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1 Introduction

In this paper, a K3 manifold K is, by definition, a four-dimensional oriented differentiable manifold
diffeomorphic to the underlying differentiable manifold of a complex K3 surface. It is a well-known fact
that all complex K3 surfaces are oriented diffeomorphic to each other, so this definition makes sense. Also
it is known that π1(K) = {1}, and H2(K;Z) is isomorphic to the lattice U⊕3⊕E⊕2

8 , where U = Ze1⊕Ze2
denotes the rank 2 lattice with the symmetric bilinear form given by (ei, ej) = 1 − δij , and E8 denotes
the negative definite E8 lattice. In particular, the cup-product on H2(K;Z) has signature (3, 19).

A hyperkähler metric g on K is by definition a Riemannian metric with holonomy group equal to
Sp(1), which is isomorphic to SU(2). Denote by M the space of all hyperkähler metrics on K modulo
diffeomorphisms. Given a hyperkähler metric g, we get a 3-dimensional positive definite subspace in
H2(K,R) given by H+

g , the space of self-dual harmonic 2-forms on K with respect to g. This defines a
period map

P : M → R+ × (Γ\O(3, 19)/(O(3)×O(19))); g %→ (Vol(g),H+
g ), (1.1)

where Γ is the automorphism group of the lattice H2(K;Z). The global Torelli theorem states that P is
injective, and is surjective if we include all the possible orbifold degenerations of the hyperkähler metrics.

Recall a hyperkähler metric has vanishing Ricci curvature so convergence theory in Riemannian ge-
ometry can be applied to study their degenerations. Given a sequence of hyperkähler metrics gj on K,
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we can rescale the metric so that gj has diameter 1, and then we can rescale the volume measure of gj
to a probability measure νj = Vol(K, gj)−1 dvolgj . By passing to a subsequence we may take a mea-
sured Gromov-Hausdorff limit (X∞, d∞, ν∞), where d∞ denotes the limit metric and ν∞ denotes the
(re-normalized) limit probability measure. When the total volume of gj has a uniform positive lower
bound, then we are in the non-collapsing situation, and standard theory implies the limit X∞ is a four-
dimensional Riemannian orbifold and these are exactly the objects whose periods lie in the complement
of the image of P. Now if the total volume of gj tends to zero, then we are in the collapsing situation and
the limit space has Hausdorff dimension smaller than 4. In this case, the second factor of their periods
has to diverge to infinity. In reality, the limit can be of dimensions 1, 2, or 3, and all these cases do occur.
This can be easily seen by using the Kummer construction: taking a sequence of four-dimensional flat tori
collapsing to a flat torus Tk of dimension k ∈ {1, 2, 3}, then applying the Kummer construction to each
torus in this sequence, then by taking a diagonal subsequence we obtain a family of hyperkähler metrics
on K that collapse to Tk/Z2. Notice that as topological spaces, T1/Z2 is a one-dimensional interval and
T2/Z2 is a 2-dimensional sphere. Also topologically all the known collapsing limits are given by these.

Our goal in this note is to make some initial observations towards classifying all the possible degen-
erations in the collapsing situation. More precisely, we will study the case when the limit space is of
Hausdorff dimension 1. It may seem that nothing interesting could be said in this case, but we shall
show that indeed one can still obtain new geometric structures and we also ask sensible questions. This
has much to do with the fact that we are collapsing hyperkähler metrics rather than just an arbitrary
sequence of metrics with Ricci curvature bounded below.

Theorem 1.1. Let gj be a sequence of hyperkähler metrics on the K3 manifold K with diameter 1,
and let νj = Vol(K, gj)−1 dvolgj be the renormalized volume measure. Suppose they converge under the
measured Gromov-Hausdorff topology

(K, gj , νj)
mGH−−−−→ (X∞, d∞, ν∞),

where (X∞, d∞) is the Gromov-Hausdorff limit, and ν∞ is the renormalized limit measure. Assume that
the Hausdorff dimension of (X∞, d∞) is strictly less than 2. Then the following properties hold:

(1) (X∞, d∞) is isometric to a closed unit interval (I, g∞) with the standard metric.
(2) There is a canonical affine structure on X∞, i.e., there is a natural choice of coordinate function

z on I, unique up to affine transformations of the form z %→ az + b for a, b ∈ R.
(3) There are an integer m ! 0, points p0 < p1 < · · · < pm+1 in I with ∂I = {p0, pm+1}, and a

concave piecewise affine function (with respect to the above affine structure) V on I which is smooth on
I \ {p0, . . . , pm+1}, and positive on I \ ∂I, such that

g∞ = c1V dz2,

and
ν∞ = c2V dz

for some constants c1, c2 > 0.
(4) The collapsing is with uniformly bounded curvature on compact subsets in I \ {p0, . . . , pm+1}.
(5) (X∞, d∞, ν∞) is an RCD(0, 4

3 ) space. Moreover, 4
3 is the optimal dimension if V vanishes at least

one endpoint of I.
We make a few remarks regarding the theorem.

Remark 1.2. The main interest for us is the existence of the canonical affine structure. This is
analogous to the study of the case of large complex structure limits where one expects to obtain on the
limit space an integral affine structure with singularities. We expect the slopes of V to be integral up
to scaling (see the discussion in Subsection 2.6), and this is related to more refined understanding of the
collapsing geometry, in particular near a singular point pk.

Remark 1.3. From the RCD geometric point of view, in general the density function of the renor-
malized limit measure cannot be C1, as shown by the examples in [24, 35]. In higher-dimensional case
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of complex structure collapsing of Calabi-Yau manifolds, one can also get the interval limit where the
optimal RCD dimension is 2n

n+1 (see Proposition 3.8). These provide concrete examples of Ricci limit
spaces for studying RCD geometry.

2 Proof of the theorem

2.1 Gromov-Hausdorff limits

Item (1) of Theorem 1.1 is an easy consequence of the following lemma.

Lemma 2.1. Let (Mn
j , gj) be a sequence of closed Riemannian manifolds with

Ricgj ! −(n− 1), diamgj (M
n
j ) " D,

and |π1(Mn
j )| < ∞ such that

(Mn
j , gj)

GH−−→ (X∞, d∞).

Assume that 0 < dimH(X∞) < 2. Then X∞ is isometric to a closed interval in R.
Thanks to Theorem 3.2 in Section 3 it suffices to prove that X∞ is not isometric to a one-dimensional

circle. This then follows directly from a result of Sormani and Wei [32]. Indeed, by [32, Theorem 1.1]
there exists a surjective homomorphism

ρ∗ : π1(M
n
j ) → π1(X∞)

for all sufficiently large j. In particular, X∞ must have finite fundamental group, so cannot be a circle.
By Cheeger-Colding’s harmonic splitting map, we will be able to obtain a direct proof. Since the

construction used in this proof will be applied in our later discussion, we would like to provide this
alternative proof of Lemma 2.1 below.

Proof of Lemma 2.1. Again by Theorem 3.2 it suffices to rule out the limit S1. We will argue by
contradiction and suppose that we have the Gromov-Hausdorff convergence

(Mn
j , gj)

GH−−→ (S1, d∞).

In the first step, we will construct a continuous Gromov-Hausdorff approximation

Φj : M
n
j → S1.

Fix a small positive constant 0 < δ ≪ diam(S1). Let {zα}Nα=1 ⊂ S1 be a δ
2 -dense subset satisfying

d∞(zα, zβ) !
δ

4
, 1 " α,β " N.

By assumption, let j be sufficiently large such that

dGH(Mn
j , S

1) < ϵj "
δ2

100

and there exists a 3ϵj-Gromov-Hausdorff approximation Fj : Mn
j → S1. So correspondingly we choose

{yα}Nα=1 with F (yα) = zα such that {Bδ(yα)}Nα=1 gives a covering of Mn
j . By Cheeger and Colding [9],

for each 1 " α " N , there exists a harmonic splitting map

Φj,α : Bδ(yα) → Bδ(zα)

which is a δ · τ(δ|D)-Gromov-Hausdorff approximation. Here limδ→0 τ(δ|D) = 0. Next, it is rather
standard that the above harmonic maps can be patched together and gives a global Gromov-Hausdorff
map. In fact, consider the partition of unity yielding to the cover {Bδ(yα)}Nα=1:

1 ≡
N∑

α=1

Ψα(x), x ∈ Mn
j , Bδ/2(yα) ⊂ Supp(Ψα) ⊂ Bδ(yα)
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and the following estimate holds:

δ2 · (|∇Ψα|+ |∆Ψα|) " C0,

where C0 > 0 is independent of δ. Now we define

Φj ≡
N∑

α=1

Ψα · Φj,α.

So it is straightforward to see that Φj : Mn
j → S1 is a δ · τ(δ|D)-Gromov-Hausdorff approximation. Here

the summation notation is understood in terms of a choice of identification S1 with R/Z.
In the next step, we will see that contradiction arises from the topological assumption on Mn

j . Notice
that |π1(Mn

j )| < ∞ and π1(S1) ∼= Z is torsion-free. So the universal covering map π : R → S1 gives a

lifting Φ̃j : Mn
j → R of Φj such that Φj = π ◦ Φ̃j :

R

π

!!
Mn

j

Φ̃j

""♣♣♣♣♣♣♣♣♣♣♣♣♣ Φj ## S1.

Therefore, Φ̃j is a continuous function on Mn
j . So we suppose that Φ̃j achieves its maximum ỹ0 ∈ R with

y0 ≡ π(ỹ0) ∈ S1. Let

Bδ(y0) ≡ π([ỹ0 − δ, ỹ0 + δ]) ⊂ S1

and denote by

B+
δ (y0) ≡ π((ỹ0, ỹ0 + δ])

the projection image of the half interval (ỹ0, ỹ0 + δ]. Since Φ̃j " ỹ0 on Mn
j , it follows that

Φj(M
n
j ) ⊂ S1 \B+

δ (y0).

But the contradiction arises from the fact that Φj is an ϵ-Gromov-Hausdorff map, where ϵ ≡ δ · τ(δ|D)
and limδ→0 τ(δ|D) = 0.

Applying the Chern-Gauss-Bonnet theorem (see [6] for example), for any Einstein metrics on the K3
manifold K, we have

1

8π2

∫

K
|Rmgj |2 dvolgj = χ(K) = 24.

Then by Cheeger-Tian ϵ-regularity theorem in [13] we know that there are finitely many points

p0 < · · · < pm+1 ∈ I,

with p0, pm+1 the endpoints, such that away from this set the collapsing is with uniformly bounded
curvatures. Hence by Fukaya’s theorem [19] the regular region is collapsing along an infranil fibration.

We denote

S ≡ {p0, p1, . . . , pm+1}

and

∂I ≡ {p0, pm+1}.

The rest of this section is devoted to the proof of Items (2) and (3) of Theorem 1.1.
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2.2 Collapsing and Nil geometry in dimension 3

For the convenience of our discussion, we recall some basic facts regarding the nilpotent Lie groups in
dimension 3.

By definition, a Heisenberg algebra h is the Lie algebra generated by {ζ1, ζ2, ζ3} with

[ζ1, ζ2] = ζ3, [ζ1, ζ3] = [ζ2, ζ3] = 0.

More explicitly, a Heisenberg Lie algebra h is the Lie algebra of matrices of the form

h ≡

⎧
⎪⎪⎨

⎪⎪⎩

⎛

⎜⎜⎝

0 x z

0 0 y

0 0 0

⎞

⎟⎟⎠ : x, y, z ∈ R

⎫
⎪⎪⎬

⎪⎪⎭

such that

ζ1 =

⎛

⎜⎜⎝

0 1 0

0 0 0

0 0 0

⎞

⎟⎟⎠ , ζ2 =

⎛

⎜⎜⎝

0 0 0

0 0 1

0 0 0

⎞

⎟⎟⎠ , ζ3 =

⎛

⎜⎜⎝

0 0 1

0 0 0

0 0 0

⎞

⎟⎟⎠ .

It is well known that a 3-dimensional real nilpotent Lie algebra is either the Heisenberg algebra h as the
above or the abelian Lie algebra. Similarly, any connected simply connected 3-dimensional nilpotent Lie
group N3 is isomorphic to either the Heisenberg group H or the abelian Lie group R3, where

H ≡

⎧
⎪⎪⎨

⎪⎪⎩

⎛

⎜⎜⎝

1 x t

0 1 y

0 0 1

⎞

⎟⎟⎠ : x, y, t ∈ R

⎫
⎪⎪⎬

⎪⎪⎭
.

So the Heisenberg group H is a 2-step nilpotent group and it fits into a nontrivial extension

1 → Z(H) → H → H/Z(H) → 1, (2.1)

where the center Z(H) = [H,H] ∼= R and H/Z(H) ∼= R2. Moreover, the Lie algebra of H is h.
Any co-compact lattice Γ " H in a 3-dimensional nilpotent Lie group is generated by three elements

e1, e2, e3 with e1 ∈ Z(H), [e2, e3] = ek1 for some k ∈ Z \ {0}. Explicitly in terms of unipotent upper
triangular matrices, Γ is (abstractly) isomorphic to the subgroup consisting of all matrices of the form

⎛

⎜⎜⎝

1 m p
k

0 1 n

0 0 1

⎞

⎟⎟⎠

with m,n, p ∈ Z. Denote such a lattice by Γk and notice that Γk and Γ−k are isomorphic. This leads
to the definition of a nilmanifold and infra-nilmanifold. Notice that these definitions work in general
dimensions, but for our purpose and for simplicity, we are only working with the 3-dimensional case.

Definition 2.2 (Nilpotent manifold). A 3-dimensional nilmanifold Nilk ≡ Γk\N3 of degree k ̸= 0, is
given by the quotient of left action of some co-compact lattice Γk on N3. In particular, it is an S1-bundle
over T2 of degree ±k (depending on the orientation). We also make the convention that Nil0 denotes a
3-dimensional torus, given by the quotient of R3 by a lattice Z3.

Definition 2.3 (Infranilmanifold). An infranilmanifold M3 ≡ Γ\N3 is a finite quotient of some nil-
manifold Γk\N3 such that its fundamental group Γ is a finite extension of Γk " N3 satisfying the exact
sequence

1 → Γk → Γ → Q → 1,

where Q is finite and Γ " Aut(N3)!N3.
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Now let N3 ≡ H be the 3-dimensional Heisenberg group. Then its automorphism group Aut(N3) is
isomorphic to the semi-direct product GL(2,R) ! R2. The action of R2 corresponds to inner automor-
phisms given by conjugations, and the action of GL(2,R) descends to the natural action on the quotient
R2. The semi-direct product Aut(N3) ! N3 can be understood in an alternative way. In fact, there is
a canonical connection ∇can on N3, called the affine connection, such that all left invariant vector fields
on N3 are parallel. Denote by Aff(N3,∇can) the group of all affine transformations of (N3,∇can). Then
it follows that

Aut(N3)!N3 ∼= Aff(N3,∇can).

At the next stage, we will review some facts about the Riemannian geometry of H. Let g be a left
invariant metric on H. Then g is determined by an inner product on h ∼= TeN3. Notice that one can
explicitly write down a basis of left invariant 1-forms

dx, dy, θ ≡ dt− xdy.

Therefore, a left-invariant metric g is of the form

g = ϵ1dx
2 + ϵ2dy

2 + ϵ3(dt− xdy)2.

Suppose ϵ1 = ϵ2 = ϵ3. Then we get the so-called 3D Nil geometry. The isometry group is given by
O(2)!N3. This is a subgroup of the group of affine transformations, Aut(N3)!N3.

Notice that given any infranilmanifold M3, one can construct a family of metrics gϵ satisfying

| secgϵ | " 1, diamgϵ(M
3) " ϵ→ 0,

which arises from inhomogeneous rescaling of left-invariant metrics on the universal cover N3.

2.3 Hyperkähler metric with Heisenberg symmetries

Suppose (Ω, g) is a simply connected four-dimensional hyperkähler manifold. Then we have a triple of
self-dual symplectic 2-forms ω1,ω2,ω3 with

⎧
⎨

⎩
dωα = 0,
1

2
ωα ∧ ωβ = δαβ dvolg .

(2.2)

Each ωα defines a parallel complex structure Iα such that g(Iα·, ·) = ωα(·, ·). There is a natural ordering
of ωα’s such that I1I2 = I3. Under this ordering, the above triple is unique up to the obvious SO(3)
hyperkähler rotation.

Now suppose Ω is endowed with a free action of the Heisenberg group H which preserves the hyperkähler
structure. This means the action preserves each ωα. Notice this is a stronger assumption than the action
being isometric.

We identify the Lie algebra h = Lie(H) with the space of Killing fields on Ω it generates. Choosing a
generator of the center Lie(Z(H)) ≃ R, which can be viewed as a Killing field ∂t on Ω. Since Ω is simply
connected, we can find the hyperkähler moment map

(x1, x2, x3) : Ω → R

with respect to the action of ∂t. They satisfy

dxα = −∂t#ωα.

Denote the function V = |∂t|−2. Then we can write
⎧
⎪⎪⎨

⎪⎪⎩

ω1 = V dx2 ∧ dx3 + dx1 ∧ θ,
ω2 = V dx3 ∧ dx1 + dx2 ∧ θ,
ω3 = V dx1 ∧ dx2 + dx3 ∧ θ,

(2.3)
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and

g = V (dx2
1 + dx2

2 + dx2
3) + V −1θ2,

where θ is a 1-form with θ(∂t) = 1, and dθ = ∗dV is viewed as 2-forms on the local quotient R3
x1,x2,x3

with the Euclidean metric. In particular V > 0 is a harmonic function on R3. This is the classical
Gibbons-Hawking construction for hyperkähler 4 manifolds with a continuous symmetry. Now in our
setting by definition any ζ ∈ Lie(H) generates a Killing field which commutes with ∂t, hence we see V
and θ are both invariant under the local H action, so V descends to a one variable function on the local
quotient Ω/H.

Notice the choice of x′
α a priori is only unique up to an SO(3) rotation, depending on the choice of

basis {ω1,ω2,ω3} satisfying (2.2). Given any ζ ∈ Lie(H), since [ζ, ∂t] = 0, we have

d(Lζxα) = Lζ(dxα) = −Lζ(∂t#ωα) = 0,

which implies Lζxα is constant for all ζ and α. We may rotate {ω1,ω2,ω3} by an element in SO(3), and
assume Lζx3 is zero at a given point in Ω for all ζ. Then it follows that the same is true at all points.
Since the local action of H is free, this choice of coordinate x3 is unique up to scaling, and this freedom is
due to the choice of ∂t and a ± sign. The coordinate function x3, up to affine transformations of the form
ax3+ b, can also be characterized as the function on Ω which is H-invariant and harmonic. In particular,
we get a local affine structure on the quotient.

We then have

V = λx3 + µ

for some λ and µ. The quotient metric is

g = V dx2
3.

Up to gauge transform we may assume θ is of the form

θ = dt− λx2dx1.

Then it is not difficult to see that Lie(H) corresponds to Killing fields spanned by ∂t, ∂x1 + λx2∂t, ∂x2 .

2.4 Collapsing geometry in the regular region

Let K be the K3 manifold. In our setting, by Theorem 2.1, there is a Gromov-Hausdorff convergence

(K, gj)
GH−−→ (I, dt2).

For simplicity we shall denote by Xj the hyperkähler manifold (K, gj).

Suppose p ∈ X∞ \ S. Then there is a neighborhood I′ of p, such that I′ is the Gromov-Hausdorff limit
of the open neighborhoods Uj ⊂ Xj with uniformly bounded curvature. Let Ũj → Uj be the universal
cover, and Γj be the deck transformation group. Then by the result of Fukaya [20] (see also [21]) we know
by passing to a subsequence (Ũj , g̃j ,Γj) converges to a limit (Ũ∞, g̃∞, G∞), in the equivariant Gromov-
Hausdorff topology. Here G∞ is a 3-dimensional nilpotent Lie group acting freely on Ũ∞. Moreover, it is
a finite extension of its identity component G0

∞, which is a connected and simply connected 3-dimensional
nilpotent Lie group. So G0

∞ must be isomorphic to either the Heisenberg group H or the abelian group
R3. Any G∞ orbit is diffeomorphic to G0

∞.

Since each Xj is hyperkähler, by passing to a further subsequence we may assume the self-dual 2-
forms on Ũj have limits on Ũ∞, hence the limit Ũ∞ is hyperkähler and the action of G∞ preserves the
hyperkähler structure. In this case we claim that G∞ must be connected. To see this, suppose first
G0

∞ = H. Then we are in the setting of Subsection 2.3, and we have a global hyperkähler moment map
whose image is given by R2

x1,x2
×I′x3

, and the fiber is Rt. Taking any element φ ∈ G∞, since φ∗dx3 = dx3,
we see

φ∗dx1 = dx1, φ∗dx2 = dx2, φ∗θ = θ.
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In particular,

φ∗x1 = x1 + c1, φ∗x2 = x2 + c2, φ∗t = t+ λc2x1 + c3

for constants c1, c2, c3, hence φ is given by translation of an element in H = G0
∞. Similarly, if G0

∞ = R3,
then the limit metric is flat and we also have a similar expression of the self-dual 2-forms as in (2.3) with
V being a constant. This proves the claim.

By [19] we know for i large, there is a smooth fibration πi : Ui → I′ whose fiber is almost flat and hence
a 3-dimensional infranilmanifold. For simplicity of notation we denote by z the coordinate function x3

on I′, and view it as the projection function z = π∞ : Ũ∞ → I′.
Lemma 2.4. The re-normalized limit measure on I′ is given by ν∞ = cV dz for some constant c > 0.

Proof. Since we are collapsing with uniformly bounded curvatures, we may construct the above fibration
maps πj : Uj → I′ such that the lifting π̃j : Ũj → I′ converges smoothly to the function x3 under the
equivariant convergence of Ũj to Ũ∞. This can be done quickly, for example, again by using Cheeger-
Colding theory [9]. One can construct harmonic functions πj : Uj → I′ by solving a Dirichlet problem
and obtain smooth convergence on the lifting to Ũj since we have uniformly geometry bound.

For each j, we denote Fj(z) = π−1
j (z), and let Hj be the mean curvature function on Fj(z) in Xj . We

then know that Hj uniformly converges to the function H, which is the mean curvature of π−1
∞ (z). It is

straightforward to compute

H =
1

2
V −3/2∂zV,

which depends only on z. By definition we have

d

dz
log Vol(Fj(z)) =

1

Vol(Fj(z))

∫

Fj(z)

Hj

|∇πj |
. (2.4)

By our convergence we know Hj uniformly converges to H, and |∇πj | uniformly converges to |∇z| =
V −1/2. So we see the right-hand side of (2.4) converges to 1

2V
−1∂zV . Choosing a base point we then see

that there exist constants Cj → ∞ such that

lim
j→∞

Cj ·Vol(Fj(z)) = V 1/2.

Now by co-area formula

Vol(z1 " z " z2) =

∫ z2

z1

dz

∫

Fj(z)

1

|∇πj |
.

So

lim
j→∞

CjVol(z1 " z " z2) =

∫ z2

z1

V dz.

This then gives the desired formula.

Recall the Bakry-Émery Laplacian on the corresponding weighted Riemannian manifold (I′, dt2, ν∞)
is defined to be

∆BE ≡ ∆+
1

2
∇(log V ) ·∇.

It is easy to see that for a function f on the quotient, we have

∆BEf = V −1 ∂
2f

∂z2
.

So f is harmonic in the Bakry-Emery sense if and only if f is an affine function in z.

2.5 Global affine structure

Fixing a point q ∈ S \ ∂I, we choose δ > 0 such that the ball B = Bδ(q) satisfies B ∩ S = {q}. We may
assume B is the limit of balls Bj ≡ Bδ(qj) for qj ∈ Xj .
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Lemma 2.5. By choosing δ > 0 even smaller if necessary, for j sufficiently large, there is a harmonic
function zj on Bj, and a non-constant Lipschitz function z on B, such that |∇zj | " C for some constant
C > 0 and zj converges uniformly to z.

Proof. This is a simple application of the construction of Cheeger and Colding [9]. Choose a fixed
number ϵ such that Bϵ(q) ∩ S = {q}. Suppose ∂Bϵ(q) = {q′, q′′}, and choose a sequence of points
q′j , q

′′
j ∈ Xj that converge to q′, q′′ correspondingly. Since the tangent cone of I at q is R, by [9], for δ > 0

sufficiently small, for j sufficiently large we can find a harmonic function zj on B2δ(qj) such that

|zj − (dj(q
′
j , ·)− dj(q

′
j , qj))| "

δ

10
.

For j large we then get that
sup

Bδ(qj)
zj − inf

Bδ(qj)
zj ∈ [δ/10, 10δ],

and by the Cheng-Yau gradient estimate we also have

sup
B3δ/2(qj)

|∇zj | " C.

The conclusion then follows.

Lemma 2.6. z is an affine function on B \ {q} with respect to the above affine structures.

Proof. Take any q′ ∈ B \ {q}, and q′j ∈ Xj converging to q′. Then by the discussion in Subsection 2.4
we can find a neighborhood Uj of q′j , such that its universal cover Ũj converges to a smooth limit Ũ∞
with the action of a 3-dimensional nilpotent group H or R3. Then the lift of the above harmonic functions
zj converge smoothly to an invariant harmonic function w on Ũ∞. In particular we know w is an affine
function in the quotient Ũ/H. On the other hand, naturally w descends to the function z.

Remark 2.7. Since a function f on B \ {q} is affine if and only if it is harmonic in the Bakry-Emery
sense, the lemma also follows from more general statement [17, Lemma 3.17] (or [26, Theorem 1.3], [2,
Corollary 4.5]).

By the discussion in Subsection 2.4 we know that on B \ {q}, z is a well-defined smooth coordinate
function and we have

|∇z|−2 = V

is a positive affine function in z. It then follows that V is bounded above on B \{q}; also V −1 is bounded
above by Lemma 2.5. We may write the limit Riemannian metric as

g∞ = V dz2

on B \ {q}. Also the re-normalized limit measure can be written as

ν∞ = c∞V dz

for some c∞ > 0 which is constant on the two connected components of B \ {q}. Notice priori it is
not obvious that c∞ is a constant. By [11, Theorem 4.15], we know the limit measure ν∞ is absolutely
continuous with respect to the Lebesgue measure on B. So we see that on B, ν∞ has positive and
bounded density the with respect to the volume measure of g∞.

Lemma 2.8. V extends to a continuous function on B.

Proof. Let zj be the sequence of harmonic functions constructed in Lemma 2.5. Since ∆zj = 0, by
Weitzenböck formula we get

∆|∇zj |2 = 2|∇2zj |2 ! 0.

By [9, Theorem 6.33] we have a good cut-off function χj : Bj → [0, 1], which is compactly supported,
with χj = 1 on Bδ/2(qj) and

|∇χj |+ |∆χj | " C
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for a constant C > 0 independent of j. Then we get
∫

Bδ/2(qj)
|∇|∇zj ||2 " C

∫

Bδ(qj)
χj |∇2zj |2 = C

∫

Bδ(qj)
∆χj · |∇zj |2 " CVol(Bδ(qj)).

Letting j → ∞ with [2, Theorems 4.2 and 4.6] it follows that
∫

Bδ/2(q)\{q}
|∇|∇z||2ν∞ < ∞,

hence we get ∫

Bδ/2(q)
|∂zV −1/2|2dz < ∞.

In particular we see V −1/2 (hence V ) extends continuously across q.

Since |∇z|2 = V −1 is positive on B, it follows that z gives a C1 coordinate with respect to the arc-
length coordinate on B. Using the RCD theory explained in Section 3 (see Theorem 3.2) we know ν∞
has continuous density function with respect to the Lebesgue measure because the limit metric measure
space is an RCD(0, 4) space (which comes from a fact that RCD(K,N)-spaces are closed with respect to
mGH-convergence) , so the continuity of V also implies that c∞ has to be a constant on B.

Corollary 2.9. V is a concave piecewise affine function in z.

Proof. As in the proof of Lemma 2.8, applying Weitzenböck formula again with good cut-off functions
constructed in [9] we see that local H2,2-norms of zj are uniformly bounded. Note that for any non-
negatively valued Lipschitz function φ on B with compact support, there exists a sequence of non-
negatively valued Lipschitz functions φj on Bj with compact supports such that φj converge to φ in the
H1,2-sense (see for example the proof of [2, Theorem 4.4]). Then since

∫

Bj

⟨∇|∇zj |2,∇φj⟩ " 0,

taking the limit j → ∞ with [2, Theorem 4.6 and Corollary 4.3] (see also [26, Theorem 4.9]) yields
∫

B
⟨∇|∇z|2,∇φ⟩ν∞ " 0.

Notice by definition

⟨∇|∇z|2,∇φ⟩ν∞ = ∂z(V
−1)∂zφ|∇z|2 · c∞V dz = c∞∂z(V

−1)∂zφdz.

It follows that in z coordinate V −1 is a convex function. Since V is piecewise affine, this is equivalent to
saying that V is concave.

Similarly we also have the following property.

Corollary 2.10. A continuous function f on B is harmonic (in the weak sense) if and only if it is
affine in z.

Proof. Suppose f is harmonic. Then on B \ {q} we know f is smooth and affine in z. Now f being
harmonic in the weak sense means that

∫

B
⟨∇f,∇φ⟩ν∞ = 0

for all Lipschitz function φ on B with compact support. So it follows that f must extend smoothly across
q, hence is a global affine function on B. The converse direction is easy to see similarly.

Now we can define a canonical affine structure on the limit space I. Over each interval (pk, pk+1)
we use the natural affine coordinate x3 coming from Subsection 2.4, which is unique up to affine trans-
formations. The above discussion implies that using the local harmonic function z in a neighborhood
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pk (k ∈ {2, . . . ,m}) we can naturally glue the two affine structures on the two intervals (pk−1, pk), and
obtain a global affine structure. Intrinsically speaking, the affine structure can be defined in terms of the
sheaf of harmonic functions in the interior of I. This proves Items (2) and (3) of Theorem 1.1.

Notice however in a neighborhood Bδ(q) of a boundary point q in I, there is no non-constant harmonic
functions. Indeed, suppose the affine coordinate is given by z. Then a harmonic function f(z) inBδ(q)\{q}
is of the form az + b for constants a and b. Now being harmonic on Bδ(q),

∫
f ′(z)ψ′(z)dz = 0

for all ψ ∈ C∞
0 (Bδ(q)). This forces a = 0.

2.6 Some remarks

We finish this section with some remarks. By the gluing construction in [14, 24, 35] we have examples of
collapsing limit of hyperkähler metrics on K3 manifolds such that V is either a constant, or V is (up to
constant multiple) of the form on [0, 1],

V (z) =

⎧
⎪⎪⎨

⎪⎪⎩

k1z, z ∈
[
0,

k2
k2 − k1

]
,

k2z − k2, z ∈
[

k2
k2 − k1

, 1

]
,

for integers −9 " k2 < k1 " 9. It is expected that the construction in [24] can be generalized to yield
limit spaces with V given by an arbitrary piecewise affine function on [0, 1] with V (0) = V (1) = 0, and
each slope of V is an integer in [−9, 9]. Motivated by these it makes sense to ask the following questions
which we leave for future exploration.

• In the case of collapsing hyperkähler metrics on K3 manifolds, can we show that if V is not locally
constant near a boundary point p ∈ ∂I, then V (p) = 0?

This is certainly compatible with the known gluing constructions. Notice this is not the case if we
consider general Ricci limit space. As an example, we consider the boundary of the ϵ-neighborhood
Σϵ of {(x1, 0, 0); 0 " x1 " 1} in R3, which is homeomorphic to S2. Since the induced Riemannian
metric gϵ on Σϵ is not smooth, taking a suitable smoothing of gϵ (the smoothed part is included in a
small neighborhood of {(0, x2, x3);x2

2 + x2
3 = 1} ∪ {(1, x2, x3);x2

2 + x2
3 = 1}) yields that there exists a

smooth Riemannian metric ĝϵ on S2 with non-negative sectional curvature such that (S2, ĝϵ, volĝϵ/volĝϵS2)
mGH-converge to ([0, 1], d[0,1],L1) as ϵ → 0+, where this convergence can be checked by considering the
canonical projection πϵ from Σϵ to [0, 1]. In particular, we see that (S2, ĝϵ, e−x1volĝϵ/volĝϵS2) mGH-
converge to ([0, 1], d[0,1], e

−xL1). On the other hand by [29, Theorem 3] (S2, ĝϵ, e−x1volĝϵ/volĝϵS2) is a
Ricci limit space because the (finite-dimensional) Bakry-Émery Ricci tensor has a definite lower bound.
Therefore ([0, 1], d[0,1], e

−xL1) is also a Ricci limit space.

• Is it true that V must be singular at a point in S? Again this is the case for examples from the
gluing constructions and if the answer to this question is yes, then it shows that the singular point of
the collapsing (not the singular point of the limit space) can be detected from the singularity of the
renormalized limit measure.

• Over each interval (pk, pk+1) the function V is affine, but its slope sk is not well-defined since the
coordinate function z is only well-defined up to affine transformations. However since we have a global
affine structure on I, given two intervals (pk, pk+1) and (pl, pl+1), the ratio sk/sl ∈ [0,∞] is well-defined,
and one can ask for the intrinsic meaning of this number in terms of the collapsing geometry. From the
known gluing construction, it is natural to expect that when this number is in (0,∞), it should be rational
and coincides with the degree of the corresponding collapsing nilmanifold fibers over each interval. Also
the fact that the limiting group G∞ in Subsection 2.4 is connected also indicates that the collapsing fiber
in the regular region is likely to be a nilmanifold instead of a general infranilmanifold.
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3 Optimal dimension as RCD space

A triple (X, d,m) is said to be a metric measure space if (X, d) is a complete separable metric space and
m is a Borel measure on X with full support. Throughout this section we assume that all metric measure
space (X, d,m) is not trivial, i.e., X is not a single point.

Lott and Villani [30] and Sturm [33,34] introduced the notion of Ricci bounds from below by K ∈ R and
dimension bounds from above by N ∈ [1,∞] for a metric measure space (X, d,m), so-called CD(K,N)
space, independently. It is worth pointing out that N is not necessary to be an integer. Moreover
they proved fundamental functional inequalities/comparison theorems including Bishop-Gromov type
inequalities. In particular if (X, d,m) is a CD(K,N) for some K ∈ R and N ∈ [1,∞), then for all x ∈ X,

lim inf
r→0+

m(Br(x))

rN
> 0. (3.1)

In a series of works by Ambrosio et al. [1], Ambrosio et al. [4], Erbar et al. [18] and Gigli [22, 23], the
notion RCD(K,N) space was introduced by adding “a Riemannian structure” to CD(K,N) spaces. In
order to keep our short presentation, we skip the precise definition of RCD(K,N) spaces. Instead of
that, combining previous known results, we introduce the complete list of “one-dimensional” RCD spaces
below. Typical examples of RCD(K,N) spaces are weighted Riemannian manifolds; for n-dimensional
complete Riemannian manifold (Mn, g) with f ∈ C2(Mn), the metric measure space (Mn, dg, e−fvolg)
is RCD(K,N) if and only if it holds that n " N and that

RicgMn +Hessgf − df ⊗ df

N − n
! Kg. (3.2)

Note that if n = N , then the inequality (3.2) is understood as that f must be a constant with RicgMn ! Kg.
Other typical examples are obtained by pointed measured Gromov-Hausdorff (pmGH) limit spaces of Rie-
mannian manifolds with Ricci bounds from below by K, dimensions from above by N , and renormalized
measures, so-called Ricci limit spaces.

Let us introduce a key notion in this section. For an RCD(K,N) space (X, d,m), where N ∈ [1,∞),
it is proved in [7] that there exists a unique k ∈ [1, N ] ∩ N such that for m-a.e. x ∈ X, it holds that
(X, r−1d,m/m(Br(x)), x) pmGH converge to (Rk, dRk ,ω−1

k Lk, 0k) as r → 0+. This generalizes a result of
[12] to RCD(K,N) spaces, where ωk = Lk(B1(0k)). We denote k by dimd,m(X) and call it the essential
dimension.

Remark 3.1. More generally, for any RCD(K,N) space (X, d,m) (N < ∞) and all l ∈ N the l-
dimensional regular set Rl is defined by the set of all points x ∈ X satisfying

(X, r−1d,m(Br(x))
−1m,x)

pmGH→ (Rl, dRl ,ω−1
l Ll, 0l) (r → 0+). (3.3)

Then it follows from the Bishop-Gromov inequality that Rl = ∅ for all l ∈ (N,∞) ∩ N. It is still open
problem (even for Ricci limit spaces) if Rl ̸= ∅ for some l, then Rn = ∅ for all n ̸= l, except for the case
when l = 1 ([28], see also [15]) or l = N ([16,27]). The well-definedness of the essential dimension means
that (combining with [31]) there exists a unique k with m(Rk) > 0.

It is worth pointing out that if (X, r−1d, x) pGH converge to (Rl, dRl , 0l) as r → 0+, then (3.3) holds,
that is, x ∈ Rl. The proof is the same as that of [10, Proposition 1.35]. This tells us that the l-dimensional
regular point is purely metric notion.

We are now in a position to introduce a classification of “one-dimensional” RCD(K,N) spaces. For
that we prepare the distorsion coefficients; for all K ∈ R,K ∈ R!0, s ∈ [0, 1] and θ ∈ R>0,

σs
K,N (θ) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

∞, if Kθ2 ! Nπ2,

sin(sθ(K/N)1/2)

sin(θ(K/N)1/2)
, if 0 < Kθ2 < Nπ2,

s, if Kθ2 = 0,

sinh(sθ(−K/N)1/2)

sinh(θ(−K/N)1/2)
, if Kθ2 < 0.
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Although the following is just a combination of previous known results in [3,5,8,28] (see also [15,25] for
Ricci limit spaces), to the best of our knowledge, we write down it explicitly with the sketch of the proof
for reader’s convenience.

Theorem 3.2. Let (X, d,m) be an RCD(K,N) space for some K ∈ R and N ∈ (1,∞). Then the
following are equivalent:

(a) R1 ̸= ∅.
(b) dimd,m(X) = 1.

(c) dimH(X, d) ∈ [1, 2), where dimH denotes the Hausdorff dimension.

(d) (X, d) is isometric to a one-dimensional complete Riemannian manifold (M1, g1) with possible
boundary. Moreover there exists h ∈ C0(X) such that m = hvolg1 and that for all minimal geodesic
γ : [0, 1] → X with x = γ(0) and y = γ(1) (i.e., d(γ(u), γ(v)) = d(x, y)|u− v| holds for all u, v ∈ [0, 1]) it
holds that for all s, ti ∈ [0, 1],

h(γ(st0 + (1− s)t1))
1/(N−1)

! σs
K,N−1(d(x, y))h(γ(t0))

1/(N−1) + σ(1−s)
K,N−1(d(x, y))h(γ(t1))

1/(N−1). (3.4)

Finally if a one-dimensional complete Riemannian manifold (M̂1, ĝ1) with possible boundary satisfies
(3.4) for some h ∈ C0(M̂1) with h > 0 on M̂1 \ ∂M̂1, then (M̂1, dĝ1 , hvolĝ1) is an RCD(K,N) space.

Proof. It is trivial that (b) ⇒ (a) holds. Let us first prove (c) ⇒ (b). If (b) is not satisfied, then letting
k := dimd,m(X) ! 2 with [3, Theorem 4.1] yields that the k-dimensional reduced regular set R∗

k(⊂ Rk)
has a positive m-measure and that m and Hk are mutually absolutely continuous on R∗

k, where Hk

denotes the k-dimensional Hausdorff measure. In particular, we have

Hk(X) ! Hk(R∗
k) > 0,

which implies dimH(X, d) ! k ! 2. Thus we have the desired implication.

Next, let us prove (a) ⇒ (d) only in the case when K = 0 because the other case is similar. By a result
of [28, Theorem 1.1] we know that (X, d) is isometric to a one-dimensional Riemannian manifold with
possible boundary and that there exists a nonnegatively valued h ∈ C0(Int(X)) such that m = hH1 and
that h1/N is concave on each minimal geodesic in Int(X), where Int(X) = X \ ∂X. In particular, h has
a continuous extension to X. Then applying a similar argument in the proof of [8, Theorem 4.2] yields
that (3.4) holds. Thus we have (d).

Finally, we prove the remaining statement for (M̂1, dĝ1 , hvolĝ1). If ∂M̂1 ̸= ∅, or (M̂1, ĝ1) is isometric
to (R, gR), then the desired statement is justified from [8, Lemma 6.2]. If (M̂1, ĝ1) is isometric to
(S1(r), gS1(r)) for some r > 0, where

S1(r) := {x ∈ R2 : |x| = r}

with the standard Riemannian metric, then taking a finite open covering of arcs whose lengths are at most
πr with [5, Theorem 6.14] and the observation above in the case when ∂M̂1 ̸= ∅ yields the conclusion.

Remark 3.3. As a corollary of Theorem 3.2 we see that if (S1(r), dS1(r),m) is an RCD(0, N) space
for some N , then m = aH1 for some a > 0. The proof is as follows. Thanks to Theorem 3.2 we
have m = fH1 for some positively valued continuous function f on S1(r). Let c := min f and let
A := f−1(c) ̸= ∅. Thanks to (3.4) it is easy to check that any x ∈ A is an interior point of A because of
σs
0,N−1(θ) = s. Thus A is an open subset. Since it follows from the continuity of f that A is a closed set,

we have A = S1(r) which shows that f is a constant.

Remark 3.4. In the condition (d) above if h is continuous on γ([0, 1]) and C2 on γ((0, 1)), then (3.4)
holds if and only if

(h1/(N−1))′′ +
K

N − 1
h1/(N−1) " 0 (3.5)
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holds. Moreover if h = e−f , then (3.5) holds if and only if

f ′′ − (f ′)2

N − 1
! K (3.6)

holds. Compare with (3.2).

Remark 3.5. It also follows from Theorem 3.2 and [8, Theorem 4.2] that if (X, d,m) is an RCD (K, 1)
space, then m = aH1 for some constant a > 0.

Definition 3.6. For an RCD(K1,∞) space (X, d,m) for some K1 ∈ R let us define the optimal dimen-
sion dimRCD(X, d,m) as RCD space by the infimum N ∈ (1,∞] such that (X, d,m) is an RCD(K2, N)
space for some K2 ∈ R.

It follows from [3, Theorem 4.1] and [16, Corollary 1.5] that

dimd,m(X) " dimH(X, d) " [dimRCD(X, d,m)],

where [N ] denotes the integer part of N . Note that for all N ∈ [1,∞), a metric measure space ([0,π], dR,
sinN−1 tL1) is an RCD(N − 1, N) space whose optimal dimension is N (see [3]) and that the Gaussian
space (Rn, dRn , e−K|x|2Ln) has the optimal dimension ∞ if K ̸= 0.

Remark 3.7. It is natural to ask if dimRCD(X, d,m) = 1, then m = aH1 for some a > 0. However
this is not true (compare with Remark 3.5). In fact, for all closed interval I in R and any K ̸= 0, thanks
to (3.6), the metric measure space (I, dR, e−KxL1) has the optimal dimension 1. However, e−Kx is not
constant. More generally the optimal dimension of (A, dg, e−fvolg), where A is a closed convex subset of
Mn with f ∈ C2(Mn) and volg(Br(x)∩A) > 0 for all x ∈ A and all r > 0, is equal to n because of (3.2).

Proposition 3.8. For all di > 0 (i = 1, 2) and n ∈ N, a metric measure space

(X, d,m) :=

([
− d1
d1 + d2

,
d2

d1 + d2

]
, dR, f(x)

n−1
n+1L1

)

is RCD(0, 2n
n+1 ) whose optimal dimension is 2n

n+1 , where

f(x) :=

⎧
⎪⎪⎨

⎪⎪⎩

(
x

d1
+

1

d1 + d2

)
, x ∈

[
− d1
d1 + d2

, 0

]
,

(
− x

d2
+

1

d1 + d2

)
, otherwise.

Proof. It follows from (3.1) with a fact

lim
r→0+

m(Br(p))

rN
= 0

for all N ∈ [1, 2n
n+1 ) that

dimRCD(X, d,m) ! 2n

n+ 1

holds, where p ∈ ∂X. Thus it suffices to prove that (X, d,m) is an RCD(0, 2n
n+1 ) space.

Since the function x %→ f(x) is concave on X, we see that for all ti ∈ X (i = 1, 2) and all s ∈ [0, 1],

f(st0 + (1− s)t1) ! sf(t0) + (1− s)f(t1),

which is equivalent to that (3.4) holds as

K = 0, N =
2n

n+ 1
, h(x) = f(x).

Therefore Theorem 3.2 yields that (X, d,m) is an RCD(0, 2n
n+1 ) space.
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This proposition computes the optimal RCD dimension of the collapsing limits constructed in [24,35].
Also Item (5) of Theorem 1.1 follows easily from this.

Acknowledgements The first author was supported by the Grant-in-Aid for Young Scientists (B) (Grant

No. 16K17585) and Grant-in-Aid for Scientific Research (B) (Grant No. 18H01118). The second author was

supported by National Science Foundation of USA (Grant No. DMS-1916520) and the Simons Collaboration

Grant on Special Holonomy in Geometry, Analysis and Physics (Grant No. 488633, S.S.). The third author was

supported by National Science Foundation of USA (Grant No. DMS-1906265).

References
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