved Riemannian
symmetric space. This fact is also a consequence of the moment map picture
of Fujiki-Donaldson [33, 26], which we will not discuss here in detail.

A smooth path φ(t)(t ∈ [0, 1]) in H is a geodesic if it satisfies

(7)
d2

dt2
φ(t)− 1

2
|∇ωφ(t)(

d

dt
φ(t))|2ωφ(t) = 0.

If we complexify the variable t by setting u := t+is, and define Φ(u) = φ(t),
then the geodesic equation becomes a degenerate complex Monge-Ampère
equation on X × [0, 1]×R (see for example [27])

(π∗ω + i∂∂̄Φ)n+1 = 0,

where π : X × [0, 1]×R→ X is the natural projection.

Define two 1-forms α on H by

α(ψ) = −
∫
X
ψ(Ric(ωφ)− ωφ) ∧ ωn−1

φ ,

β(ψ) =

∫
X
ψ(−V −1ωnφ + e−φΩ/(

∫
X
e−φΩ)),

where V =
∫
X ω

n and Ω is the volume form determined by ω as in the
previous section. By (5), (6), the zeroes of both forms are exactly the
Kähler-Einstein potentials.

Lemma 9. Both α and β are closed.

Proof. By (4) we can calculate that given ψ1, ψ2 ∈ C∞(X; R)

δψ2α(ψ1) = −
∫
X
ψ1(−

√
−1∂∂̄∆ψ2 −

√
−1∂∂̄ψ2) ∧ ωn−1

φ

− (n− 1)ψ1(Ric(ωφ)− ωφ) ∧
√
−1∂∂̄ψ2 ∧ ωn−2

φ

A simple integration by parts shows that this is symmetric in ψ1 and ψ2. It
follows that dα = 0. Similarly one can check dβ = 0. �

SinceH is contractible, there are two functions E and F onH, well-defined
up to addition of a constant, such that

α = dE , β = dF

E is called the Mabuchi functional, and F is called the Ding functional.
The connection with the Mabuchi-Semmes-Donaldson geometry of H lies

in the fact that

Proposition 10. Both E and F are convex along smooth geodesics.

To be more precise, let φ(t) be a geodesic in H, then we have

d2

dt2
E(φ(t)) =

∫
|D(φ̇(t))|2ωnφ(t),

where Df is the (0, 2) component of Hess(f) (with respect to ωφ(t)), called
the Lichnerowicz Laplacian. An important fact is that for a real valued
function f , Df = 0 if and only if J∇f is a holomorphic Killing field.
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For the Ding functional we have

d2

dt2
F(φ(t)) =

∫
X

[
1

2
|∇(φ̇(t))|2 − (φ̇(t)−

∫
X φ̇(t)e−φ(t)Ω∫
X e
−φ(t)Ω

)2]e−φ(t)Ω

The non-negativity follows from the weighted Poincaré inequality proved by
Futaki [36, 38]. This was also proved by a different approach and in a more

general context by Berndtsson [6]. Denote φ̇(t) = φ̇(t)−
∫
X φ̇(t)e−φ(t)Ω∫
X e−φ(t)Ω

, then

one can write the right hand side as∫
X
φ̇(t)L(φ̇(t))e−φ(t)Ω,

where L is a second order positive elliptic operator acting on functions f
with

∫
X fe

−φΩ = 0 (self-adjoint with respect to the L2 inner product defined

using the measure e−φΩ). It is also a fact that L(f) = 0 if and only if J∇f
is a holomorphic Killing field.

Now the uniqueness Theorem 6 follows at once if we know that any two
points φ1, φ2 ∈ H can be connected by a smooth geodesic. It is not hard
to show the existence of a unique weak solution Φ to (7) in the sense of
pluripotential theory. Chen [14] proved Φ is always C1,1 in the sense that
Φ is in C1,α for all α < 1 and i∂∂̄Φ is uniformly bounded; but in general
one should not expect Φ to be smooth, as shown by Lempert-Vivas [42] and
Darvas-Lempert [22].

The Ding functional is more amenable for our purpose, since it involves
fewer derivatives on φ than the Mabuchi functional. This corresponds to
the fact that a Kähler-Einstein metric is one with constant scalar cur-
vature; the general constant scalar curvature equation is of fourth order,
while the Kähler-Einstein Monge-Ampére equation is of second order. In-
deed, Berndtsson [6] proved the convexity of the Ding functional along weak
geodesics using the positivity of direct image bundles, and he used this to
give a more geometric proof of the Bando-Mabuchi uniqueness result. More
significantly, this has an important extension to singular Fano varieties, by
Berman-Boucksom-Eyssidieux-Guedj-Zeriahi [4].

Notice there is a natural action of Aut(X) on H given by pulling back
Kähler metrics. Given any holomorphic vector field V ∈ Lie(Aut(X)), it
thus defines a Killing vector field v onH. Clearly v preserves α, i.e., Lvα = 0,
so d(ιvα) = 0. Hence ιvα is independent of the choice of φ ∈ H. We define
this to be the Futaki invariant

Fut : Lie(Aut(X))→ C;V 7→ ιvα

The precise formula is

Fut(V ) = −
∫
X
H(Ric(ωφ)− ωφ) ∧ ωn−1

φ ,

whereH is the Hamiltonian function generating the action of V , with respect
to the symplectic form ωφ.
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Stable Case
Semi-Stable Case

Unstable Case

Figure 1

The Futaki invariant is indeed a Lie algebra homomorphism: given V,W ∈
Lie(Aut(X)), we have

Fut([V,W ]) = α([v, w]) = Lv(α(w))− (Lvα)(w) = 0.

Similarly, one can do the same for β, and can check that α(v) = Cnβ(v),
where Cn is a dimensional constant, so the Ding functional also yields es-
sentially the Futaki invariant.

If X admits a Kähler-Einstein metric, then the Futaki invariant must
vanish. So the Futaki invariant is an algebro-geometric obstruction to the
existence of Kähler-Einstein metric on X.

From the above formal picture we know searching for Kähler-Einstein
metrics on X amounts to finding critical points of a geodesically convex
functional on H. To illustrate this problem we consider the model case of
a strictly convex function f on R. There are three typical behaviors, see
Figure 1. In the first case there is a unique critical point, and the derivatives
of f at infinity along both directions are positive, we call this the stable case;
in the second case f has no critical point, but f is globally bounded from
below, and one can imagine there is a critical point at infinity, we call this
the semi-stable case; in the third case f has no critical point, even at ∞,
and the derivative of f at +∞ is negative, we call this the unstable case.

Formally we hope the existence of Kähler-Einstein metrics on X is equiv-
alent to the derivative at infinity of E along a geodesic ray in H is positive.
This is the notion of geodesic stability formulated by Donaldson [27]. How-
ever such a condition seems impossible to verify since the geodesic rays in
H are transcendent objects which are difficult to understand.

The notion of K-stability is an algebraization of this idea. We define a test
configuration to be a flat family of polarized families π : (X ,L)→ C which
is C∗ equivariant and relatively ample, such that (X1, L1) = (X,K−rX ) for
some positive integer r. The central fiber X0 could be singular in general.
This plays the role of a geodesic ray–the idea is that we are “degenerating”
the complex manifold X as t→ 0.
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When X0 is smooth, the derivative at infinity of E should be given by the
Futaki invariant on X0 of the holomorphic vector field generating the C∗

action. To define the Futaki invariant when X0 is not smooth, one uses the
fact the Futaki invariant has a purely algebro-geometric definition in terms
of Riemann-Roch formula [28]

Let L0 = K−rX0
, and dk be the dimension of H0(X0, L

k
0), wk be the total

weight of the C∗ action on H0(X0, L
k
0), then we have asymptotic expansions

dk = a0k
n + a1k

n−1 +O(kn−2),

wk = b0k
n+1 + b1k

n +O(kn−1).

We define the Donaldson-Futaki invariant of the test configuration X by

DF (X ) = 2(a1b0 − a0b1)/a0.

By Riemann-Roch formula when X0 is smooth, this agrees with the pre-
vious definition of Fut(V ), where V is the holomorphic vector field on X0

generating the C∗ action. There are also intersection theoretic formulae for
the Donaldon-Futaki invariant, by Wang [66] and Odaka [54].

The following definition due to Tian [64] and Donaldson [28] is now nat-
ural, given the above model picture

Definition 11. A Fano manifold X is K-semistable if DF (X ) ≥ 0 for all
test configuration X ; it is K-stable if DF (X ) > 0 for all non-trivial test
configurations X . X is K-unstable if it is not K-semistable.

The meaning of being “non-trivial” is slightly technical and we will not go
into the details here. In the previous section we discussed the phenomenon
of jumping of complex structure for Fano manifolds, and explained that this
implies that some Fano manifolds can not admit Kähler-Einstein metrics.
The notion of K-stability help deal with this issue, in the sense that suppose
there is a test configuration for X, with a smooth central fiber X0 which
is not isomorphic to X, then from the definition X and X0 can not be K-
stable simultaneously. In other words, the moduli space of K-stable Fano
manifolds is expected to be Hausdorff.

In fact, K-stability is exactly the algebro-geometric criterion for the exis-
tence of Kähler-Einstein metrics on a Fano manifold.

Theorem 12 (Chen-Donaldson-Sun 2012). A Fano manifold X admits
Kähler-Einstein metric if and only if X is K-stable.

This proves a conjecture that goes back to Yau [68], and is a special
case of the more general Yau-Tian-Donaldson conjecture. The “only if”
direction is proved by Tian [64], Stoppa [60], Mabuchi [51] Berman, [3].
The “if” direction is proved by Chen-Donaldson-Sun [15, 16, 17, 18]. Also
from the proof it follows that to check that X is not K-stable, one only
needs to consider special test configurations in the sense of Ding-Tian [25],
where the central fiber X0 is assumed to be a Q-Fano variety; this is also
proved purely algebraically in [49], using the minimal model program in bira-
tional geometry. The notion of K-stability extends to more general varieties
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with singularities, and it is intimately related to singularities [54]. There
are important recent advances towards understanding K-stability from the
algebro-geometric point of view, see for example [9, 24, 34, 35, 44]

The rough sketch of the proof is as follows. Given X, we can always find
a smooth divisor D in the class | − λKX | for some λ > 1, and we can solve
a unique Kähler-Einstein metric ωβ on X with cone angle 2πβ along D for
some β = 1/p (where p is large positive integer). ωβ satisfies the equation

Ric(ωβ) = (1− (1− β)λ)ωβ + (1− β)2π[D],

where [D] is the current of integration along D. This is not difficult because
the metric ωβ has indeed negative Ricci curvature on X \D (one can think
that the cone angle introduces positive curvature transverse to D), and the
singularities along D are of orbifold type, so we can essentially adapt the
Aubin-Yau theorem.

Then we want to increase the cone angle towards β = 1 and deform the
metrics ωβ correspondingly. By an implicit function theorem based on linear
estimate of the Laplace operator on conical metrics [29], Donaldson proved
that one can always increase β by a small amount ε > 0. So if we can
not solve the original Kähler-Einstein equation the deformation must break
down at some angle β∞ ∈ (0, 1], namely, as β goes up to β∞, the metrics ωβ
do not converge in the obvious way to a limit metric on X with cone angle
2πβ∞ along D.

Now the essential part is to contradict K-stability of X if this divergence
would occur; i.e., we need to construct a de-stabilizing test configuration X
with DF (X ) ≤ 0. So we want to achieve the following

(A) Construct the central fiber X0;
(B) Construct the C∗ equivariant family X (and prove it is non-trivial);
(C) Show that Fut(X ) ≤ 0 (such an X is usually called a de-stabilizing test

configuration).

Among the three (A) is the most essential part, and is done by producing
algebraic structure out of a Gromov-Haudorff limit of the metrics ωβ as β →
β∞ (these limits are a priori only metric spaces). This was first constructed
in [31] for the Gromov-Hausdorff limit of a sequence of smooth Kähler-
Einstein Fano manifolds, which we will say more in the next section, and
was later extended to the case with cone singularities in [17, 18] which, not
surprisingly, involves much more delicate analysis. The outcome is that the
Gromov-Hausdorff limit is naturally a normal Q-Fano variety, and this will
be our X0.

The proof of (B) and (C) involves more refined understanding of the Q-
Fano variety X0, geometric invariant theory, and the recent development in
the pluripotential theory of Monge-Ampère equations [3, 6, 4].

After Theorem 12 was proved there are also new proofs by Datar-Székelyhidi
[23] using the classical continuity path

Ric(ωt) = tωt + (1− t)α

for a fixed Kähler form α ∈ 2πc1(X), and deform from t = 0 (whose solution
is guaranteed by Yau’s Theorem 3) to t = 1; and by Chen-Sun-Wang [19]
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using the Ricci flow
∂

∂t
ω(t) = ω(t)−Ric(ω(t))

starting from any smooth initial Kähler form ω(0) ∈ 2πc1(X), and studying
the limit as t → ∞. Both of these new proofs also depend on constructing
the de-stabilizing test configuration from certain differential geometric lim-
its. There is a fourth alternative proof by Berman-Boucksom-Jonsson [5],
which proves a slightly weaker result with K-stability replaced by uniform
K-stability, and which follows more closely the variational picture described
in the beginning of this subsection.
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3. Algebraic structure on Gromov-Hausdorff limits

In this section we discuss the ingredient (A) in the proof of Theorem 12
(appeared at the end of last section). We will first explain the construction
of algebraic structure on Gromov-Hausdorff limits in a slightly different sit-
uation [31], which should give a clearer geometric picture, and which also
have its own importance, for example, in the study of moduli compactifica-
tion of Fano manifolds. At the end of this section we will explain briefly the
extra complications involved in the actual proof of (A).

Let (Xi, Li = K−1
Xi
, ωi ∈ 2πc1(Li)) be a sequence of n dimensional Kähler-

Einstein Fano manifolds with Ric(ωi) = ωi. By Myers’s theorem the di-
ameter of (Xi, ωi) is uniformly bounded above and by the Bishop-Gromov
comparison theorem we also have a uniform non-collapsing property, i.e.,
there exists κ > 0 such that V ol(B(pi, r)) ≥ κr2n for all i, pi ∈ Xi, and
r ∈ (0, 1]. One important consequence of the non-collapsing condition is a
uniform Sobolev inequality (See for example [45])

‖f‖
L

2n
n−1
≤ C(‖∇f‖L2 + ‖f‖L2).

By Riemannian convergence theory, passing to a subsequence we may obtain
a Gromov-Hausdorff limit Z, which is a compact metric space. This is done
by approximating each Xi uniformly by finite discrete metric spaces, and
taking diagonal limits.

To see the connection with algebraic geometry we recall the classical Ko-
daira embedding theorem. Given a polarized Kähler manifold (X,L, ω) such
that −iω is the curvature of a hermitian metric h on L. This gives rise to a
Hermitian inner product on H0(X,Lk) for any k ≥ 0

〈s1, s2〉 :=

∫
X
〈s1, s2〉h

(kω)n

n!
.

Here notice when we study sections of Lk we use the corresponding Kähler
form kω ∈ 2πc1(Lk).

The density of state function, or sometimes called Bergman function, is
defined by

ρk,X(x) = sup
s∈H0(X,Lk)\{0}

|s(x)|h
‖s‖

.

The Kodaira embedding theorem claims that there is a k > 0 such that
the associated map F : X → P(H0(X,Lk))∗ is an embedding; in particular
ρk > 0 everywhere on X. Using the L2 inner product we can identify
P(H0(X,Lk)∗) with PNk , where Nk + 1 = dimH0(X,Lk), and the map
F : X → PNk is well-defined, up to the action by U(Nk + 1).

Applied to our sequence we see that for each i there is a ki such that Xi

is embedded into some projective space using the sections of Lki . The key
property we need is a uniformity on ki.

Theorem 13 (Donaldson-Sun [31]). There are ε > 0, and k > 0 depending
only on the dimension n, such that ρk,Xi(x) ≥ ε for all i.
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Remark 14. This was proved by Tian [61] in 1990 in dimension two using
the fact that the limit Z in this case is an orbifold, and the above result is
conjectured by Tian (called the partial C0 estimate) in [63].

Theorem 13 implies that the map Fi : Xi → P(H0(Xi, L
k)∗) is well-

defined. Using the Bochner formula for the ∆∂ acting on Lk-valued (1, 0)
form and the Moser iteration argument (which involves the Sobolev inequal-

ity) it is not hard to show that a holomorphic section s ∈ H0(Xi, L
k
i ) with

unit L2 norm has |∇s|L∞ uniformly bounded. It then follows that Fi has uni-
formly bounded derivative with respect to the natural Fubini-Study metric
on the projective space. Then with extra work one can show that by replac-
ing k with mk for some sufficiently large integer m also depending only n,
the map Fi : Xi → P(H0(Xi, L

k))∗ is an embedding for all i. Passing to a
further subsequence we can assume for all i the dimension of H0(Xi, L

k) is
the same integer N + 1, then the maps Fi : Xi → PN converge to a contin-
uous map F∞ : Z → PN . We can then prove that F∞ is a homeomorphism
onto a normal projective subvariety W ⊂ PN , and Fi(Xi) converges to W
in a fixed Hilbert scheme. Furthermore, W is indeed a Q-Fano variety, with
Kawamata-log-terminal singularities, and the singularities of W match with
the metric singularities of Z. This class of singularities was first introduced
and studied in the birational algebraic geometry and minimal model pro-
gram. Furthermore the isomorphism class of W is independent of further
increasing power k by mk. It is in this sense we can say that

Theorem 15 (Donaldson-Sun [31]). Z is naturally a Q-Fano variety.

We can also give a more intrinsic description of the algebraic structure on
Z. Fixing a metric d on the disjoint union of Xi and Z which realizes the
Gromov-Hausdorff convergence of Xi to Z. Then we can define a presheaf of
rings of functions on Z by assigning to each open set U ⊂ Z the space of all
continuous functions on U that are naturally uniform limits of holomorphic
functions on corresponding open subsets of Xi. Let O be the associated
sheaf. Then the statement is that O exactly defines the sheaf of holomorphic
functions on Z. One consequence is that O does not depend on the choice
of the metric d.

In terms of moduli theory, Theorem 15 gives a topological compactification
of moduli space of Kähler-Einstein Fano manifolds by adding certain Q-Fano
varieties in the boundary. It is also known that Z admits a weak Kähler-
Einstein metric, in the sense of pluripotential theory. It is also K-stable by
[3] (notice the definition of K-stability in the previous section makes sense
for any normal projective variety with Q-Gorenstein singularities. There
are further results in this direction towards understanding the algebraic
structure on the moduli space itself, see [57, 55, 30, 58, 47, 48, 56].

A last remark is that even though we only stated the above results for
Kähler-Einstein Fano manifolds, the technique applies also to polarized
Kähler-Einstein manifolds with zero or negative Ricci curvature, but we
need to impose the extra assumption that the volume is non-collapsed, since
in general collapsing can possibly occur (even in complex dimension one).
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Now we explain the idea in the proof of Theorem 13. Unravelling defi-
nition it amounts to constructing holomorphic section of Lk with a definite
upper bound on the L2 norm, and with a definite positive lower bound at a
given point. We first digress to give here an analytic account of the proof of
Kodaira embedding theorem, and mention the technical difficulties one has
to deal with in order to extend it to prove Theorem 13.

Given (X,L, ω), a point p ∈ X and k ≥ 0, we consider the rescaling
(X,Lk, kω) with base point p, then as k → ∞, we see the obvious limit is
Cn endowed with the standard flat metric ω0. A slightly more non-trivial
fact is that the Hermitian holomorphic line bundle converges smoothly to the
trivial holomorphic line bundle L0 over Cn endowed with the (non-trivial)

hermitian metric e−|z|
2/2. This is an easy consequence of the definition of

being Kähler: we can choose local holomorphic coordinate around p and
local holomorphic trivialization of L such that the corresponding metrics ω
and h agrees with the standard metrics up to first order.

Let σ be the standard section of L0, then |σ(z)|2 = e−|z|
2/2, and one can

compute that ‖σ‖2L2(Cn) = (2π)n. For R sufficiently large we can choose a

cut-off function χR on Cn that has value 1 on the ball BR and is supported
in the ball BR+1, then it is easy to see

‖χRσ‖2L2 = (2π)n − ε(R); ‖∂̄(χRσ)‖2L2 = ε(R),

where ε(R) denotes a function of R that decays faster than any polynomial
rate as R→∞.

Now for k large, χRσ can be grafted to a smooth section of Lk over X,
supported in a neighborhood of p, which we denote by β. It is approximately
holomorphic in the sense that if we fix R and make k sufficiently large then
we may assume

‖β‖2L2 = (2π)n + ε(R); ‖∂̄β‖2L2 = ε(R).

Moreover β is exactly holomorphic in the ball of radius R − 1 around p
(again, with respect to the metric kω).

The next step is to correct β by a small amount to make it holomorphic.
The key is the following estimate

Lemma 16. The operator ∆∂̄ := ∂̄∂̄∗ + ∂̄∗∂̄ on Ω0,1(X,Lk) satisfies

∆∂̄ = (∇′′)∗∇′′ + k−1Ric(ω) + 1.

In particular, for k sufficiently large we may assume ∆∂̄ ≥ 1/2 in the natural
L2 norm.

This is a version of Bochner formula in complex geometry. It is important
that we only consider (0, 1) forms so that only Ricci curvature shows up,
not the full sectional curvature.

We denote τ = ∂̄∗∆−1
∂̄
∂̄β, then

‖τ‖2L2 = 〈∆−1
∂̄
∂̄β, ∂̄β〉 ≤ 2‖∂̄β‖2 = ε(R).

Let s := β − τ , then ∂̄s = 0, and

‖s‖2L2 ≤ (2π)n + ε(R).
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Moreover, in the ball of radius one around p (with respect to the metric
kω), we have ∂̄τ = 0, and so at these points by standard interior estimate
for holomorphic functions we get

|τ | ≤ C‖τ‖L2 ≤ ε(R).

On the other hand, we know |β(q)| ≥ e−1/2 − ε(R) for q in the ball of
radius 1 , so if we a priori fix R to be large, and then choose k � R we
obtain

|s(q)| ≥ 1

2
e−1/2.

Therefore it follows that

ρk,X(q) ≥ 1

4
e−1/2(2π)−n.

Notice since X is compact and the metric ω is smooth, we can obtain a
uniform k so that the above arguments work for all points p ∈ X, so we get
a uniform positive lower bound of ρk,X .

This implies the map F : X → P(H0(X,Lk)∗) is well-defined for such k.
To improve F to an embedding one can replace k by mk for some positive
integer m (notice ρk,X > 0 implies ρmk,X > 0 for all integer m ≥ 1 due

to the natural (non-linear) map SymmH0(X,Lk) → H0(X,Lmk)). First
one can use similar arguments as above to make F an immersion–simply
replacing the model section σ be l · σ, where l is a linear holomorphic
function on Cn–so that F becomes a finite covering map. Now on a fiber
F−1(x) = {p1, · · · , pl}, we can replace k again by a large multiple and con-

struct holomorphic sections s1, · · · , sl of Lk, so that |sj(pj)| ≥ 1
2e
−1/2(2π)−n,

and |sj(pi)| ≤ 100−1(2π)−n (this is possible because the above grafted sec-
tion β is zero outside the ball of radius R and ‖τ‖L2 = ε(R)). This implies
that p1, · · · , pl have different images under the map F , and hence F is in-
jective.

With more work and more machinery we indeed know that ρk admits an
asymptotic expansion of the form (see for example [62, 11, 69])

ρk(x) =
1

(2π)n
(1 + a1k

−1 + a2k
−2 + · · · ),

where ai is a function on X which depends only on the local invariant of
g, namely the curvature and its covariant derivatives. In particular by [50]
a1 = 1

2S(ω). Using this expansion, one can show that

1

k
F ∗kωFS = ω +O(k−2).

This is the starting of point of “quantization techniques” in Kähler geometry.

Now we return to the proof of Theorem 13. From the above argument it
is easy to see that we can obtain a uniform embedding if the Kähler metric
(J, ω) vary in a compact set of smooth Kähler metrics in the C l topology for
some large l. However, in general the set of Fano Kähler-Einstein manifolds
is not compact in such a topology and singularities will occur in general.
In complex dimension two, the singularities are of orbifold type, i.e., locally
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modelled on the quotient C2/Γ for a finite subgroup of U(2); the readers
are referred to [57] for explicit examples of formation of singularities.

We need some input from the convergence theory of Riemannian mani-
folds. Fix a metric d on the disjoint union of Xi’s and Z. Then it follows
from the work of Cheeger-Colding-Tian [13] that there is a decomposition
Z = R ∪ Σ, where the regular set R is an open set of Z, which is endowed
with a smooth Kähler-Einstein metric (ω∞, J∞), and the convergence on R
is smooth in the sense that for any fixed compact subset K of R, we can
find smooth maps χi : K → Xi for large i so that d(x, χi(x)) ≤ εi and
(χ∗iωi, χ

∗
i Ji) converges smoothly to (ω∞, J∞). The singular set Σ is a closed

subset of real Hausdorff codimension at least four. Again in our setting we
also obtain a smooth Hermitian holomorphic line bundle (L∞, h∞) over R.

Now we notice in the above construction of holomorphic sections the
only place we used the global Ricci curvature is through the invertion of ∂̄
operator (indeed only the lower bound on Ricci curvature is used). It is then
not difficult to see that the uniform estimate of the density of state functions
still holds on points of Xi that are fixed distance away from Σ (with respect
to d). It is near Σ that we need to work much harder. Notice we can not
use the model Gaussian sections on Cn anymore since as we approach Σ
the region where this model is effective shrinks down to a point. Instead
we use another important aspect of the Cheeger-Colding theory. At each
point p ∈ Σ, we can dilate the limit metric d∞ based on p, then again by
general theory we obtain (pointed) Gromov-Hausdorff limits, called tangent
cones. Cheeger-Colding [12] proved that any tangent cone is a metric cone,
of the form (C(Y ), d) for Y a compact metric space of diameter at most π
(called the cross section). Here C(Y ) is topologically a cone given by adding
one point (the cone vertex) to Y × (0,∞), and the distance is given by the
formula

d((y1, r1), (y2, r2))2 = r2
1 + r2

2 − 2r1r2 cos dY (y1, y2).

In fact the singular set Σ is defined exactly as those points where the tangent
cones are not isometric to the smooth flat cone. Again a tangent cone admits
similar regular-singular decomposition as before.

We will say more about the tangent cones in our setting in the next
section. For the purpose here, it suffices to mention one important feature
of tangent cones in the Kähler setting. Namely, on the regular part of

the tangent cone, the Kähler metric can be written as i∂∂̄ r
2

2 , which is the

curvature form of the hermitian metric e−r
2/2 on the trivial holomorphic

line bundle. It is then clear that the constant section plays the role of σ0 on
the smooth cone Cn.

From this point there are a few technical difficulties to overcome if one
wants to use the previous arguments to prove Theorem 13. Let p be a point
in Z, and let C(Y ) be one tangent one at p (notice a priori we do not know
if the tangent cone is unique; but that is not needed here). By a diagonal
sequence argument we may assume that C(Y ) is the limit of (Xi,miωi) for
a sequence mi →∞. We first assume Y smooth. Then there are two points
to deal with
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• The convergence from (Xi,miωi) to C(Y ) is only smooth away from
the vertex of C(Y ). This means that using the previous techniques
we can at best control the norm of the constructed holomorphic
section outside a small neighborhood of the vertex (with respect to
miωi). In order to control the norm globally, we need an estimate
of the derivative of s. This simply follows from the uniform gradient
estimate of s we mentioned before.
• We wrote down the hermitian metric on L∞ directly, but it is not

a priori known that the connection on Lmii converges smoothly to
that on L∞ (which is what we need since we want to compare the
∂̄ operators), even though the curvature forms converge smoothly.
There is a potential ambiguity of holonomy caused by a flat connec-
tion. This can be overcome since Y is smooth and has positive Ricci
curvature, so that π1(Y ) is finite and we can get rid of the holonomy
problem by raising to a large, but definite uniform power of Li.

Now in general Y itself can be singular, then there are extra complications.
We briefly outline these, and one can find the details in [31].

(1) When we cut-off the section σ, we also need to cut-off along rays over
the singular set of Y . This requires the size of the singular set ΣY of
Y to be relatively small, and follows from the fact [13] that the singular
set of Y has Haudorff co-dimension bigger than two. It implies the
existence of a good cut-off function. Namely, for any ε > 0, we can
find a smooth non-negative function χ on the regular part of Y , which
is supported outside a neighborhood of ΣY and is equal to one outside
the ε-neighborhood of ΣY , and with ‖∇χ‖L2 ≤ ε. Using this, the extra
cut-off will not introduce a big error term when estimating ∂̄β.

(2) The holonomy problem becomes more complicated. In three dimension
one can show that Y has only orbifold singularities transverse to circles
and the regular part of Y has finite fundamental group, and then use
similar arguments as above. In general one can bypass the problem
of understanding the topology of the regular part of Y , by using the
Dirichlet approximation theorem in elementary number theory. The
point is that for our argument to go through it is not necessary to make
the holonomy trivial, but rather making the holonomy small.

Now going back to the item (A) in the end of last section. There we need
to adapt the above arguments to the case of Kähler-Einstein metrics with
cone singularities. Let βi be a sequence going up to β∞, and we want to
understand the corresponding Gromov-Hausdorff limit Z.

• If β∞ < 1, then we prove that there is also a regular-singular decom-
position of Z as above. But now the singular set will have Hausdorff
co-dimension two (the divisor D is singular set of ωβi . A large tech-
nical part of [17] is devoted to understanding better the codimension
two part of the singular set, and constructing a good cut-off function.
• If β∞ = 1, then this is the case when the cone singularity should

disappear. Here extra difficulty emerges even in the first step, when
one wants to prove that the limit Z contains a large open smooth
subset. Details can be found in [18].
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4. Singularities of Gromov-Hausdorff limits

This section is based on some part of [32], in which we make a deeper study
of the tangent cones of non-collapsed Gromov-Haudorff limits of Kähler-
Einstein manifolds. There are several motivations for this study. First of
all, in many cases singular Kähler-Einstein metrics occur naturally, and it
is an important question to understand quantitatively the metric behav-
ior near the singularities, which we hope would help advance the theory
in the more general Riemannian setting. Secondly, as shown in the two
dimensional result of Odaka-Spotti-Sun [57], the study of tangent cones is
expected to be important in classifying Gromov-Hausdorff limits in the mod-
uli compactifcation of Kähler-Einstein Fano manifolds, and these can lead
to explicit existence results of Kähler-Einstein metrics on certain families of
Fano manifolds (this is a different approach from applying Theorem 12 and
study K-stability explicitly). Also, as we shall describe below, this study
has its own interest which yields potential interesting stability notion for a
local algebraic singularity (more precisely, a log terminal singularity), and
motivates some new questions in algebraic geometry.

We first digress to explain some background on Kähler cones. Let Y be
a smooth compact manifold of dimension 2n− 1. Denote C(Y ) = Y ×R+,
and let r be the coordinate function on R+ = (0,∞).

Definition 17. A Kähler cone structure on C(Y ) consists of a Kähler met-
ric (g, J, ω) such that g = dr2 + r2gY for some Riemannian metric gY on
Y . In particular g is a Riemannian cone.

The induced structure on Y = {r = 1} is usually referred to as a Sasaki
structure; for our purpose it is more convenient to focus on the cone C(Y )
instead of Y . The Reeb vector field is given by ξ = Jr∂r. The following
are a few basic, but important, properties of a Kähler cone. The first has
already been used in the previous section

Lemma 18. (1) ω = 1
2

√
−1∂∂̄r2 = 1

4dd
cr2;

(2) Lr∂rg = 2g, Lr∂rω = 2ω;
(3) ξ is holomorphic, Killing and Hamiltonian, i.e., LξJ = Lξω = Lξg =

0.

Proof. For (1) we notice that from definition g = 1
2Hess(r2), and it is easy

to check that the (1, 1) part of Hessian on a Kähler manifold is given by√
−1∂∂̄. The first identity in (2) follows from definition, and for the second

identity we compute using Cartan formula

Lr∂rω = d(ιr∂rω).

Notice by definition ι∂rg = dr, so ιr∂rω = −rJdr = 1
2d

cr2, and hence
Lr∂rω = 2ω. For (3), LξJ = 0 follows from (2); Similar calculation as
(2) which shows that ιξω = −rdr = −d(r2/2) hence Lξω = 0 and the
Hamiltonian function for ξ is −r2/2. �

By item (3) ξ generates a holomorphic isometric action of some real torus
T on C(Y ). Let k be the rank of T. When k = 1, we obtain a holomorphic
C∗ action on C(Y ), and if the C∗ action is free then by taking Kähler
quotient we obtain a polarized Kähler manifold (V,L, ωV ); this is called the
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regular case. If the C∗ action is not free then we obtain a polarized orbifold ;
this is called the quasi-regular case. If k > 1 then we are in the irregular
case.

A regular cone C(Y ) is Ricci-flat if and only if (V, ωV ) is Kähler-Einstein.
This reveals an intimate connection between the Calabi-Yau geometry and
the Fano Kähler-Einstein geometry. The following is an analogue of the
Kodaira embedding theorem for Kähler cones.

Theorem 19 (Van Coevering [65]). A Kähler cone is naturally an affine
algebraic cone.

It is easy to see that one can complete the metric structure on C(Y ) by
adding a vertex O, so that r becomes the distance function to O. Complex
analytically, general theory of Grauert also shows that there is a unique
way to put a structure of a complete analytic space on C(Y ) ∪ {O}. For
simplicity of notation we will still denote by C(Y ) when we add the vertex
O.

The theorem means that there is a holomorphic embedding of C(Y ) into
some affine space CN as an affine subvariety, and the T action extends to
a diagonal linear action on CN . Moreover, there is a preferred real one pa-
rameter subgroup of TC (corresponding to the cone dilation) with respect
to which every non-zero T-homogeneous holomorphic function on C(Y ) has
positive weight. The algebraicity depends essentially on the T symmetry,
which allows us to decompose holomorphic functions into sum of eigenfunc-
tions.

More intrinsically, we can describe the coordinate ring R(C(Y )) as the
ring of holomorphic functions on C(Y ) with polynomial growth at infinity.
It admits a decomposition

R(C(Y )) =
⊕
d∈S

Rd

where Rd consists all holomorphic functions f on C(Y ) which is homoge-
neous of degree d, i.e., Lr∂rf = df , and S is the set of all d ≥ 0 such that
Rd 6= {0}. The cone structure of C(Y ) (the action of r∂r = −Jξ) is encoded
in the grading by S. Notice in general S may not be contained in Q (if
C(Y ) is irregular). We can also write the decomposition as

R(C(Y )) =
⊕

α∈Lie(T)∗

Rα

where for each d we can uniquely write d = 〈ξ, α〉 for some α ∈ Lie(T)∗.
In this sense we can say that the affine variety C(Y ) is an affine algebraic
cone, and ξ is the Reeb vector field of the affine algebraic cone.

Remark 20. This notion of an affine algebraic cone is different from the
usual meaning of affine cone in the algebraic geometry literature. The point
is that we allow the grading is positive by not necessarily rational, so the
rank of T can in general be bigger than one, whereas in the literature one is
often restricted to consider a C∗ action.



RICCI CURVATURE IN KÄHLER GEOMETRY 23

As in [52, 20] we can define the index character

F (t, ξ) =
∑
d∈S

e−td dimRd

and as a consequence of Riemann-Roch for orbifolds there is an asymptotic
expansion

F (t, ξ) =
a0n!

tn+1
+
a1(n− 1)!

tn
+O(t1−n)

where

a0 = cn

∫
C(Y )

e−r
2/2

for some dimensional constant cn. We define the volume of the Kähler cone
to be

Vol(ξ) =

∫
C(Y )

e−r
2/2.

It is clear from the above formula, or by direct verification, that the volume
is independent of the particular choice of the Kähler cone metric.

The item (1) in Lemma (18) means that one can fix the underlying com-
plex structure of C(Y ) and study the deformation of Kähler cone metrics
with possibly varying Reeb vector fields. The set of all possible Reeb vector
fields in Lie(T) is referred to as the Reeb cone, by [52, 8, 39, 20] and it
admits an algebro-geometric description too as the set of all ξ such that if
Rα 6= 0, then 〈ξ, α〉 > 0.

For a simple explicit example, we consider Cn as a complex manifold
equipped with the standard holomorphic action of T = Tn. So Lie(Tn) =
Rn. Then it is easy to see the Reeb cone R is equal to (R>0)n. This means
that for any ξ = (ξ1, · · · , ξn) where each ξi is positive, there is a Kähler
cone metric on Cn with Reeb vector field equal to ξ. Such a cone metric
is regular if and only if all ξi’s are equal and the quotient Fano manifold is
the n − 1 dimensional projective space . If ξ is proportional to a rational
vector then the cone metric is quasi-regular and the quotient orbifold is
a weighted projective space. In the remaining case the metric is irregular.
Notice as algebro-geometric object, the set of all weighted projective spaces
in a fixed dimension is quite a discrete set; on the cone Cn, by adding the
set of irregular Kähler cone structures, this set is made connected.

Now we assume the Kähler cone (C(Y ), ξ) is Ricci-flat. The induced
metric on Y is Sasaki-Einstein, with positive Ricci curvature. So π(Y )
is finite. The Ricci-flat metric induces a flat connection on the canonical
bundle KC(Y ), so we can find a positive integer m > 0 such that Km

C(Y ) has

a nonzero parallel section Ω. In particular, the underlying algebraic cone is
Q-Gorenstein. Notice the Ricci-flat equation can be written as

ωn = C(Ω ∧ Ω̄)1/m.

Since Lξω = 2ω, it follows that Ω is homogeneous with

(8) LξΩ =
√
−1(n+ 1)mΩ.
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We define a distinguished hyperplane H in the Reeb cone R by

H = {ξ′ ∈ R|Lξ′Ω =
√
−1(n+ 1)mΩ}

and consider the volume functional

Vol : H → R>0,

Here are a few properties proved by Martelli-Sparks-Yau (see [52, 39, 20])

• Vol is strictly convex and proper;
• ξ is a critical point of Vol;
• Vol has an algebraic formula as a rational function onH with rational

coefficients.

These imply that ξ is an isolated critical point of a rational function with
rational coefficients, so by elementary number theory we obtain

Lemma 21 ([52]). The Reeb vector field ξ ∈ Lie(T) is an algebraic vector,
and hence the holomorphic spectrum S is algebraic.

Now we go back to the sequence (Xi, Li, ωi) with Gromov-Hausdorff limit
(Z, dZ). Let C(Y ) be a tangent cone at a point p ∈ Z. It can be real-
ized as the Gromov-Hausdorff limit of an appropriately rescaled sequence
(Xi, L

ai
i , aiωi) for some ai → ∞. The regular part of C(Y ) is a smooth

Ricci-flat Kähler cone, and if Y is smooth then we are essentially in the pre-
vious setting (notice here on a tangent cone the vertex is naturally there).
In general Y can be singular, and we also have

Proposition 22 ([32]). C(Y ) is naturally a normal affine algebraic cone
with log terminal singularities.

We will not prove this, but see [32]. Here we would like to explain the
intrinsic meaning of the algebraic structure. We can define the sheaf O
on C(Y ) by taking the push-forward of the sheaf of holomorphic functions
on the regular part of C(Y ). Then it turns out that (C(Y ),O) defines a
natural normal complex analytic structure, and then we can proceed as in
the case Y is smooth to define intrinsically the coordinate ringR(C(Y )). The
conclusion is that R(C(Y )) is finitely generated, and defines an embedding
of C(Y ) as an affine algebraic variety in CN . Moreover, the Reeb vector
field ξ on the regular part of C(Y ) generates an action of a compact torus
T, and this action extends to a holomorphic isometric action on the whole
C(Y ). The dilation action on C(Y ) defines a grading on R(C(Y )) by the
holomorphic spectrum S.

It is interesting to ask for the algebro-geometric meaning of C(Y ) in
terms of the singularity p. Notice a priori we do not know if there is a
unique tangent cone at p, even though this is true in the end. However,
a relatively simple observation gives the following, which is crucial in the
discussion below.

Lemma 23 ([32]). The holomorphic spectrum S is independent of the choice
of tangent cones at p.

The key is that the set of all tangent cones at p forms a compact and
connected set under the natural topology, and S deforms continuously. Then
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the algebraicity of S (a generalization of Lemma 21) implies it is rigid hence
allows no deformations.

Now we explain the relation between Op and R(C(Y )). Intuitively, given
a holomorphic function f ∈ Op, as we rescale the metric, we expect to be
able to take a limit and obtain homogeneous functions on the tangent cones.
But since we are essentially working on a non-compact space, it is possible
that the limit we get is always zero, and there is no guarantee that the limit
must be homogeneous.

We first need to establish a convexity property. Fix λ ∈ (0, 1), and
denote by Bi the ball B(p, λi) being rescaled to have radius one, and then
Bi converges to unit balls in the tangent cones.

Proposition 24. Given any d /∈ S, there is an I > 0, such that if i ≥ I, and
a holomorphic function f defined on Bi satisfies ‖f‖L2(Bi+1) ≥ λd‖f‖L2(Bi),

then ‖f‖L2(Bi+2) ≥ λd‖f‖L2(Bi+1).

Proof. For simplicity of presentation we only prove this under the assump-
tion that all tangent cones at p have smooth cross sections; the general case
requires more technical work [32]. We prove it by contradiction. Suppose
the conclusion does not hold, then we can find a subsequence which we still
denote by {i}, a holomorphic function fi on Bi such that

‖fi‖L2(Bi+1) ≥ λd‖fi‖L2(Bi),

but
‖fi‖L2(Bi+2) ≤ λd‖fi‖L2(Bi+1).

Multiplying by a constant we may assume ‖fi‖L2(Bi+1) = 1. By passing to
a subsequence we may assume Bi converges to the unit ball B around the
vertex in some tangent cone C(Y ). We may also assume fi converges to
a limit function f∞ on B. The convergence is smooth away from the cone
vertex and is uniform away from the boundary ∂B. It then follows that

‖f∞‖L2(B) ≤ λ−d,
and

‖f∞‖L2(λB) = 1; ‖f∞‖L2(λ2B) ≤ λd.
Now on the cone C(Y ) one can use the weight decomposition to see that for
any holomorphic function f ∈ L2(B),

‖f‖L2(B)‖f‖L2(λ2B) ≥ ‖f‖2L2(λB)

and equality holds if and only if f is homogeneous. Hence f∞ is homogenous
of degree d. This contradicts the choice of d. �

Remark 25. On a cone C(Y ) it is easy to see the function log ‖f‖L2(rB) is
a convex function of log r. The proposition essentially states that on Bi for
i large an almost convexity holds.

Using this and standard interior estimate for holomorphic functions, one
can show that for any non-zero function f ∈ Op, the following is a well-
defined number in S ∪ {∞}

dp(f) := lim
r→∞

supBr log |f |
log r



26 SONG SUN

We call this the degree of f . If dp(f) < ∞, then by similar arguments
as in the proof of Proposition 24 one can show that f yields homogeneous
functions of degree d(f) on all the tangent cones.

Here are some properties of the degree function.

(1) dp(f) <∞ for all f 6= 0;
(2) dp(f) = 0 if and only if f(p) 6= 0;
(3) dp(fg) = dp(f) + dp(g);
(4) dp(f + g) ≥ min(dp(f), dp(g)).

Except (4) which follows directly from definition, the other properties are
not trivial and indeed depend on the proof of Theorem 26 below. In terms
of usual language in algebraic geometry, we can say dp is a valuation.

Conversely, given a homogenous function f̃ on a tangent cone C(Y ) of
degree d, one can use a local version of the Hörmander construction in the
last section to find holomorphic functions fi on Bi that converges naturally
to f̃ . Then one can use Proposition 24 to see that for i sufficiently large
dp(fi) ≤ d. However, in general strict inequality may be possible–this cor-
responds to the fact that in the above (4) only an inequality holds so d(f)
does not define a grading on the ring Op, but rather a filtration:

Op = I0 ⊃ I1 ⊃ I2 ⊃

where Ik is the ideal of Op consisting of functions f with dp(f) ≥ dk, and
we have listed the elements of S in increasing order as 0 = d0 < d1 < d2 · · · .
Let Rp =

⊕
k Ik/Ik+1. It inherits a grading by S.

Theorem 26 (Donaldson-Sun [32]).

• There is a unique tangent cone C(Y ) at p, as a normal affine alge-
braic variety endowed with a (weak) Ricci-flat Kähler cone metric;
• Rp is finitely generated, and W = Spec(Rp) is a normal affine alge-

braic cone endowed with the action of T, and W can be realized as
a weighted tangent cone in CN under a complex-analytic embedding
of the germ Op in CN (again, this seems to differ from the well-
known notion of weighted tangent cone in the literature where one
often considers only rational weight);
• There is a flat C∗ equivariant family of affine algebraic cones π :
W → C, such that π−1(t) is isomorphic to W for t 6= 0 and π−1(0)
is isomorphic to C(Y ), and there is a holomorphic action of T on
W, that restricts to the known action on W and C(Y ) on each fiber.

We will not go into the details of proofs of this, but rather describe a geo-
metric (but not completely rigorous) interpretation of the above statements.
First we embed all tangent cones C(Y ) as affine algebraic cones in a fixed
CN , with a common vertex 0 and the dilation actions on each C(Y ) is given
by the restriction of a linear map Λ on CN . Then for i large we can find
embeddings Fi : Bi → CN (this is not exactly what is done in [32] due to a
technical point) so that p is always mapped to 0, and Bi converges to balls
B∞ in the tangent cones as local complex-analytic subsets of CN .

Notice there is a natural inclusion map Λi : Bi+1 → Bi, which converges
to the dilation Λ on the tangent cones. At this point we can not say much
on Λi since the embedding maps Fi and Fj are not a priori related for i 6= j.
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The next idea is to simplify these Λi’s by constructing a good set of functions
on a fixed Bi0 , and then use certain linear combinations of these functions
on each smaller Bi (i ≥ i0) to construct Fi. This step depends on what
we described above and Proposition 24, but is indeed much more delicate.
What we can achieve in the end is that Λi becomes linear and commute
with Λ. We denote by GΛ the group of linear transformations of CN that
commute with Λ, then Λi ∈ GΛ.

Now we let Wi be the weighted tangent cone of Bi at 0, given by the limit
limt→∞ e

tΛ.Bi. Since Λi ∈ GΛ, it follow easily that Wi = Λi.Wi+1. In other
words, all the Wi’s are in the same GΛ orbit (we can think of them in the
Hilbert scheme of all affine algebraic cones in CN with the same Reeb vector
field). Moreover every tangent cone C(Y ) is in the closure of such an orbit.

Now the main result follows from geometric invariant theory, and the key
point is that GΛ is reductive (a generalization of Matsushima theorem that
follows from the techniques of [6, 4]).

Theorem 26 gives an algebraic description of C(Y ) as a two-step degen-
eration from the germ Op, and W only depends on the Kähler-Einstein
metric near p. Notice by [20] one can extends the notion of K-stability to
affine cones. In terms of this, one expects that C(Y ) is K-stable and W is
K-semistable. We have the following

Conjecture 27. The degree function dp, W , and C(Y ) all depend only on
the complex-analytic germ Op, and is independent of the Kähler-Einstein
metric. In terms of K-stability, dp should be uniquely determined so that the
corresponding W is K-semistable, and C(Y ) is then uniquely determined as
the K-stable affine cone such that there is an equivariant degeneration from
W to C(Y ) in the sense of item 3 in Theorem 26.

There is an interesting class of examples. For n ≥ 3 and k ≥ 1 let Xn
k be

the affine variety in Cn+1 defined by the equation

xk+1
0 + x2

1 + x2
2 + · · ·+ x2

n = 0.

There is a natural algebraic cone structure determined by the C∗ action
with weight (2, k + 1, · · · , k + 1). It is known [59, 37, 46] that Xn

k admits a

compatible Ricci-flat Kähler cone metric if and only if k + 1 < 2n−1
n−2 . Let

Xn
∞ be the affine variety in C4 defined by

x2
1 + x2

2 + · · ·x2
n = 0.

Then Xn
∞ is the product of Xn−1

∞ × C, so admits a Ricci-flat Kähler cone
metric, and the cone structure is determined by the C∗ action with weight
(1, 2n−1

n−2 , · · · , 2
n−1
n−2).

It is easy to see that this C∗ action degenerates Xn
k to Xn

∞ if and only

if k + 1 > 2n−1
n−2 , when Xn

k does not admits a Ricci-flat Kähler cone metric
compatible with its own natural algebraic cone structure. In this case we
expect both W and C(Y ) agree with Xn

∞. This agrees with the uniqueness
stated in the above conjecture. In the borderline case k+ 1 = 2n−1

n−2 the two
cone structure agrees but there is a degeneration from Xn

k to Xn
k+1 through

a C∗ action that commutes with this action. In this case we expect W = Xn
k

but C(Y ) = Xn
∞.
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Recently Chi Li [43] has proposed a generalization of Martelli-Sparks-Yau
volume minimization principle to characterize the above dp in terms of a val-
uation with minimal volume, and has proposed an algebraic counterpart of
Conjecture 27. One expects that Conjecture 27 is also related to a bet-
ter understanding of the K-stability (for afffine cones). Notice Collins and
Székelyhidi [21] generalized Theorem 12 to K-stable affine algebraic cones,
and also described related picture to Conjecture 27.
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